akshare 1.12.95__py3-none-any.whl → 1.15.72__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of akshare might be problematic. Click here for more details.
- akshare/__init__.py +446 -139
- akshare/air/air_hebei.py +79 -53
- akshare/air/air_zhenqi.py +29 -43
- akshare/air/sunrise_tad.py +32 -17
- akshare/bank/bank_cbirc_2020.py +12 -9
- akshare/bond/bond_cb_ths.py +17 -9
- akshare/bond/bond_china.py +38 -39
- akshare/bond/bond_china_money.py +75 -48
- akshare/bond/bond_convert.py +40 -16
- akshare/bond/bond_info_cm.py +28 -8
- akshare/bond/bond_issue_cninfo.py +73 -30
- akshare/bond/{bond_zh_cov_sina.py → bond_zh_cov.py} +41 -17
- akshare/bond/bond_zh_sina.py +57 -51
- akshare/cal/__init__.py +0 -0
- akshare/cal/rv.py +170 -0
- akshare/cost/cost_living.py +7 -5
- akshare/currency/currency_safe.py +7 -6
- akshare/data/cninfo.js +15 -0
- akshare/datasets.py +10 -21
- akshare/economic/macro_bank.py +95 -653
- akshare/economic/macro_china.py +772 -1024
- akshare/economic/macro_china_hk.py +65 -243
- akshare/economic/macro_china_nbs.py +24 -7
- akshare/economic/macro_constitute.py +17 -12
- akshare/economic/macro_euro.py +13 -6
- akshare/economic/macro_finance_ths.py +133 -0
- akshare/economic/macro_info_ws.py +100 -0
- akshare/economic/macro_japan.py +5 -4
- akshare/economic/macro_other.py +12 -9
- akshare/economic/macro_usa.py +376 -1940
- akshare/economic/marco_cnbs.py +11 -6
- akshare/energy/energy_carbon.py +94 -125
- akshare/event/migration.py +3 -2
- akshare/exceptions.py +43 -0
- akshare/file_fold/calendar.json +245 -2
- akshare/fortune/fortune_500.py +15 -48
- akshare/fund/fund_amac.py +157 -75
- akshare/fund/fund_em.py +191 -184
- akshare/fund/fund_etf_em.py +20 -19
- akshare/fund/fund_etf_sina.py +71 -23
- akshare/fund/fund_etf_ths.py +93 -0
- akshare/fund/fund_fee_em.py +98 -0
- akshare/fund/fund_lof_em.py +10 -8
- akshare/fund/fund_portfolio_em.py +60 -50
- akshare/fund/fund_rank_em.py +91 -82
- akshare/fund/fund_report_cninfo.py +63 -48
- akshare/fund/fund_scale_sina.py +20 -10
- akshare/fund/fund_xq.py +139 -109
- akshare/futures/cons.py +8 -31
- akshare/futures/cot.py +185 -137
- akshare/futures/futures_basis.py +97 -32
- akshare/futures/futures_comm_ctp.py +37 -0
- akshare/futures/futures_comm_qihuo.py +74 -45
- akshare/futures/futures_daily_bar.py +121 -184
- akshare/futures/futures_hf_em.py +66 -61
- akshare/futures/futures_hq_sina.py +79 -61
- akshare/futures/futures_index_ccidx.py +6 -3
- akshare/futures/futures_inventory_99.py +61 -272
- akshare/futures/futures_news_shmet.py +4 -2
- akshare/futures/futures_roll_yield.py +12 -25
- akshare/futures/futures_spot_stock_em.py +19 -13
- akshare/futures/futures_stock_js.py +14 -12
- akshare/futures/futures_to_spot.py +38 -33
- akshare/futures/futures_warehouse_receipt.py +75 -71
- akshare/futures/futures_zh_sina.py +73 -50
- akshare/futures/symbol_var.py +18 -13
- akshare/futures_derivative/futures_contract_info_czce.py +60 -52
- akshare/futures_derivative/futures_contract_info_ine.py +43 -34
- akshare/futures_derivative/futures_contract_info_shfe.py +46 -35
- akshare/futures_derivative/futures_cot_sina.py +26 -19
- akshare/futures_derivative/futures_spot_sys.py +21 -8
- akshare/fx/currency_investing.py +19 -285
- akshare/index/index_cflp.py +29 -26
- akshare/index/index_cni.py +86 -88
- akshare/index/index_cons.py +26 -10
- akshare/index/index_cx.py +248 -47
- akshare/index/index_drewry.py +17 -16
- akshare/index/index_hog.py +27 -26
- akshare/index/index_option_qvix.py +329 -0
- akshare/index/index_research_fund_sw.py +134 -0
- akshare/index/{index_sw_research.py → index_research_sw.py} +122 -58
- akshare/index/index_spot.py +9 -5
- akshare/index/index_stock_hk.py +35 -16
- akshare/index/index_stock_us_sina.py +1 -1
- akshare/index/index_stock_zh.py +180 -89
- akshare/index/index_stock_zh_csindex.py +15 -369
- akshare/index/index_sw.py +62 -34
- akshare/index/index_yw.py +46 -23
- akshare/index/index_zh_a_scope.py +48 -0
- akshare/index/index_zh_em.py +17 -14
- akshare/interest_rate/interbank_rate_em.py +14 -9
- akshare/movie/artist_yien.py +32 -5
- akshare/movie/movie_yien.py +92 -18
- akshare/movie/video_yien.py +28 -5
- akshare/news/news_baidu.py +78 -44
- akshare/news/news_cctv.py +38 -38
- akshare/news/news_stock.py +6 -3
- akshare/nlp/nlp_interface.py +7 -8
- akshare/option/cons.py +11 -11
- akshare/option/option_comm_qihuo.py +86 -0
- akshare/option/option_commodity.py +178 -51
- akshare/option/option_daily_stats_sse_szse.py +146 -0
- akshare/option/option_em.py +147 -138
- akshare/option/option_finance_sina.py +160 -137
- akshare/option/option_lhb_em.py +62 -56
- akshare/option/option_risk_indicator_sse.py +17 -14
- akshare/other/other_car_cpca.py +934 -0
- akshare/other/{other_car.py → other_car_gasgoo.py} +15 -54
- akshare/qdii/__init__.py +0 -0
- akshare/qdii/qdii_jsl.py +233 -0
- akshare/request.py +117 -0
- akshare/spot/spot_hog_soozhu.py +232 -0
- akshare/spot/spot_price_qh.py +121 -0
- akshare/spot/spot_sge.py +63 -10
- akshare/stock/stock_allotment_cninfo.py +10 -9
- akshare/stock/stock_ask_bid_em.py +27 -3
- akshare/stock/stock_board_concept_em.py +23 -14
- akshare/stock/stock_board_industry_em.py +40 -34
- akshare/stock/stock_cg_equity_mortgage.py +15 -11
- akshare/stock/stock_cg_guarantee.py +41 -51
- akshare/stock/stock_cg_lawsuit.py +36 -35
- akshare/stock/stock_dividend_cninfo.py +12 -6
- akshare/stock/stock_dzjy_em.py +347 -260
- akshare/stock/stock_fund_em.py +332 -84
- akshare/stock/stock_hk_famous.py +108 -0
- akshare/stock/stock_hk_sina.py +8 -7
- akshare/stock/stock_hold_control_cninfo.py +100 -15
- akshare/stock/stock_hold_control_em.py +4 -3
- akshare/stock/stock_hold_num_cninfo.py +18 -12
- akshare/stock/stock_hot_rank_em.py +2 -1
- akshare/stock/stock_hot_search_baidu.py +5 -2
- akshare/stock/stock_industry_cninfo.py +24 -18
- akshare/stock/stock_industry_pe_cninfo.py +45 -31
- akshare/stock/stock_industry_sw.py +9 -10
- akshare/stock/stock_info.py +25 -15
- akshare/stock/stock_info_em.py +5 -2
- akshare/stock/stock_intraday_em.py +5 -2
- akshare/stock/stock_intraday_sina.py +22 -18
- akshare/stock/stock_ipo_summary_cninfo.py +25 -10
- akshare/stock/stock_new_cninfo.py +32 -19
- akshare/stock/stock_news_cx.py +39 -0
- akshare/stock/stock_profile_cninfo.py +9 -8
- akshare/stock/stock_rank_forecast.py +8 -6
- akshare/stock/stock_share_changes_cninfo.py +18 -14
- akshare/stock/stock_share_hold.py +24 -19
- akshare/stock/stock_summary.py +54 -26
- akshare/stock/stock_us_famous.py +15 -6
- akshare/stock/stock_us_pink.py +7 -5
- akshare/stock/stock_us_sina.py +15 -12
- akshare/stock/stock_xq.py +38 -12
- akshare/stock/stock_zh_a_sina.py +53 -78
- akshare/stock/stock_zh_b_sina.py +32 -55
- akshare/stock/stock_zh_kcb_report.py +11 -9
- akshare/stock/stock_zh_kcb_sina.py +67 -64
- akshare/stock_feature/stock_a_below_net_asset_statistics.py +5 -2
- akshare/stock_feature/stock_a_high_low.py +5 -2
- akshare/stock_feature/stock_a_indicator.py +12 -9
- akshare/stock_feature/stock_a_pe_and_pb.py +27 -6
- akshare/stock_feature/stock_account_em.py +58 -40
- akshare/stock_feature/stock_analyst_em.py +36 -27
- akshare/stock_feature/stock_board_industry_ths.py +136 -400
- akshare/stock_feature/stock_comment_em.py +118 -85
- akshare/stock_feature/stock_concept_futu.py +183 -0
- akshare/stock_feature/stock_cyq_em.py +58 -54
- akshare/stock_feature/stock_disclosure_cninfo.py +147 -102
- akshare/stock_feature/stock_esg_sina.py +216 -11
- akshare/stock_feature/stock_fhps_em.py +60 -25
- akshare/stock_feature/stock_fhps_ths.py +25 -6
- akshare/stock_feature/stock_fund_flow.py +38 -25
- akshare/stock_feature/stock_gdfx_em.py +180 -95
- akshare/stock_feature/stock_gdhs.py +73 -49
- akshare/stock_feature/stock_gpzy_em.py +78 -46
- akshare/stock_feature/stock_hist_em.py +164 -111
- akshare/stock_feature/stock_hk_valuation_baidu.py +20 -8
- akshare/stock_feature/stock_hsgt_em.py +184 -452
- akshare/stock_feature/stock_info.py +52 -29
- akshare/stock_feature/stock_inner_trade_xq.py +39 -31
- akshare/stock_feature/stock_irm_cninfo.py +32 -9
- akshare/stock_feature/stock_jgdy_em.py +41 -38
- akshare/stock_feature/stock_lh_yybpm.py +36 -37
- akshare/stock_feature/stock_lhb_em.py +135 -71
- akshare/stock_feature/stock_lhb_sina.py +93 -46
- akshare/stock_feature/stock_margin_em.py +102 -0
- akshare/stock_feature/{stock_sse_margin.py → stock_margin_sse.py} +21 -15
- akshare/stock_feature/{stock_szse_margin.py → stock_margin_szse.py} +23 -19
- akshare/stock_feature/stock_market_legu.py +13 -8
- akshare/stock_feature/stock_pankou_em.py +72 -34
- akshare/stock_feature/stock_report_em.py +244 -54
- akshare/stock_feature/stock_research_report_em.py +48 -19
- akshare/stock_feature/stock_sns_sseinfo.py +15 -12
- akshare/stock_feature/stock_sy_em.py +86 -33
- akshare/stock_feature/stock_technology_ths.py +152 -120
- akshare/stock_feature/stock_tfp_em.py +35 -13
- akshare/stock_feature/stock_three_report_em.py +119 -77
- akshare/stock_feature/stock_ttm_lyr.py +4 -7
- akshare/stock_feature/stock_value_em.py +83 -0
- akshare/stock_feature/stock_wencai.py +21 -9
- akshare/stock_feature/stock_yjyg_em.py +63 -28
- akshare/stock_feature/stock_zf_pg.py +61 -38
- akshare/stock_feature/stock_zh_valuation_baidu.py +3 -2
- akshare/stock_feature/stock_ztb_em.py +62 -40
- akshare/stock_fundamental/stock_finance.py +150 -58
- akshare/stock_fundamental/stock_finance_ths.py +116 -31
- akshare/stock_fundamental/stock_mda_ym.py +5 -3
- akshare/stock_fundamental/stock_notice.py +29 -15
- akshare/stock_fundamental/stock_profit_forecast_em.py +31 -13
- akshare/stock_fundamental/stock_profit_forecast_ths.py +19 -10
- akshare/stock_fundamental/stock_register_em.py +448 -0
- akshare/stock_fundamental/stock_restricted_em.py +79 -32
- akshare/stock_fundamental/stock_zygc.py +10 -8
- akshare/stock_fundamental/stock_zyjs_ths.py +5 -3
- akshare/tool/trade_date_hist.py +4 -3
- akshare/utils/cons.py +10 -0
- akshare/utils/context.py +43 -0
- akshare/utils/demjson.py +2 -2
- akshare/utils/func.py +26 -0
- akshare/utils/tqdm.py +13 -3
- {akshare-1.12.95.dist-info → akshare-1.15.72.dist-info}/METADATA +52 -69
- akshare-1.15.72.dist-info/RECORD +385 -0
- {akshare-1.12.95.dist-info → akshare-1.15.72.dist-info}/WHEEL +1 -1
- tests/test_func.py +3 -5
- akshare/bond/bond_futures.py +0 -50
- akshare/bond/bond_investing.py +0 -139
- akshare/crypto/crypto_hist_investing.py +0 -249
- akshare/fortune/fortune_it_juzi.py +0 -123
- akshare/futures/futures_international.py +0 -170
- akshare/futures/futures_news_baidu.py +0 -54
- akshare/futures/inventory_data.py +0 -100
- akshare/futures_derivative/futures_index_price_nh.py +0 -61
- akshare/futures_derivative/futures_index_return_nh.py +0 -47
- akshare/futures_derivative/futures_index_volatility_nh.py +0 -51
- akshare/futures_derivative/futures_other_index_nh.py +0 -145
- akshare/index/index_fear_greed_funddb.py +0 -71
- akshare/index/index_investing.py +0 -232
- akshare/sport/sport_olympic_winter.py +0 -39
- akshare/stock_feature/stock_board_concept_ths.py +0 -422
- akshare/stock_fundamental/stock_register.py +0 -292
- akshare-1.12.95.dist-info/RECORD +0 -374
- {akshare-1.12.95.dist-info → akshare-1.15.72.dist-info}/LICENSE +0 -0
- {akshare-1.12.95.dist-info → akshare-1.15.72.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,448 @@
|
|
|
1
|
+
# -*- coding:utf-8 -*-
|
|
2
|
+
# !/usr/bin/env python
|
|
3
|
+
"""
|
|
4
|
+
Date: 2024/6/15 20:20
|
|
5
|
+
Desc: 东方财富网-数据中心-新股数据-注册制审核
|
|
6
|
+
https://data.eastmoney.com/kcb/?type=nsb
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import pandas as pd
|
|
10
|
+
import requests
|
|
11
|
+
|
|
12
|
+
from akshare.utils.cons import headers
|
|
13
|
+
from akshare.utils.tqdm import get_tqdm
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def stock_register_kcb() -> pd.DataFrame:
|
|
17
|
+
"""
|
|
18
|
+
东方财富网-数据中心-新股数据-IPO审核信息-科创板
|
|
19
|
+
https://data.eastmoney.com/xg/ipo/
|
|
20
|
+
:return: 科创板注册制审核结果
|
|
21
|
+
:rtype: pandas.DataFrame
|
|
22
|
+
"""
|
|
23
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
24
|
+
params = {
|
|
25
|
+
"sortColumns": "UPDATE_DATE,ORG_CODE",
|
|
26
|
+
"sortTypes": "-1,-1",
|
|
27
|
+
"pageSize": "500",
|
|
28
|
+
"pageNumber": "1",
|
|
29
|
+
"reportName": "RPT_IPO_INFOALLNEW",
|
|
30
|
+
"columns": "SECURITY_CODE,STATE,REG_ADDRESS,INFO_CODE,CSRC_INDUSTRY,ACCEPT_DATE,DECLARE_ORG,"
|
|
31
|
+
"PREDICT_LISTING_MARKET,LAW_FIRM,ACCOUNT_FIRM,ORG_CODE,UPDATE_DATE,RECOMMEND_ORG,IS_REGISTRATION",
|
|
32
|
+
"source": "WEB",
|
|
33
|
+
"client": "WEB",
|
|
34
|
+
"filter": '(PREDICT_LISTING_MARKET="科创板")',
|
|
35
|
+
}
|
|
36
|
+
r = requests.get(url, params=params, headers=headers)
|
|
37
|
+
data_json = r.json()
|
|
38
|
+
page_num = data_json["result"]["pages"]
|
|
39
|
+
big_df = pd.DataFrame()
|
|
40
|
+
tqdm = get_tqdm()
|
|
41
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
42
|
+
params.update({"pageNumber": page})
|
|
43
|
+
r = requests.get(url, params=params, headers=headers)
|
|
44
|
+
data_json = r.json()
|
|
45
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
46
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
47
|
+
big_df.reset_index(inplace=True)
|
|
48
|
+
big_df["index"] = big_df.index + 1
|
|
49
|
+
big_df.rename(
|
|
50
|
+
columns={
|
|
51
|
+
"index": "序号",
|
|
52
|
+
"DECLARE_ORG": "企业名称",
|
|
53
|
+
"STATE": "最新状态",
|
|
54
|
+
"REG_ADDRESS": "注册地",
|
|
55
|
+
"CSRC_INDUSTRY": "行业",
|
|
56
|
+
"RECOMMEND_ORG": "保荐机构",
|
|
57
|
+
"LAW_FIRM": "律师事务所",
|
|
58
|
+
"ACCOUNT_FIRM": "会计师事务所",
|
|
59
|
+
"UPDATE_DATE": "更新日期",
|
|
60
|
+
"ACCEPT_DATE": "受理日期",
|
|
61
|
+
"PREDICT_LISTING_MARKET": "拟上市地点",
|
|
62
|
+
"INFO_CODE": "招股说明书",
|
|
63
|
+
},
|
|
64
|
+
inplace=True,
|
|
65
|
+
)
|
|
66
|
+
big_df["招股说明书"] = [
|
|
67
|
+
f"https://pdf.dfcfw.com/pdf/H2_{item}_1.pdf" for item in big_df["招股说明书"]
|
|
68
|
+
]
|
|
69
|
+
big_df = big_df[
|
|
70
|
+
[
|
|
71
|
+
"序号",
|
|
72
|
+
"企业名称",
|
|
73
|
+
"最新状态",
|
|
74
|
+
"注册地",
|
|
75
|
+
"行业",
|
|
76
|
+
"保荐机构",
|
|
77
|
+
"律师事务所",
|
|
78
|
+
"会计师事务所",
|
|
79
|
+
"更新日期",
|
|
80
|
+
"受理日期",
|
|
81
|
+
"拟上市地点",
|
|
82
|
+
"招股说明书",
|
|
83
|
+
]
|
|
84
|
+
]
|
|
85
|
+
big_df["更新日期"] = pd.to_datetime(big_df["更新日期"], errors="coerce").dt.date
|
|
86
|
+
big_df["受理日期"] = pd.to_datetime(big_df["受理日期"], errors="coerce").dt.date
|
|
87
|
+
return big_df
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def stock_register_cyb() -> pd.DataFrame:
|
|
91
|
+
"""
|
|
92
|
+
东方财富网-数据中心-新股数据-IPO审核信息-创业板
|
|
93
|
+
https://data.eastmoney.com/xg/ipo/
|
|
94
|
+
:return: 创业板注册制审核结果
|
|
95
|
+
:rtype: pandas.DataFrame
|
|
96
|
+
"""
|
|
97
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
98
|
+
params = {
|
|
99
|
+
"sortColumns": "UPDATE_DATE,ORG_CODE",
|
|
100
|
+
"sortTypes": "-1,-1",
|
|
101
|
+
"pageSize": "500",
|
|
102
|
+
"pageNumber": "1",
|
|
103
|
+
"reportName": "RPT_IPO_INFOALLNEW",
|
|
104
|
+
"columns": "SECURITY_CODE,STATE,REG_ADDRESS,INFO_CODE,CSRC_INDUSTRY,ACCEPT_DATE,DECLARE_ORG,"
|
|
105
|
+
"PREDICT_LISTING_MARKET,LAW_FIRM,ACCOUNT_FIRM,ORG_CODE,UPDATE_DATE,RECOMMEND_ORG,IS_REGISTRATION",
|
|
106
|
+
"source": "WEB",
|
|
107
|
+
"client": "WEB",
|
|
108
|
+
"filter": '(PREDICT_LISTING_MARKET="创业板")',
|
|
109
|
+
}
|
|
110
|
+
r = requests.get(url, params=params, headers=headers)
|
|
111
|
+
data_json = r.json()
|
|
112
|
+
page_num = data_json["result"]["pages"]
|
|
113
|
+
big_df = pd.DataFrame()
|
|
114
|
+
tqdm = get_tqdm()
|
|
115
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
116
|
+
params.update({"pageNumber": page})
|
|
117
|
+
r = requests.get(url, params=params, headers=headers)
|
|
118
|
+
data_json = r.json()
|
|
119
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
120
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
121
|
+
big_df.reset_index(inplace=True)
|
|
122
|
+
big_df["index"] = big_df.index + 1
|
|
123
|
+
big_df.rename(
|
|
124
|
+
columns={
|
|
125
|
+
"index": "序号",
|
|
126
|
+
"DECLARE_ORG": "企业名称",
|
|
127
|
+
"STATE": "最新状态",
|
|
128
|
+
"REG_ADDRESS": "注册地",
|
|
129
|
+
"CSRC_INDUSTRY": "行业",
|
|
130
|
+
"RECOMMEND_ORG": "保荐机构",
|
|
131
|
+
"LAW_FIRM": "律师事务所",
|
|
132
|
+
"ACCOUNT_FIRM": "会计师事务所",
|
|
133
|
+
"UPDATE_DATE": "更新日期",
|
|
134
|
+
"ACCEPT_DATE": "受理日期",
|
|
135
|
+
"PREDICT_LISTING_MARKET": "拟上市地点",
|
|
136
|
+
"INFO_CODE": "招股说明书",
|
|
137
|
+
},
|
|
138
|
+
inplace=True,
|
|
139
|
+
)
|
|
140
|
+
big_df["招股说明书"] = [
|
|
141
|
+
f"https://pdf.dfcfw.com/pdf/H2_{item}_1.pdf" for item in big_df["招股说明书"]
|
|
142
|
+
]
|
|
143
|
+
big_df = big_df[
|
|
144
|
+
[
|
|
145
|
+
"序号",
|
|
146
|
+
"企业名称",
|
|
147
|
+
"最新状态",
|
|
148
|
+
"注册地",
|
|
149
|
+
"行业",
|
|
150
|
+
"保荐机构",
|
|
151
|
+
"律师事务所",
|
|
152
|
+
"会计师事务所",
|
|
153
|
+
"更新日期",
|
|
154
|
+
"受理日期",
|
|
155
|
+
"拟上市地点",
|
|
156
|
+
"招股说明书",
|
|
157
|
+
]
|
|
158
|
+
]
|
|
159
|
+
big_df["更新日期"] = pd.to_datetime(big_df["更新日期"], errors="coerce").dt.date
|
|
160
|
+
big_df["受理日期"] = pd.to_datetime(big_df["受理日期"], errors="coerce").dt.date
|
|
161
|
+
return big_df
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def stock_register_bj() -> pd.DataFrame:
|
|
165
|
+
"""
|
|
166
|
+
东方财富网-数据中心-新股数据-IPO审核信息-北交所
|
|
167
|
+
https://data.eastmoney.com/xg/ipo/
|
|
168
|
+
:return: 北交所
|
|
169
|
+
:rtype: pandas.DataFrame
|
|
170
|
+
"""
|
|
171
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
172
|
+
params = {
|
|
173
|
+
"sortColumns": "UPDATE_DATE,ORG_CODE",
|
|
174
|
+
"sortTypes": "-1,-1",
|
|
175
|
+
"pageSize": "500",
|
|
176
|
+
"pageNumber": "1",
|
|
177
|
+
"reportName": "RPT_IPO_INFOALLNEW",
|
|
178
|
+
"columns": "SECURITY_CODE,STATE,REG_ADDRESS,INFO_CODE,CSRC_INDUSTRY,ACCEPT_DATE,DECLARE_ORG,"
|
|
179
|
+
"PREDICT_LISTING_MARKET,LAW_FIRM,ACCOUNT_FIRM,ORG_CODE,UPDATE_DATE,RECOMMEND_ORG,IS_REGISTRATION",
|
|
180
|
+
"source": "WEB",
|
|
181
|
+
"client": "WEB",
|
|
182
|
+
"filter": '(PREDICT_LISTING_MARKET="北交所")',
|
|
183
|
+
}
|
|
184
|
+
r = requests.get(url, params=params, headers=headers)
|
|
185
|
+
data_json = r.json()
|
|
186
|
+
page_num = data_json["result"]["pages"]
|
|
187
|
+
big_df = pd.DataFrame()
|
|
188
|
+
tqdm = get_tqdm()
|
|
189
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
190
|
+
params.update({"pageNumber": page})
|
|
191
|
+
r = requests.get(url, params=params, headers=headers)
|
|
192
|
+
data_json = r.json()
|
|
193
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
194
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
195
|
+
big_df.reset_index(inplace=True)
|
|
196
|
+
big_df["index"] = big_df.index + 1
|
|
197
|
+
big_df.rename(
|
|
198
|
+
columns={
|
|
199
|
+
"index": "序号",
|
|
200
|
+
"DECLARE_ORG": "企业名称",
|
|
201
|
+
"STATE": "最新状态",
|
|
202
|
+
"REG_ADDRESS": "注册地",
|
|
203
|
+
"CSRC_INDUSTRY": "行业",
|
|
204
|
+
"RECOMMEND_ORG": "保荐机构",
|
|
205
|
+
"LAW_FIRM": "律师事务所",
|
|
206
|
+
"ACCOUNT_FIRM": "会计师事务所",
|
|
207
|
+
"UPDATE_DATE": "更新日期",
|
|
208
|
+
"ACCEPT_DATE": "受理日期",
|
|
209
|
+
"PREDICT_LISTING_MARKET": "拟上市地点",
|
|
210
|
+
"INFO_CODE": "招股说明书",
|
|
211
|
+
},
|
|
212
|
+
inplace=True,
|
|
213
|
+
)
|
|
214
|
+
big_df["招股说明书"] = [
|
|
215
|
+
f"https://pdf.dfcfw.com/pdf/H2_{item}_1.pdf" for item in big_df["招股说明书"]
|
|
216
|
+
]
|
|
217
|
+
big_df = big_df[
|
|
218
|
+
[
|
|
219
|
+
"序号",
|
|
220
|
+
"企业名称",
|
|
221
|
+
"最新状态",
|
|
222
|
+
"注册地",
|
|
223
|
+
"行业",
|
|
224
|
+
"保荐机构",
|
|
225
|
+
"律师事务所",
|
|
226
|
+
"会计师事务所",
|
|
227
|
+
"更新日期",
|
|
228
|
+
"受理日期",
|
|
229
|
+
"拟上市地点",
|
|
230
|
+
"招股说明书",
|
|
231
|
+
]
|
|
232
|
+
]
|
|
233
|
+
big_df["更新日期"] = pd.to_datetime(big_df["更新日期"], errors="coerce").dt.date
|
|
234
|
+
big_df["受理日期"] = pd.to_datetime(big_df["受理日期"], errors="coerce").dt.date
|
|
235
|
+
return big_df
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def stock_register_sh() -> pd.DataFrame:
|
|
239
|
+
"""
|
|
240
|
+
东方财富网-数据中心-新股数据-IPO审核信息-上海主板
|
|
241
|
+
https://data.eastmoney.com/xg/ipo/
|
|
242
|
+
:return: 上海主板
|
|
243
|
+
:rtype: pandas.DataFrame
|
|
244
|
+
"""
|
|
245
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
246
|
+
params = {
|
|
247
|
+
"sortColumns": "UPDATE_DATE,ORG_CODE",
|
|
248
|
+
"sortTypes": "-1,-1",
|
|
249
|
+
"pageSize": "500",
|
|
250
|
+
"pageNumber": "1",
|
|
251
|
+
"reportName": "RPT_IPO_INFOALLNEW",
|
|
252
|
+
"columns": "SECURITY_CODE,STATE,REG_ADDRESS,INFO_CODE,CSRC_INDUSTRY,ACCEPT_DATE,DECLARE_ORG,"
|
|
253
|
+
"PREDICT_LISTING_MARKET,LAW_FIRM,ACCOUNT_FIRM,ORG_CODE,UPDATE_DATE,RECOMMEND_ORG,IS_REGISTRATION",
|
|
254
|
+
"source": "WEB",
|
|
255
|
+
"client": "WEB",
|
|
256
|
+
"filter": '(PREDICT_LISTING_MARKET="沪主板")',
|
|
257
|
+
}
|
|
258
|
+
r = requests.get(url, params=params, headers=headers)
|
|
259
|
+
data_json = r.json()
|
|
260
|
+
page_num = data_json["result"]["pages"]
|
|
261
|
+
big_df = pd.DataFrame()
|
|
262
|
+
tqdm = get_tqdm()
|
|
263
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
264
|
+
params.update({"pageNumber": page})
|
|
265
|
+
r = requests.get(url, params=params, headers=headers)
|
|
266
|
+
data_json = r.json()
|
|
267
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
268
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
269
|
+
big_df.reset_index(inplace=True)
|
|
270
|
+
big_df["index"] = big_df.index + 1
|
|
271
|
+
big_df.rename(
|
|
272
|
+
columns={
|
|
273
|
+
"index": "序号",
|
|
274
|
+
"DECLARE_ORG": "企业名称",
|
|
275
|
+
"STATE": "最新状态",
|
|
276
|
+
"REG_ADDRESS": "注册地",
|
|
277
|
+
"CSRC_INDUSTRY": "行业",
|
|
278
|
+
"RECOMMEND_ORG": "保荐机构",
|
|
279
|
+
"LAW_FIRM": "律师事务所",
|
|
280
|
+
"ACCOUNT_FIRM": "会计师事务所",
|
|
281
|
+
"UPDATE_DATE": "更新日期",
|
|
282
|
+
"ACCEPT_DATE": "受理日期",
|
|
283
|
+
"PREDICT_LISTING_MARKET": "拟上市地点",
|
|
284
|
+
"INFO_CODE": "招股说明书",
|
|
285
|
+
},
|
|
286
|
+
inplace=True,
|
|
287
|
+
)
|
|
288
|
+
big_df["招股说明书"] = [
|
|
289
|
+
f"https://pdf.dfcfw.com/pdf/H2_{item}_1.pdf" for item in big_df["招股说明书"]
|
|
290
|
+
]
|
|
291
|
+
big_df = big_df[
|
|
292
|
+
[
|
|
293
|
+
"序号",
|
|
294
|
+
"企业名称",
|
|
295
|
+
"最新状态",
|
|
296
|
+
"注册地",
|
|
297
|
+
"行业",
|
|
298
|
+
"保荐机构",
|
|
299
|
+
"律师事务所",
|
|
300
|
+
"会计师事务所",
|
|
301
|
+
"更新日期",
|
|
302
|
+
"受理日期",
|
|
303
|
+
"拟上市地点",
|
|
304
|
+
"招股说明书",
|
|
305
|
+
]
|
|
306
|
+
]
|
|
307
|
+
big_df["更新日期"] = pd.to_datetime(big_df["更新日期"], errors="coerce").dt.date
|
|
308
|
+
big_df["受理日期"] = pd.to_datetime(big_df["受理日期"], errors="coerce").dt.date
|
|
309
|
+
return big_df
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def stock_register_sz() -> pd.DataFrame:
|
|
313
|
+
"""
|
|
314
|
+
东方财富网-数据中心-新股数据-IPO审核信息-深圳主板
|
|
315
|
+
https://data.eastmoney.com/xg/ipo/
|
|
316
|
+
:return: 深圳主板
|
|
317
|
+
:rtype: pandas.DataFrame
|
|
318
|
+
"""
|
|
319
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
320
|
+
params = {
|
|
321
|
+
"sortColumns": "UPDATE_DATE,ORG_CODE",
|
|
322
|
+
"sortTypes": "-1,-1",
|
|
323
|
+
"pageSize": "500",
|
|
324
|
+
"pageNumber": "1",
|
|
325
|
+
"reportName": "RPT_IPO_INFOALLNEW",
|
|
326
|
+
"columns": "SECURITY_CODE,STATE,REG_ADDRESS,INFO_CODE,CSRC_INDUSTRY,ACCEPT_DATE,DECLARE_ORG,"
|
|
327
|
+
"PREDICT_LISTING_MARKET,LAW_FIRM,ACCOUNT_FIRM,ORG_CODE,UPDATE_DATE,RECOMMEND_ORG,IS_REGISTRATION",
|
|
328
|
+
"source": "WEB",
|
|
329
|
+
"client": "WEB",
|
|
330
|
+
"filter": '(PREDICT_LISTING_MARKET="深主板")',
|
|
331
|
+
}
|
|
332
|
+
r = requests.get(url, params=params, headers=headers)
|
|
333
|
+
data_json = r.json()
|
|
334
|
+
page_num = data_json["result"]["pages"]
|
|
335
|
+
big_df = pd.DataFrame()
|
|
336
|
+
tqdm = get_tqdm()
|
|
337
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
338
|
+
params.update({"pageNumber": page})
|
|
339
|
+
r = requests.get(url, params=params, headers=headers)
|
|
340
|
+
data_json = r.json()
|
|
341
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
342
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
343
|
+
big_df.reset_index(inplace=True)
|
|
344
|
+
big_df["index"] = big_df.index + 1
|
|
345
|
+
big_df.rename(
|
|
346
|
+
columns={
|
|
347
|
+
"index": "序号",
|
|
348
|
+
"DECLARE_ORG": "企业名称",
|
|
349
|
+
"STATE": "最新状态",
|
|
350
|
+
"REG_ADDRESS": "注册地",
|
|
351
|
+
"CSRC_INDUSTRY": "行业",
|
|
352
|
+
"RECOMMEND_ORG": "保荐机构",
|
|
353
|
+
"LAW_FIRM": "律师事务所",
|
|
354
|
+
"ACCOUNT_FIRM": "会计师事务所",
|
|
355
|
+
"UPDATE_DATE": "更新日期",
|
|
356
|
+
"ACCEPT_DATE": "受理日期",
|
|
357
|
+
"PREDICT_LISTING_MARKET": "拟上市地点",
|
|
358
|
+
"INFO_CODE": "招股说明书",
|
|
359
|
+
},
|
|
360
|
+
inplace=True,
|
|
361
|
+
)
|
|
362
|
+
big_df["招股说明书"] = [
|
|
363
|
+
f"https://pdf.dfcfw.com/pdf/H2_{item}_1.pdf" for item in big_df["招股说明书"]
|
|
364
|
+
]
|
|
365
|
+
big_df = big_df[
|
|
366
|
+
[
|
|
367
|
+
"序号",
|
|
368
|
+
"企业名称",
|
|
369
|
+
"最新状态",
|
|
370
|
+
"注册地",
|
|
371
|
+
"行业",
|
|
372
|
+
"保荐机构",
|
|
373
|
+
"律师事务所",
|
|
374
|
+
"会计师事务所",
|
|
375
|
+
"更新日期",
|
|
376
|
+
"受理日期",
|
|
377
|
+
"拟上市地点",
|
|
378
|
+
"招股说明书",
|
|
379
|
+
]
|
|
380
|
+
]
|
|
381
|
+
big_df["更新日期"] = pd.to_datetime(big_df["更新日期"], errors="coerce").dt.date
|
|
382
|
+
big_df["受理日期"] = pd.to_datetime(big_df["受理日期"], errors="coerce").dt.date
|
|
383
|
+
return big_df
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def stock_register_db() -> pd.DataFrame:
|
|
387
|
+
"""
|
|
388
|
+
东方财富网-数据中心-新股数据-IPO审核信息-达标企业
|
|
389
|
+
https://data.eastmoney.com/xg/cyb/
|
|
390
|
+
:return: 达标企业
|
|
391
|
+
:rtype: pandas.DataFrame
|
|
392
|
+
"""
|
|
393
|
+
url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
|
|
394
|
+
params = {
|
|
395
|
+
"sortColumns": "NOTICE_DATE,SECURITY_CODE",
|
|
396
|
+
"sortTypes": "-1,-1",
|
|
397
|
+
"pageSize": "500",
|
|
398
|
+
"pageNumber": "1",
|
|
399
|
+
"reportName": "RPT_KCB_IPO",
|
|
400
|
+
"columns": "KCB_LB",
|
|
401
|
+
"source": "WEB",
|
|
402
|
+
"client": "WEB",
|
|
403
|
+
"filter": '(ORG_TYPE_CODE="03")',
|
|
404
|
+
}
|
|
405
|
+
r = requests.get(url, params=params, headers=headers)
|
|
406
|
+
data_json = r.json()
|
|
407
|
+
page_num = data_json["result"]["pages"]
|
|
408
|
+
big_df = pd.DataFrame()
|
|
409
|
+
tqdm = get_tqdm()
|
|
410
|
+
for page in tqdm(range(1, page_num + 1), leave=False):
|
|
411
|
+
params.update({"pageNumber": page})
|
|
412
|
+
r = requests.get(url, params=params, headers=headers)
|
|
413
|
+
data_json = r.json()
|
|
414
|
+
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
415
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
416
|
+
big_df.reset_index(inplace=True)
|
|
417
|
+
big_df["index"] = range(1, len(big_df) + 1)
|
|
418
|
+
big_df.rename(
|
|
419
|
+
columns={
|
|
420
|
+
"index": "序号",
|
|
421
|
+
"ORG_NAME": "企业名称",
|
|
422
|
+
},
|
|
423
|
+
inplace=True,
|
|
424
|
+
)
|
|
425
|
+
|
|
426
|
+
big_df = big_df[
|
|
427
|
+
[
|
|
428
|
+
"序号",
|
|
429
|
+
"企业名称",
|
|
430
|
+
]
|
|
431
|
+
]
|
|
432
|
+
|
|
433
|
+
return big_df
|
|
434
|
+
|
|
435
|
+
|
|
436
|
+
if __name__ == "__main__":
|
|
437
|
+
pd.set_option("display.max_columns", None)
|
|
438
|
+
stock_register_kcb_df = stock_register_kcb()
|
|
439
|
+
print(stock_register_kcb_df)
|
|
440
|
+
|
|
441
|
+
stock_register_cyb_df = stock_register_cyb()
|
|
442
|
+
print(stock_register_cyb_df)
|
|
443
|
+
|
|
444
|
+
stock_register_bj_df = stock_register_bj()
|
|
445
|
+
print(stock_register_bj_df)
|
|
446
|
+
|
|
447
|
+
stock_register_db_df = stock_register_db()
|
|
448
|
+
print(stock_register_db_df)
|
|
@@ -1,10 +1,11 @@
|
|
|
1
1
|
#!/usr/bin/env python
|
|
2
2
|
# -*- coding:utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Date:
|
|
4
|
+
Date: 2024/4/7 19:30
|
|
5
5
|
Desc: 限售股解禁
|
|
6
6
|
https://data.eastmoney.com/dxf/detail.html
|
|
7
7
|
"""
|
|
8
|
+
|
|
8
9
|
import pandas as pd
|
|
9
10
|
import requests
|
|
10
11
|
from tqdm import tqdm
|
|
@@ -46,7 +47,8 @@ def stock_restricted_release_summary_em(
|
|
|
46
47
|
"quoteType": "0",
|
|
47
48
|
"source": "WEB",
|
|
48
49
|
"client": "WEB",
|
|
49
|
-
"filter": f"""(INDEX_CODE="{symbol_map[symbol]}")(FREE_DATE>=
|
|
50
|
+
"filter": f"""(INDEX_CODE="{symbol_map[symbol]}")(FREE_DATE>=
|
|
51
|
+
'{start_date_str}')(FREE_DATE<='{end_date_str}')""",
|
|
50
52
|
"reportName": "RPT_LIFTDAY_STA",
|
|
51
53
|
}
|
|
52
54
|
r = requests.get(url, params=params)
|
|
@@ -83,14 +85,21 @@ def stock_restricted_release_summary_em(
|
|
|
83
85
|
"沪深300指数涨跌幅",
|
|
84
86
|
]
|
|
85
87
|
]
|
|
86
|
-
temp_df["解禁时间"] = pd.to_datetime(temp_df["解禁时间"]).dt.date
|
|
87
|
-
|
|
88
|
-
|
|
88
|
+
temp_df["解禁时间"] = pd.to_datetime(temp_df["解禁时间"], errors="coerce").dt.date
|
|
89
|
+
temp_df["当日解禁股票家数"] = pd.to_numeric(
|
|
90
|
+
temp_df["当日解禁股票家数"], errors="coerce"
|
|
91
|
+
)
|
|
89
92
|
temp_df["解禁数量"] = pd.to_numeric(temp_df["解禁数量"], errors="coerce") * 10000
|
|
90
|
-
temp_df["实际解禁数量"] =
|
|
91
|
-
|
|
93
|
+
temp_df["实际解禁数量"] = (
|
|
94
|
+
pd.to_numeric(temp_df["实际解禁数量"], errors="coerce") * 10000
|
|
95
|
+
)
|
|
96
|
+
temp_df["实际解禁市值"] = (
|
|
97
|
+
pd.to_numeric(temp_df["实际解禁市值"], errors="coerce") * 10000
|
|
98
|
+
)
|
|
92
99
|
temp_df["沪深300指数"] = pd.to_numeric(temp_df["沪深300指数"], errors="coerce")
|
|
93
|
-
temp_df["沪深300指数涨跌幅"] = pd.to_numeric(
|
|
100
|
+
temp_df["沪深300指数涨跌幅"] = pd.to_numeric(
|
|
101
|
+
temp_df["沪深300指数涨跌幅"], errors="coerce"
|
|
102
|
+
)
|
|
94
103
|
return temp_df
|
|
95
104
|
|
|
96
105
|
|
|
@@ -116,7 +125,9 @@ def stock_restricted_release_detail_em(
|
|
|
116
125
|
"pageSize": "500",
|
|
117
126
|
"pageNumber": "1",
|
|
118
127
|
"reportName": "RPT_LIFT_STAGE",
|
|
119
|
-
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,FREE_DATE,CURRENT_FREE_SHARES,ABLE_FREE_SHARES,
|
|
128
|
+
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,FREE_DATE,CURRENT_FREE_SHARES,ABLE_FREE_SHARES,"
|
|
129
|
+
"LIFT_MARKET_CAP,FREE_RATIO,NEW,B20_ADJCHRATE,A20_ADJCHRATE,FREE_SHARES_TYPE,TOTAL_RATIO,"
|
|
130
|
+
"NON_FREE_SHARES,BATCH_HOLDER_NUM",
|
|
120
131
|
"source": "WEB",
|
|
121
132
|
"client": "WEB",
|
|
122
133
|
"filter": f"""(FREE_DATE>='{start_date_str}')(FREE_DATE<='{end_date_str}')""",
|
|
@@ -134,7 +145,7 @@ def stock_restricted_release_detail_em(
|
|
|
134
145
|
r = requests.get(url, params=params)
|
|
135
146
|
data_json = r.json()
|
|
136
147
|
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
137
|
-
big_df = pd.concat([big_df, temp_df], ignore_index=True)
|
|
148
|
+
big_df = pd.concat(objs=[big_df, temp_df], ignore_index=True)
|
|
138
149
|
|
|
139
150
|
big_df.reset_index(inplace=True)
|
|
140
151
|
big_df["index"] = big_df["index"] + 1
|
|
@@ -171,15 +182,27 @@ def stock_restricted_release_detail_em(
|
|
|
171
182
|
"解禁后20日涨跌幅",
|
|
172
183
|
]
|
|
173
184
|
]
|
|
174
|
-
big_df["解禁时间"] = pd.to_datetime(big_df["解禁时间"]).dt.date
|
|
185
|
+
big_df["解禁时间"] = pd.to_datetime(big_df["解禁时间"], errors="coerce").dt.date
|
|
175
186
|
|
|
176
187
|
big_df["解禁数量"] = pd.to_numeric(big_df["解禁数量"], errors="coerce") * 10000
|
|
177
|
-
big_df["实际解禁数量"] =
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
big_df["
|
|
181
|
-
|
|
182
|
-
|
|
188
|
+
big_df["实际解禁数量"] = (
|
|
189
|
+
pd.to_numeric(big_df["实际解禁数量"], errors="coerce") * 10000
|
|
190
|
+
)
|
|
191
|
+
big_df["实际解禁市值"] = (
|
|
192
|
+
pd.to_numeric(big_df["实际解禁市值"], errors="coerce") * 10000
|
|
193
|
+
)
|
|
194
|
+
big_df["占解禁前流通市值比例"] = pd.to_numeric(
|
|
195
|
+
big_df["占解禁前流通市值比例"], errors="coerce"
|
|
196
|
+
)
|
|
197
|
+
big_df["解禁前一交易日收盘价"] = pd.to_numeric(
|
|
198
|
+
big_df["解禁前一交易日收盘价"], errors="coerce"
|
|
199
|
+
)
|
|
200
|
+
big_df["解禁前20日涨跌幅"] = pd.to_numeric(
|
|
201
|
+
big_df["解禁前20日涨跌幅"], errors="coerce"
|
|
202
|
+
)
|
|
203
|
+
big_df["解禁后20日涨跌幅"] = pd.to_numeric(
|
|
204
|
+
big_df["解禁后20日涨跌幅"], errors="coerce"
|
|
205
|
+
)
|
|
183
206
|
return big_df
|
|
184
207
|
|
|
185
208
|
|
|
@@ -200,12 +223,16 @@ def stock_restricted_release_queue_em(symbol: str = "600000") -> pd.DataFrame:
|
|
|
200
223
|
"pageNumber": "1",
|
|
201
224
|
"reportName": "RPT_LIFT_STAGE",
|
|
202
225
|
"filter": f'(SECURITY_CODE="{symbol}")',
|
|
203
|
-
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,FREE_DATE,CURRENT_FREE_SHARES,ABLE_FREE_SHARES,
|
|
226
|
+
"columns": "SECURITY_CODE,SECURITY_NAME_ABBR,FREE_DATE,CURRENT_FREE_SHARES,ABLE_FREE_SHARES,"
|
|
227
|
+
"LIFT_MARKET_CAP,FREE_RATIO,NEW,B20_ADJCHRATE,A20_ADJCHRATE,FREE_SHARES_TYPE,TOTAL_RATIO,"
|
|
228
|
+
"NON_FREE_SHARES,BATCH_HOLDER_NUM",
|
|
204
229
|
"source": "WEB",
|
|
205
230
|
"client": "WEB",
|
|
206
231
|
}
|
|
207
232
|
r = requests.get(url, params=params)
|
|
208
233
|
data_json = r.json()
|
|
234
|
+
if not data_json["result"]:
|
|
235
|
+
return pd.DataFrame()
|
|
209
236
|
temp_df = pd.DataFrame(data_json["result"]["data"])
|
|
210
237
|
temp_df.reset_index(inplace=True)
|
|
211
238
|
temp_df["index"] = temp_df["index"] + 1
|
|
@@ -243,18 +270,31 @@ def stock_restricted_release_queue_em(symbol: str = "600000") -> pd.DataFrame:
|
|
|
243
270
|
"解禁后20日涨跌幅",
|
|
244
271
|
]
|
|
245
272
|
]
|
|
246
|
-
temp_df["解禁时间"] = pd.to_datetime(temp_df["解禁时间"]).dt.date
|
|
247
|
-
|
|
273
|
+
temp_df["解禁时间"] = pd.to_datetime(temp_df["解禁时间"], errors="coerce").dt.date
|
|
248
274
|
temp_df["解禁股东数"] = pd.to_numeric(temp_df["解禁股东数"], errors="coerce")
|
|
249
275
|
temp_df["解禁数量"] = pd.to_numeric(temp_df["解禁数量"], errors="coerce") * 10000
|
|
250
|
-
temp_df["实际解禁数量"] =
|
|
251
|
-
|
|
252
|
-
|
|
276
|
+
temp_df["实际解禁数量"] = (
|
|
277
|
+
pd.to_numeric(temp_df["实际解禁数量"], errors="coerce") * 10000
|
|
278
|
+
)
|
|
279
|
+
temp_df["未解禁数量"] = (
|
|
280
|
+
pd.to_numeric(temp_df["未解禁数量"], errors="coerce") * 10000
|
|
281
|
+
)
|
|
282
|
+
temp_df["实际解禁数量市值"] = (
|
|
283
|
+
pd.to_numeric(temp_df["实际解禁数量市值"], errors="coerce") * 10000
|
|
284
|
+
)
|
|
253
285
|
temp_df["占总市值比例"] = pd.to_numeric(temp_df["占总市值比例"], errors="coerce")
|
|
254
|
-
temp_df["占流通市值比例"] = pd.to_numeric(
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
temp_df["
|
|
286
|
+
temp_df["占流通市值比例"] = pd.to_numeric(
|
|
287
|
+
temp_df["占流通市值比例"], errors="coerce"
|
|
288
|
+
)
|
|
289
|
+
temp_df["解禁前一交易日收盘价"] = pd.to_numeric(
|
|
290
|
+
temp_df["解禁前一交易日收盘价"], errors="coerce"
|
|
291
|
+
)
|
|
292
|
+
temp_df["解禁前20日涨跌幅"] = pd.to_numeric(
|
|
293
|
+
temp_df["解禁前20日涨跌幅"], errors="coerce"
|
|
294
|
+
)
|
|
295
|
+
temp_df["解禁后20日涨跌幅"] = pd.to_numeric(
|
|
296
|
+
temp_df["解禁后20日涨跌幅"], errors="coerce"
|
|
297
|
+
)
|
|
258
298
|
return temp_df
|
|
259
299
|
|
|
260
300
|
|
|
@@ -280,7 +320,8 @@ def stock_restricted_release_stockholder_em(
|
|
|
280
320
|
"pageNumber": "1",
|
|
281
321
|
"reportName": "RPT_LIFT_GD",
|
|
282
322
|
"filter": f"""(SECURITY_CODE="{symbol}")(FREE_DATE='{date_str}')""",
|
|
283
|
-
"columns": "LIMITED_HOLDER_NAME,ADD_LISTING_SHARES,ACTUAL_LISTED_SHARES,ADD_LISTING_CAP,LOCK_MONTH,
|
|
323
|
+
"columns": "LIMITED_HOLDER_NAME,ADD_LISTING_SHARES,ACTUAL_LISTED_SHARES,ADD_LISTING_CAP,LOCK_MONTH,"
|
|
324
|
+
"RESIDUAL_LIMITED_SHARES,FREE_SHARES_TYPE,PLAN_FEATURE",
|
|
284
325
|
"source": "WEB",
|
|
285
326
|
"client": "WEB",
|
|
286
327
|
}
|
|
@@ -304,14 +345,18 @@ def stock_restricted_release_stockholder_em(
|
|
|
304
345
|
temp_df["实际解禁数量"] = pd.to_numeric(temp_df["实际解禁数量"], errors="coerce")
|
|
305
346
|
temp_df["解禁市值"] = pd.to_numeric(temp_df["解禁市值"], errors="coerce")
|
|
306
347
|
temp_df["锁定期"] = pd.to_numeric(temp_df["锁定期"], errors="coerce")
|
|
307
|
-
temp_df["剩余未解禁数量"] = pd.to_numeric(
|
|
308
|
-
|
|
348
|
+
temp_df["剩余未解禁数量"] = pd.to_numeric(
|
|
349
|
+
temp_df["剩余未解禁数量"], errors="coerce"
|
|
350
|
+
)
|
|
351
|
+
temp_df["剩余未解禁数量"] = pd.to_numeric(
|
|
352
|
+
temp_df["剩余未解禁数量"], errors="coerce"
|
|
353
|
+
)
|
|
309
354
|
return temp_df
|
|
310
355
|
|
|
311
356
|
|
|
312
357
|
if __name__ == "__main__":
|
|
313
358
|
stock_restricted_release_summary_em_df = stock_restricted_release_summary_em(
|
|
314
|
-
|
|
359
|
+
symbol="全部股票", start_date="20221108", end_date="20221209"
|
|
315
360
|
)
|
|
316
361
|
print(stock_restricted_release_summary_em_df)
|
|
317
362
|
|
|
@@ -325,5 +370,7 @@ if __name__ == "__main__":
|
|
|
325
370
|
)
|
|
326
371
|
print(stock_restricted_release_queue_em_df)
|
|
327
372
|
|
|
328
|
-
stock_restricted_release_stockholder_em_df =
|
|
373
|
+
stock_restricted_release_stockholder_em_df = (
|
|
374
|
+
stock_restricted_release_stockholder_em(symbol="600000", date="20200904")
|
|
375
|
+
)
|
|
329
376
|
print(stock_restricted_release_stockholder_em_df)
|