akshare-one 0.3.5.1__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,80 @@
1
+ import requests
2
+ from typing import Dict, Any
3
+
4
+
5
+ class EastMoneyClient:
6
+ """
7
+ A client for interacting directly with EastMoney's data APIs.
8
+ This class handles session management, request signing, and API calls.
9
+ """
10
+
11
+ def __init__(self):
12
+ self.session = requests.Session()
13
+
14
+ def _get_security_id(self, symbol: str) -> str:
15
+ """
16
+ Converts a stock symbol to EastMoney's internal secid format.
17
+ e.g., '600519' -> '1.600519', '000001' -> '0.000001'
18
+ """
19
+ symbol = symbol.upper()
20
+ if symbol.startswith("SZ"):
21
+ market = "0"
22
+ code = symbol[2:]
23
+ elif symbol.startswith("SH"):
24
+ market = "1"
25
+ code = symbol[2:]
26
+ elif symbol.startswith("HK"):
27
+ market = "116"
28
+ code = symbol[2:]
29
+ elif len(symbol) == 6:
30
+ if symbol.startswith(("000", "001", "002", "003", "300", "200")):
31
+ market = "0"
32
+ elif symbol.startswith(("600", "601", "603", "605", "688", "900")):
33
+ market = "1"
34
+ else:
35
+ market = "0" # Default to SZ for ambiguity
36
+ code = symbol
37
+ elif len(symbol) == 5: # HK Market
38
+ market = "116"
39
+ code = symbol
40
+ else:
41
+ market = "0"
42
+ code = symbol
43
+ return f"{market}.{code}"
44
+
45
+ def fetch_historical_klines(
46
+ self, symbol: str, klt: str, fqt: str, start_date: str, end_date: str
47
+ ) -> Dict[str, Any]:
48
+ """
49
+ Fetches historical K-line (candlestick) data.
50
+ """
51
+ url = "https://push2his.eastmoney.com/api/qt/stock/kline/get"
52
+ secid = self._get_security_id(symbol)
53
+ params = {
54
+ "fields1": "f1,f2,f3,f4,f5,f6",
55
+ "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61",
56
+ "klt": klt,
57
+ "fqt": fqt,
58
+ "secid": secid,
59
+ "beg": start_date,
60
+ "end": end_date,
61
+ }
62
+ response = self.session.get(url, params=params)
63
+ response.raise_for_status()
64
+ return response.json()
65
+
66
+ def fetch_realtime_quote(self, symbol: str) -> Dict[str, Any]:
67
+ """
68
+ Fetches real-time quote data for a single stock.
69
+ """
70
+ url = "https://push2.eastmoney.com/api/qt/stock/get"
71
+ secid = self._get_security_id(symbol)
72
+ params = {
73
+ "invt": "2",
74
+ "fltt": "2",
75
+ "fields": "f43,f57,f58,f169,f170,f46,f60,f44,f51,f168,f47,f164,f163,f116,f60,f45,f52,f50,f48,f167,f117,f71,f161,f49,f530",
76
+ "secid": secid,
77
+ }
78
+ response = self.session.get(url, params=params)
79
+ response.raise_for_status()
80
+ return response.json()
@@ -0,0 +1,102 @@
1
+ import pandas as pd
2
+ from typing import Dict, Any
3
+
4
+
5
+ def parse_kline_data(data: Dict[str, Any]) -> pd.DataFrame:
6
+ """
7
+ Parses K-line data from the API response into a pandas DataFrame.
8
+ """
9
+ klines = data.get("data", {}).get("klines", [])
10
+ if not klines:
11
+ return pd.DataFrame(
12
+ columns=["timestamp", "open", "high", "low", "close", "volume"]
13
+ )
14
+
15
+ records = []
16
+ for kline in klines:
17
+ parts = kline.split(",")
18
+ if len(parts) >= 6:
19
+ records.append(
20
+ {
21
+ "timestamp": parts[0],
22
+ "open": float(parts[1]),
23
+ "close": float(parts[2]),
24
+ "high": float(parts[3]),
25
+ "low": float(parts[4]),
26
+ "volume": int(parts[5]),
27
+ }
28
+ )
29
+
30
+ df = pd.DataFrame(records)
31
+ if not df.empty:
32
+ df["timestamp"] = pd.to_datetime(df["timestamp"])
33
+ df["timestamp"] = df["timestamp"].dt.tz_localize("Asia/Shanghai")
34
+ df = df[["timestamp", "open", "high", "low", "close", "volume"]]
35
+ return df
36
+
37
+
38
+ def parse_realtime_data(data: Dict[str, Any]) -> pd.DataFrame:
39
+ """
40
+ Parses real-time quote data from the API response into a pandas DataFrame.
41
+ """
42
+ stock_data = data.get("data")
43
+ if not stock_data:
44
+ return pd.DataFrame()
45
+
46
+ df = pd.DataFrame(
47
+ [
48
+ {
49
+ "symbol": stock_data.get("f57"),
50
+ "price": stock_data.get("f43"),
51
+ "change": stock_data.get("f169"),
52
+ "pct_change": stock_data.get("f170"),
53
+ "volume": stock_data.get("f47"),
54
+ "amount": stock_data.get("f48"),
55
+ "open": stock_data.get("f46"),
56
+ "high": stock_data.get("f44"),
57
+ "low": stock_data.get("f45"),
58
+ "prev_close": stock_data.get("f60"),
59
+ }
60
+ ]
61
+ )
62
+ df["timestamp"] = pd.Timestamp.now(tz="Asia/Shanghai")
63
+ return df
64
+
65
+
66
+ def resample_historical_data(
67
+ df: pd.DataFrame, interval: str, multiplier: int
68
+ ) -> pd.DataFrame:
69
+ """
70
+ Resamples historical data to a specified frequency.
71
+ """
72
+ if df.empty or multiplier <= 1:
73
+ return df
74
+
75
+ df = df.set_index("timestamp")
76
+
77
+ freq_map = {
78
+ "day": f"{multiplier}D",
79
+ "week": f"{multiplier}W-MON",
80
+ "month": f"{multiplier}MS",
81
+ "year": f"{multiplier * 12}MS",
82
+ }
83
+ freq = freq_map.get(interval)
84
+
85
+ if not freq:
86
+ return df.reset_index()
87
+
88
+ resampled = (
89
+ df.resample(freq)
90
+ .agg(
91
+ {
92
+ "open": "first",
93
+ "high": "max",
94
+ "low": "min",
95
+ "close": "last",
96
+ "volume": "sum",
97
+ }
98
+ )
99
+ .dropna()
100
+ )
101
+
102
+ return resampled.reset_index()
@@ -0,0 +1,183 @@
1
+ import pandas as pd
2
+ import requests
3
+
4
+ from akshare_one.modules.cache import cache
5
+ from .base import FinancialDataProvider
6
+
7
+
8
+ class EastMoneyDirectFinancialReport(FinancialDataProvider):
9
+ _balance_sheet_rename_map = {
10
+ "REPORT_DATE": "report_date",
11
+ "TOTAL_ASSETS": "total_assets",
12
+ "FIXED_ASSET": "fixed_assets_net",
13
+ "MONETARYFUNDS": "cash_and_equivalents",
14
+ "ACCOUNTS_RECE": "accounts_receivable",
15
+ "INVENTORY": "inventory",
16
+ "TOTAL_LIABILITIES": "total_liabilities",
17
+ "ACCOUNTS_PAYABLE": "trade_and_non_trade_payables",
18
+ "ADVANCE_RECEIVABLES": "deferred_revenue",
19
+ "TOTAL_EQUITY": "shareholders_equity",
20
+ }
21
+
22
+ _income_statement_rename_map = {
23
+ "REPORT_DATE": "report_date",
24
+ "TOTAL_OPERATE_INCOME": "revenue",
25
+ "TOTAL_OPERATE_COST": "total_operating_costs",
26
+ "OPERATE_PROFIT": "operating_profit",
27
+ "PARENT_NETPROFIT": "net_income_common_stock",
28
+ }
29
+
30
+ _cash_flow_rename_map = {
31
+ "REPORT_DATE": "report_date",
32
+ "NETCASH_OPERATE": "net_cash_flow_from_operations",
33
+ "NETCASH_INVEST": "net_cash_flow_from_investing",
34
+ "NETCASH_FINANCE": "net_cash_flow_from_financing",
35
+ "CCE_ADD": "change_in_cash_and_equivalents",
36
+ }
37
+
38
+ def __init__(self, symbol):
39
+ super().__init__(symbol)
40
+
41
+ def get_income_statement(self):
42
+ pass
43
+
44
+ def get_balance_sheet(self):
45
+ pass
46
+
47
+ def get_cash_flow(self):
48
+ pass
49
+
50
+ @cache(
51
+ "financial_cache",
52
+ key=lambda self, symbol=None: f"eastmoney_financial_metrics_{self.symbol}",
53
+ )
54
+ def get_financial_metrics(self) -> pd.DataFrame:
55
+ """获取三大财务报表关键指标"""
56
+ balance_sheet = self._fetch_balance_sheet()
57
+ income_statement = self._fetch_income_statement()
58
+ cash_flow = self._fetch_cash_flow()
59
+
60
+ if balance_sheet.empty and income_statement.empty and cash_flow.empty:
61
+ return pd.DataFrame()
62
+
63
+ merged = pd.merge(
64
+ balance_sheet, income_statement, on="report_date", how="outer"
65
+ )
66
+ merged = pd.merge(merged, cash_flow, on="report_date", how="outer")
67
+
68
+ # Convert report_date to datetime and format as YYYY-MM-DD
69
+ merged["report_date"] = pd.to_datetime(merged["report_date"]).dt.strftime(
70
+ "%Y-%m-%d"
71
+ )
72
+
73
+ # Sort by report_date in descending order (most recent first)
74
+ merged = merged.sort_values("report_date", ascending=False).reset_index(
75
+ drop=True
76
+ )
77
+
78
+ return merged
79
+
80
+ def _fetch_balance_sheet(self) -> pd.DataFrame:
81
+ """
82
+ Get stock balance sheet data from East Money API
83
+ """
84
+ try:
85
+ # API endpoint and parameters
86
+ api_url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
87
+ params = {
88
+ "reportName": "RPT_DMSK_FN_BALANCE",
89
+ "filter": f'(SECURITY_CODE="{self.symbol}")',
90
+ "pageNumber": "1",
91
+ "pageSize": "1000",
92
+ "sortColumns": "REPORT_DATE",
93
+ "sortTypes": "-1",
94
+ "columns": ",".join(self._balance_sheet_rename_map.keys()),
95
+ }
96
+
97
+ # Fetch data from API
98
+ response = requests.get(api_url, params=params)
99
+ response.raise_for_status()
100
+ data = response.json()
101
+
102
+ # Extract the actual data
103
+ if data.get("result") and data["result"].get("data"):
104
+ df = pd.DataFrame(data["result"]["data"])
105
+ df.rename(columns=self._balance_sheet_rename_map, inplace=True)
106
+ return df
107
+ else:
108
+ print("No balance sheet data found in API response")
109
+ return pd.DataFrame()
110
+
111
+ except Exception as e:
112
+ print(f"Error occurred: {str(e)}")
113
+ return pd.DataFrame()
114
+
115
+ def _fetch_income_statement(self) -> pd.DataFrame:
116
+ """
117
+ Get stock income statement data from East Money API
118
+ """
119
+ try:
120
+ # API endpoint and parameters
121
+ api_url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
122
+ params = {
123
+ "reportName": "RPT_DMSK_FN_INCOME",
124
+ "filter": f'(SECURITY_CODE="{self.symbol}")',
125
+ "pageNumber": "1",
126
+ "pageSize": "1000",
127
+ "sortColumns": "REPORT_DATE",
128
+ "sortTypes": "-1",
129
+ "columns": ",".join(self._income_statement_rename_map.keys()),
130
+ }
131
+
132
+ # Fetch data from API
133
+ response = requests.get(api_url, params=params)
134
+ response.raise_for_status()
135
+ data = response.json()
136
+
137
+ # Extract the actual data
138
+ if data.get("result") and data["result"].get("data"):
139
+ df = pd.DataFrame(data["result"]["data"])
140
+ df.rename(columns=self._income_statement_rename_map, inplace=True)
141
+ return df
142
+ else:
143
+ print("No income statement data found in API response")
144
+ return pd.DataFrame()
145
+
146
+ except Exception as e:
147
+ print(f"Error occurred: {str(e)}")
148
+ return pd.DataFrame()
149
+
150
+ def _fetch_cash_flow(self) -> pd.DataFrame:
151
+ """
152
+ Get stock cash flow statement data from East Money API
153
+ """
154
+ try:
155
+ # API endpoint and parameters
156
+ api_url = "https://datacenter-web.eastmoney.com/api/data/v1/get"
157
+ params = {
158
+ "reportName": "RPT_DMSK_FN_CASHFLOW",
159
+ "filter": f'(SECURITY_CODE="{self.symbol}")',
160
+ "pageNumber": "1",
161
+ "pageSize": "1000",
162
+ "sortColumns": "REPORT_DATE",
163
+ "sortTypes": "-1",
164
+ "columns": ",".join(self._cash_flow_rename_map.keys()),
165
+ }
166
+
167
+ # Fetch data from API
168
+ response = requests.get(api_url, params=params)
169
+ response.raise_for_status()
170
+ data = response.json()
171
+
172
+ # Extract the actual data
173
+ if data.get("result") and data["result"].get("data"):
174
+ df = pd.DataFrame(data["result"]["data"])
175
+ df.rename(columns=self._cash_flow_rename_map, inplace=True)
176
+ return df
177
+ else:
178
+ print("No cash flow statement data found in API response")
179
+ return pd.DataFrame()
180
+
181
+ except Exception as e:
182
+ print(f"Error occurred: {str(e)}")
183
+ return pd.DataFrame()
@@ -1,230 +1,384 @@
1
- import pandas as pd
2
- from .base import BaseIndicatorCalculator
3
-
4
-
5
- class SimpleIndicatorCalculator(BaseIndicatorCalculator):
6
- """Basic pandas-based indicator implementations"""
7
-
8
- def calculate_sma(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
9
- return (
10
- df["close"]
11
- .rolling(window=window, min_periods=window)
12
- .mean()
13
- .to_frame("sma")
14
- )
15
-
16
- def calculate_ema(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
17
- return (
18
- df["close"]
19
- .ewm(span=window, adjust=False, min_periods=window)
20
- .mean()
21
- .to_frame("ema")
22
- )
23
-
24
- def calculate_rsi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
25
- delta = df["close"].diff()
26
- gain = delta.clip(lower=0)
27
- loss = -delta.clip(upper=0)
28
-
29
- avg_gain = gain.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
30
- avg_loss = loss.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
31
-
32
- rs = avg_gain / avg_loss
33
- rsi = 100 - (100 / (1 + rs))
34
-
35
- return rsi.clip(0, 100).to_frame("rsi")
36
-
37
- def calculate_macd(
38
- self, df: pd.DataFrame, fast: int, slow: int, signal: int
39
- ) -> pd.DataFrame:
40
- close = df["close"]
41
- ema_fast = close.ewm(span=fast, adjust=False, min_periods=fast).mean()
42
- ema_slow = close.ewm(span=slow, adjust=False, min_periods=slow).mean()
43
-
44
- macd_line = ema_fast - ema_slow
45
- signal_line = macd_line.ewm(
46
- span=signal, adjust=False, min_periods=signal
47
- ).mean()
48
-
49
- return pd.DataFrame(
50
- {
51
- "macd": macd_line,
52
- "signal": signal_line,
53
- "histogram": macd_line - signal_line,
54
- }
55
- )
56
-
57
- def calculate_bollinger_bands(
58
- self, df: pd.DataFrame, window: int, std: int
59
- ) -> pd.DataFrame:
60
- close = df["close"]
61
- sma = close.rolling(window=window, min_periods=window).mean()
62
- rolling_std = close.rolling(window=window, min_periods=window).std()
63
- upper_band = sma + (rolling_std * std)
64
- lower_band = sma - (rolling_std * std)
65
- return pd.DataFrame(
66
- {"upper_band": upper_band, "middle_band": sma, "lower_band": lower_band}
67
- )
68
-
69
- def calculate_stoch(
70
- self, df: pd.DataFrame, window: int, smooth_d: int, smooth_k: int
71
- ) -> pd.DataFrame:
72
- high = df["high"]
73
- low = df["low"]
74
- close = df["close"]
75
-
76
- lowest_low = low.rolling(window=window).min()
77
- highest_high = high.rolling(window=window).max()
78
-
79
- k = 100 * (close - lowest_low) / (highest_high - lowest_low)
80
- slow_k = k.rolling(window=smooth_k).mean()
81
- slow_d = slow_k.rolling(window=smooth_d).mean()
82
-
83
- return pd.DataFrame({"slow_k": slow_k, "slow_d": slow_d})
84
-
85
- def calculate_atr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
86
- high = df["high"]
87
- low = df["low"]
88
- close = df["close"]
89
-
90
- tr1 = high - low
91
- tr2 = abs(high - close.shift())
92
- tr3 = abs(low - close.shift())
93
- tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
94
-
95
- atr = tr.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
96
- return atr.to_frame("atr")
97
-
98
- def calculate_cci(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
99
- high = df["high"]
100
- low = df["low"]
101
- close = df["close"]
102
-
103
- tp = (high + low + close) / 3
104
- tp_sma = tp.rolling(window=window, min_periods=window).mean()
105
- mean_dev = tp.rolling(window=window, min_periods=window).apply(
106
- lambda x: (x - x.mean()).abs().mean()
107
- )
108
-
109
- cci = (tp - tp_sma) / (0.015 * mean_dev)
110
- return cci.to_frame("cci")
111
-
112
- def calculate_adx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
113
- high = df["high"]
114
- low = df["low"]
115
- close = df["close"]
116
-
117
- # Calculate +DM, -DM and TR
118
- move_up = high.diff()
119
- move_down = low.diff().apply(abs)
120
-
121
- plus_dm = pd.Series((move_up > move_down) & (move_up > 0)).astype(int) * move_up
122
- minus_dm = (
123
- pd.Series((move_down > move_up) & (move_down > 0)).astype(int) * move_down
124
- )
125
-
126
- tr1 = high - low
127
- tr2 = abs(high - close.shift())
128
- tr3 = abs(low - close.shift())
129
- tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
130
-
131
- # Smooth +DM, -DM and TR
132
- atr = tr.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
133
- plus_di = 100 * (
134
- plus_dm.ewm(alpha=1 / window, adjust=False, min_periods=window).mean() / atr
135
- )
136
- minus_di = 100 * (
137
- minus_dm.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
138
- / atr
139
- )
140
-
141
- # Calculate ADX
142
- dx = 100 * (abs(plus_di - minus_di) / (plus_di + minus_di))
143
- adx = dx.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
144
-
145
- return adx.to_frame("adx")
146
-
147
- def calculate_willr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
148
- raise NotImplementedError("WILLR not implemented in simple calculator")
149
-
150
- def calculate_ad(self, df: pd.DataFrame) -> pd.DataFrame:
151
- raise NotImplementedError("AD not implemented in simple calculator")
152
-
153
- def calculate_adosc(
154
- self, df: pd.DataFrame, fast_period: int, slow_period: int
155
- ) -> pd.DataFrame:
156
- raise NotImplementedError("ADOSC not implemented in simple calculator")
157
-
158
- def calculate_obv(self, df: pd.DataFrame) -> pd.DataFrame:
159
- raise NotImplementedError("OBV not implemented in simple calculator")
160
-
161
- def calculate_mom(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
162
- raise NotImplementedError("MOM not implemented in simple calculator")
163
-
164
- def calculate_sar(
165
- self, df: pd.DataFrame, acceleration: float, maximum: float
166
- ) -> pd.DataFrame:
167
- raise NotImplementedError("SAR not implemented in simple calculator")
168
-
169
- def calculate_tsf(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
170
- raise NotImplementedError("TSF not implemented in simple calculator")
171
-
172
- def calculate_apo(
173
- self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
174
- ) -> pd.DataFrame:
175
- raise NotImplementedError("APO not implemented in simple calculator")
176
-
177
- def calculate_aroon(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
178
- raise NotImplementedError("AROON not implemented in simple calculator")
179
-
180
- def calculate_aroonosc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
181
- raise NotImplementedError("AROONOSC not implemented in simple calculator")
182
-
183
- def calculate_bop(self, df: pd.DataFrame) -> pd.DataFrame:
184
- raise NotImplementedError("BOP not implemented in simple calculator")
185
-
186
- def calculate_cmo(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
187
- raise NotImplementedError("CMO not implemented in simple calculator")
188
-
189
- def calculate_dx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
190
- raise NotImplementedError("DX not implemented in simple calculator")
191
-
192
- def calculate_mfi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
193
- raise NotImplementedError("MFI not implemented in simple calculator")
194
-
195
- def calculate_minus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
196
- raise NotImplementedError("MINUS_DI not implemented in simple calculator")
197
-
198
- def calculate_minus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
199
- raise NotImplementedError("MINUS_DM not implemented in simple calculator")
200
-
201
- def calculate_plus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
202
- raise NotImplementedError("PLUS_DI not implemented in simple calculator")
203
-
204
- def calculate_plus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
205
- raise NotImplementedError("PLUS_DM not implemented in simple calculator")
206
-
207
- def calculate_ppo(
208
- self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
209
- ) -> pd.DataFrame:
210
- raise NotImplementedError("PPO not implemented in simple calculator")
211
-
212
- def calculate_roc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
213
- raise NotImplementedError("ROC not implemented in simple calculator")
214
-
215
- def calculate_rocp(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
216
- raise NotImplementedError("ROCP not implemented in simple calculator")
217
-
218
- def calculate_rocr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
219
- raise NotImplementedError("ROCR not implemented in simple calculator")
220
-
221
- def calculate_rocr100(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
222
- raise NotImplementedError("ROCR100 not implemented in simple calculator")
223
-
224
- def calculate_trix(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
225
- raise NotImplementedError("TRIX not implemented in simple calculator")
226
-
227
- def calculate_ultosc(
228
- self, df: pd.DataFrame, window1: int, window2: int, window3: int
229
- ) -> pd.DataFrame:
230
- raise NotImplementedError("ULTOSC not implemented in simple calculator")
1
+ import pandas as pd
2
+ import numpy as np
3
+ from .base import BaseIndicatorCalculator
4
+
5
+
6
+ class SimpleIndicatorCalculator(BaseIndicatorCalculator):
7
+ """Basic pandas-based indicator implementations"""
8
+
9
+ def _get_ma(self, series: pd.Series, window: int, ma_type: int) -> pd.Series:
10
+ if ma_type == 0:
11
+ return series.rolling(window=window, min_periods=window).mean()
12
+ elif ma_type == 1:
13
+ return series.ewm(span=window, adjust=False, min_periods=window).mean()
14
+ else:
15
+ raise ValueError(
16
+ f"Unsupported ma_type: {ma_type} in simple calculator. Only SMA (0) and EMA (1) are supported."
17
+ )
18
+
19
+ def _wilder_smooth(self, series: pd.Series, window: int) -> pd.Series:
20
+ return series.ewm(alpha=1 / window, adjust=False, min_periods=window).mean()
21
+
22
+ def calculate_sma(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
23
+ return (
24
+ df["close"]
25
+ .rolling(window=window, min_periods=window)
26
+ .mean()
27
+ .to_frame("sma")
28
+ )
29
+
30
+ def calculate_ema(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
31
+ return (
32
+ df["close"]
33
+ .ewm(span=window, adjust=False, min_periods=window)
34
+ .mean()
35
+ .to_frame("ema")
36
+ )
37
+
38
+ def calculate_rsi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
39
+ delta = df["close"].diff()
40
+ gain = delta.clip(lower=0)
41
+ loss = -delta.clip(upper=0)
42
+
43
+ avg_gain = gain.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
44
+ avg_loss = loss.ewm(alpha=1 / window, min_periods=window, adjust=False).mean()
45
+
46
+ rs = avg_gain / avg_loss
47
+ rsi = 100 - (100 / (1 + rs))
48
+
49
+ return rsi.clip(0, 100).to_frame("rsi")
50
+
51
+ def calculate_macd(
52
+ self, df: pd.DataFrame, fast: int, slow: int, signal: int
53
+ ) -> pd.DataFrame:
54
+ close = df["close"]
55
+ ema_fast = close.ewm(span=fast, adjust=False, min_periods=fast).mean()
56
+ ema_slow = close.ewm(span=slow, adjust=False, min_periods=slow).mean()
57
+
58
+ macd_line = ema_fast - ema_slow
59
+ signal_line = macd_line.ewm(
60
+ span=signal, adjust=False, min_periods=signal
61
+ ).mean()
62
+
63
+ return pd.DataFrame(
64
+ {
65
+ "macd": macd_line,
66
+ "signal": signal_line,
67
+ "histogram": macd_line - signal_line,
68
+ }
69
+ )
70
+
71
+ def calculate_bollinger_bands(
72
+ self, df: pd.DataFrame, window: int, std: int
73
+ ) -> pd.DataFrame:
74
+ close = df["close"]
75
+ sma = close.rolling(window=window, min_periods=window).mean()
76
+ rolling_std = close.rolling(window=window, min_periods=window).std()
77
+ upper_band = sma + (rolling_std * std)
78
+ lower_band = sma - (rolling_std * std)
79
+ return pd.DataFrame(
80
+ {"upper_band": upper_band, "middle_band": sma, "lower_band": lower_band}
81
+ )
82
+
83
+ def calculate_stoch(
84
+ self, df: pd.DataFrame, window: int, smooth_d: int, smooth_k: int
85
+ ) -> pd.DataFrame:
86
+ high = df["high"]
87
+ low = df["low"]
88
+ close = df["close"]
89
+
90
+ lowest_low = low.rolling(window=window).min()
91
+ highest_high = high.rolling(window=window).max()
92
+
93
+ k = 100 * (close - lowest_low) / (highest_high - lowest_low).replace(0, np.nan)
94
+ slow_k = k.rolling(window=smooth_k, min_periods=smooth_k).mean()
95
+ slow_d = slow_k.rolling(window=smooth_d, min_periods=smooth_d).mean()
96
+
97
+ return pd.DataFrame({"slow_k": slow_k, "slow_d": slow_d})
98
+
99
+ def calculate_atr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
100
+ high = df["high"]
101
+ low = df["low"]
102
+ close = df["close"]
103
+
104
+ tr1 = high - low
105
+ tr2 = abs(high - close.shift())
106
+ tr3 = abs(low - close.shift())
107
+ tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
108
+
109
+ atr = self._wilder_smooth(tr, window)
110
+ return atr.to_frame("atr")
111
+
112
+ def calculate_cci(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
113
+ high = df["high"]
114
+ low = df["low"]
115
+ close = df["close"]
116
+
117
+ tp = (high + low + close) / 3
118
+ tp_sma = tp.rolling(window=window, min_periods=window).mean()
119
+ mean_dev = tp.rolling(window=window, min_periods=window).apply(
120
+ lambda x: (x - x.mean()).abs().mean()
121
+ )
122
+
123
+ cci = (tp - tp_sma) / (0.015 * mean_dev)
124
+ return cci.to_frame("cci")
125
+
126
+ def calculate_adx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
127
+ dx = self.calculate_dx(df, window)["dx"]
128
+ adx = self._wilder_smooth(dx, window)
129
+ return adx.to_frame("adx")
130
+
131
+ def calculate_willr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
132
+ high = df["high"]
133
+ low = df["low"]
134
+ close = df["close"]
135
+ highest_high = high.rolling(window=window, min_periods=window).max()
136
+ lowest_low = low.rolling(window=window, min_periods=window).min()
137
+ willr = -100 * (highest_high - close) / (highest_high - lowest_low)
138
+ return willr.to_frame("willr")
139
+
140
+ def calculate_ad(self, df: pd.DataFrame) -> pd.DataFrame:
141
+ high = df["high"]
142
+ low = df["low"]
143
+ close = df["close"]
144
+ volume = df["volume"]
145
+ mfm = ((close - low) - (high - close)) / (high - low).replace(0, np.nan)
146
+ mfm = mfm.fillna(0)
147
+ mfv = mfm * volume
148
+ ad = mfv.cumsum()
149
+ return ad.to_frame("ad")
150
+
151
+ def calculate_adosc(
152
+ self, df: pd.DataFrame, fast_period: int, slow_period: int
153
+ ) -> pd.DataFrame:
154
+ ad = self.calculate_ad(df)["ad"]
155
+ ema_fast = ad.ewm(span=fast_period, adjust=False).mean()
156
+ ema_slow = ad.ewm(span=slow_period, adjust=False).mean()
157
+ adosc = ema_fast - ema_slow
158
+ return adosc.to_frame("adosc")
159
+
160
+ def calculate_obv(self, df: pd.DataFrame) -> pd.DataFrame:
161
+ close = df["close"]
162
+ volume = df["volume"]
163
+ sign = (close > close.shift(1)).astype(int) - (close < close.shift(1)).astype(
164
+ int
165
+ )
166
+ obv = (volume * sign).cumsum()
167
+ return obv.to_frame("obv")
168
+
169
+ def calculate_mom(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
170
+ close = df["close"]
171
+ mom = close.diff(periods=window)
172
+ return mom.to_frame("mom")
173
+
174
+ def calculate_sar(
175
+ self, df: pd.DataFrame, acceleration: float, maximum: float
176
+ ) -> pd.DataFrame:
177
+ high, low = df["high"], df["low"]
178
+ sar = pd.Series(index=df.index, dtype=float)
179
+ uptrend = True
180
+ accel_factor = acceleration
181
+ extreme_point = high[0]
182
+ sar.iloc[0] = low[0]
183
+
184
+ for i in range(1, len(df)):
185
+ prev_sar = sar.iloc[i - 1]
186
+
187
+ if uptrend:
188
+ sar.iloc[i] = prev_sar + accel_factor * (extreme_point - prev_sar)
189
+ sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 1])
190
+ if i > 1:
191
+ sar.iloc[i] = min(sar.iloc[i], low.iloc[i - 2])
192
+
193
+ if low[i] < sar.iloc[i]:
194
+ uptrend = False
195
+ sar.iloc[i] = extreme_point
196
+ extreme_point = low[i]
197
+ accel_factor = acceleration
198
+ else:
199
+ if high[i] > extreme_point:
200
+ extreme_point = high[i]
201
+ accel_factor = min(maximum, accel_factor + acceleration)
202
+ else:
203
+ sar.iloc[i] = prev_sar - accel_factor * (prev_sar - extreme_point)
204
+ sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 1])
205
+ if i > 1:
206
+ sar.iloc[i] = max(sar.iloc[i], high.iloc[i - 2])
207
+
208
+ if high[i] > sar.iloc[i]:
209
+ uptrend = True
210
+ sar.iloc[i] = extreme_point
211
+ extreme_point = high[i]
212
+ accel_factor = acceleration
213
+ else:
214
+ if low[i] < extreme_point:
215
+ extreme_point = low[i]
216
+ accel_factor = min(maximum, accel_factor + acceleration)
217
+
218
+ return sar.to_frame("sar")
219
+
220
+ def calculate_tsf(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
221
+ close = df["close"]
222
+
223
+ def linear_reg_forecast(y):
224
+ x = np.arange(1, len(y) + 1)
225
+ b_num = len(x) * np.sum(x * y) - np.sum(x) * np.sum(y)
226
+ b_den = len(x) * np.sum(x * x) - np.sum(x) ** 2
227
+ b = b_num / b_den if b_den != 0 else 0
228
+ a = np.mean(y) - b * np.mean(x)
229
+ return a + b * len(y)
230
+
231
+ tsf = close.rolling(window=window, min_periods=window).apply(
232
+ linear_reg_forecast, raw=True
233
+ )
234
+ return tsf.to_frame("tsf")
235
+
236
+ def calculate_apo(
237
+ self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
238
+ ) -> pd.DataFrame:
239
+ close = df["close"]
240
+ fast_ma = self._get_ma(close, fast_period, ma_type)
241
+ slow_ma = self._get_ma(close, slow_period, ma_type)
242
+ apo = fast_ma - slow_ma
243
+ return apo.to_frame("apo")
244
+
245
+ def calculate_aroon(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
246
+ high = df["high"]
247
+ low = df["low"]
248
+ periods_since_high = high.rolling(window=window, min_periods=window).apply(
249
+ lambda x: len(x) - 1 - np.argmax(x), raw=True
250
+ )
251
+ periods_since_low = low.rolling(window=window, min_periods=window).apply(
252
+ lambda x: len(x) - 1 - np.argmin(x), raw=True
253
+ )
254
+ aroon_up = ((window - periods_since_high) / window) * 100
255
+ aroon_down = ((window - periods_since_low) / window) * 100
256
+ return pd.DataFrame({"aroon_up": aroon_up, "aroon_down": aroon_down})
257
+
258
+ def calculate_aroonosc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
259
+ aroon_df = self.calculate_aroon(df, window)
260
+ aroonosc = aroon_df["aroon_up"] - aroon_df["aroon_down"]
261
+ return aroonosc.to_frame("aroonosc")
262
+
263
+ def calculate_bop(self, df: pd.DataFrame) -> pd.DataFrame:
264
+ bop = (df["close"] - df["open"]) / (df["high"] - df["low"]).replace(0, np.nan)
265
+ bop = bop.fillna(0)
266
+ return bop.to_frame("bop")
267
+
268
+ def calculate_cmo(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
269
+ close_diff = df["close"].diff(1)
270
+ sum_up = close_diff.where(close_diff > 0, 0).rolling(window=window).sum()
271
+ sum_down = -close_diff.where(close_diff < 0, 0).rolling(window=window).sum()
272
+ cmo = 100 * (sum_up - sum_down) / (sum_up + sum_down).replace(0, np.nan)
273
+ cmo = cmo.fillna(0)
274
+ return cmo.to_frame("cmo")
275
+
276
+ def calculate_dx(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
277
+ plus_di = self.calculate_plus_di(df, window)["plus_di"]
278
+ minus_di = self.calculate_minus_di(df, window)["minus_di"]
279
+ dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di).replace(0, np.nan)
280
+ dx = dx.fillna(0)
281
+ return dx.to_frame("dx")
282
+
283
+ def calculate_mfi(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
284
+ typical_price = (df["high"] + df["low"] + df["close"]) / 3
285
+ money_flow = typical_price * df["volume"]
286
+ price_diff = typical_price.diff()
287
+ positive_mf = money_flow.where(price_diff > 0, 0)
288
+ negative_mf = money_flow.where(price_diff < 0, 0)
289
+ positive_mf_sum = positive_mf.rolling(window=window).sum()
290
+ negative_mf_sum = negative_mf.rolling(window=window).sum()
291
+ money_ratio = positive_mf_sum / negative_mf_sum.replace(0, np.nan)
292
+ money_ratio = money_ratio.fillna(0)
293
+ mfi = 100 - (100 / (1 + money_ratio))
294
+ return mfi.to_frame("mfi")
295
+
296
+ def calculate_minus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
297
+ atr = self.calculate_atr(df, window)["atr"]
298
+ minus_dm = self.calculate_minus_dm(df, window)["minus_dm"]
299
+ minus_di = 100 * (minus_dm / atr)
300
+ return minus_di.to_frame("minus_di")
301
+
302
+ def calculate_minus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
303
+ high = df["high"]
304
+ low = df["low"]
305
+ up_move = high.diff()
306
+ down_move = -low.diff()
307
+ minus_dm = down_move.where((down_move > up_move) & (down_move > 0), 0)
308
+ smoothed_minus_dm = self._wilder_smooth(minus_dm, window)
309
+ return smoothed_minus_dm.to_frame("minus_dm")
310
+
311
+ def calculate_plus_di(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
312
+ atr = self.calculate_atr(df, window)["atr"]
313
+ plus_dm = self.calculate_plus_dm(df, window)["plus_dm"]
314
+ plus_di = 100 * (plus_dm / atr)
315
+ return plus_di.to_frame("plus_di")
316
+
317
+ def calculate_plus_dm(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
318
+ high = df["high"]
319
+ low = df["low"]
320
+ up_move = high.diff()
321
+ down_move = -low.diff()
322
+ plus_dm = up_move.where((up_move > down_move) & (up_move > 0), 0)
323
+ smoothed_plus_dm = self._wilder_smooth(plus_dm, window)
324
+ return smoothed_plus_dm.to_frame("plus_dm")
325
+
326
+ def calculate_ppo(
327
+ self, df: pd.DataFrame, fast_period: int, slow_period: int, ma_type: int
328
+ ) -> pd.DataFrame:
329
+ close = df["close"]
330
+ fast_ma = self._get_ma(close, fast_period, ma_type)
331
+ slow_ma = self._get_ma(close, slow_period, ma_type)
332
+ ppo = ((fast_ma - slow_ma) / slow_ma) * 100
333
+ return ppo.to_frame("ppo")
334
+
335
+ def calculate_roc(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
336
+ close = df["close"]
337
+ roc = (close.diff(window) / close.shift(window)) * 100
338
+ return roc.to_frame("roc")
339
+
340
+ def calculate_rocp(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
341
+ close = df["close"]
342
+ rocp = close.diff(window) / close.shift(window)
343
+ return rocp.to_frame("rocp")
344
+
345
+ def calculate_rocr(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
346
+ close = df["close"]
347
+ rocr = close / close.shift(window)
348
+ return rocr.to_frame("rocr")
349
+
350
+ def calculate_rocr100(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
351
+ close = df["close"]
352
+ rocr100 = (close / close.shift(window)) * 100
353
+ return rocr100.to_frame("rocr100")
354
+
355
+ def calculate_trix(self, df: pd.DataFrame, window: int) -> pd.DataFrame:
356
+ close = df["close"]
357
+ ema1 = close.ewm(span=window, adjust=False).mean()
358
+ ema2 = ema1.ewm(span=window, adjust=False).mean()
359
+ ema3 = ema2.ewm(span=window, adjust=False).mean()
360
+ trix = 100 * ema3.diff(1) / ema3.shift(1)
361
+ return trix.to_frame("trix")
362
+
363
+ def calculate_ultosc(
364
+ self, df: pd.DataFrame, window1: int, window2: int, window3: int
365
+ ) -> pd.DataFrame:
366
+ low = df["low"]
367
+ high = df["high"]
368
+ close = df["close"]
369
+ close_prev = close.shift(1)
370
+ true_low = pd.concat([low, close_prev], axis=1).min(axis=1)
371
+ true_high = pd.concat([high, close_prev], axis=1).max(axis=1)
372
+ bp = close - true_low
373
+ tr = true_high - true_low
374
+ tr_sum1 = tr.rolling(window=window1).sum()
375
+ tr_sum2 = tr.rolling(window=window2).sum()
376
+ tr_sum3 = tr.rolling(window=window3).sum()
377
+ avg1 = bp.rolling(window=window1).sum() / tr_sum1.replace(0, np.nan)
378
+ avg2 = bp.rolling(window=window2).sum() / tr_sum2.replace(0, np.nan)
379
+ avg3 = bp.rolling(window=window3).sum() / tr_sum3.replace(0, np.nan)
380
+ avg1 = avg1.fillna(0)
381
+ avg2 = avg2.fillna(0)
382
+ avg3 = avg3.fillna(0)
383
+ ultosc = 100 * (4 * avg1 + 2 * avg2 + 1 * avg3) / (4 + 2 + 1)
384
+ return ultosc.to_frame("ultosc")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: akshare-one
3
- Version: 0.3.5.1
3
+ Version: 0.3.7
4
4
  Summary: Standardized interface for Chinese financial market data, built on AKShare with unified data formats and simplified APIs
5
5
  License-Expression: MIT
6
6
  Project-URL: Homepage, https://github.com/zwldarren/akshare-one
@@ -9,7 +9,7 @@ Keywords: akshare,financial-data,stock-data,quant
9
9
  Requires-Python: >=3.10
10
10
  Description-Content-Type: text/markdown
11
11
  License-File: LICENSE
12
- Requires-Dist: akshare>=1.17.21
12
+ Requires-Dist: akshare>=1.17.26
13
13
  Requires-Dist: cachetools>=5.5.2
14
14
  Provides-Extra: talib
15
15
  Requires-Dist: ta-lib>=0.6.4; extra == "talib"
@@ -1,8 +1,11 @@
1
1
  akshare_one/__init__.py,sha256=htgTumncxiGHqXMgqmBuIQXoPBcOnwcTjCg02Ydr73I,6524
2
2
  akshare_one/indicators.py,sha256=x3Amff9CG_GvQpA-sqGfFwEAIvaaXlBxDfzTxD05taQ,12533
3
+ akshare_one/eastmoney/client.py,sha256=SSMB4oupaCns5hxtSwxaX-UE_uOrxZEGxqUiC3BT-4k,2794
4
+ akshare_one/eastmoney/utils.py,sha256=fATw0L5SW14wHWXlJ4IFEqnSsSBMT8MYGevxo7Kf1nY,2935
3
5
  akshare_one/modules/cache.py,sha256=_3n35rt9xJfQzZSV6JZ6bGzf2VnqTmLfe49WXk4c9K8,867
4
6
  akshare_one/modules/utils.py,sha256=msHqsjWSRULbX-3Bnit1p26a4a7MOEuNfkPSaECXr4k,333
5
7
  akshare_one/modules/financial/base.py,sha256=TG3ncf3rXfgWCk4qUORN01uxT1SgLWiyjkt5Jb9eoxo,688
8
+ akshare_one/modules/financial/eastmoney_direct.py,sha256=BwiUWi3X24qbtrQv5ht2Lj6crgFrhdcgW4Aa53ZFEOg,6725
6
9
  akshare_one/modules/financial/factory.py,sha256=9xR_uKt7n8dndYUxEGDDL65LXnbm-edtTLdhF0Bfyro,1468
7
10
  akshare_one/modules/financial/sina.py,sha256=c6rSxCVNU6h-7XWSiqPHDN_XAhRdGHdqI9Haruy3mDs,12801
8
11
  akshare_one/modules/historical/base.py,sha256=kDy76OJUp-LIddsC23YAQdf4Q_YGCrnZ8AvU4xRzQsI,1286
@@ -13,7 +16,7 @@ akshare_one/modules/historical/sina.py,sha256=sQoUnQlkxyI4i7Cuw5YwKT3IoNM8-K5wle
13
16
  akshare_one/modules/indicators/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
17
  akshare_one/modules/indicators/base.py,sha256=DhFivpVIUIkdIv24U2WoOy1GCDySxsw0tD0-rBRe5Lc,4376
15
18
  akshare_one/modules/indicators/factory.py,sha256=pKx57oej_L0Lz3kkXwzVievKpOYph0T_Y7fzSwO3Zd4,1021
16
- akshare_one/modules/indicators/simple.py,sha256=vAqE3v9HYpW-Sy6KsG9oV5fppWchQTxtz1M_508sQtY,9342
19
+ akshare_one/modules/indicators/simple.py,sha256=fwkM7tqqu6JIX_jv5_w6klrGO3s3WCJTz87xy4dy-Hc,15479
17
20
  akshare_one/modules/indicators/talib.py,sha256=w0KpV-BXVxU0LmWs_EbXJUFgo9dbMeUQijjJMkjtWtU,10773
18
21
  akshare_one/modules/info/base.py,sha256=Kof-e1I2usx1VOc1d05kyL-8B_QEDOsbry4R3dV0zZE,697
19
22
  akshare_one/modules/info/eastmoney.py,sha256=pvWLcVoVWwgZS_4Bg-OtHQW5SPCZ9I1PAFbN4yqluq0,1610
@@ -29,8 +32,8 @@ akshare_one/modules/realtime/eastmoney.py,sha256=6acJeIdrvkW4ZqM9CALithlx85QSogr
29
32
  akshare_one/modules/realtime/eastmoney_direct.py,sha256=A2ScBRfIP6n_BxQ6muB26AEykIvTG7Mt3BDAZMyugkg,1236
30
33
  akshare_one/modules/realtime/factory.py,sha256=_7jBDgqWqkt5xTTT1SpZoUHM9IpMRpcUQeyyCglM5z0,1528
31
34
  akshare_one/modules/realtime/xueqiu.py,sha256=CHTN5VUwo24H-2EGKQkN8oqr3MWjDi-7DpvQEDyPlls,2196
32
- akshare_one-0.3.5.1.dist-info/licenses/LICENSE,sha256=3bqxoD7aU4QS7kpNtQmRd4MikxXe6Gtm_DrojyFHGAc,1087
33
- akshare_one-0.3.5.1.dist-info/METADATA,sha256=BwuanrNYHYV1nATF_Z8ixF93Y3fNW9liB4ygJnKgo-E,2274
34
- akshare_one-0.3.5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
35
- akshare_one-0.3.5.1.dist-info/top_level.txt,sha256=kNiucyLVAGa89wmUSpXbBLWD7pF_RuahuiaOfLHZSyw,12
36
- akshare_one-0.3.5.1.dist-info/RECORD,,
35
+ akshare_one-0.3.7.dist-info/licenses/LICENSE,sha256=3bqxoD7aU4QS7kpNtQmRd4MikxXe6Gtm_DrojyFHGAc,1087
36
+ akshare_one-0.3.7.dist-info/METADATA,sha256=R2t-LPC6OnmV95Ec_Y6P0Hu0W8sctFC5GjRlLBSGCdQ,2272
37
+ akshare_one-0.3.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
38
+ akshare_one-0.3.7.dist-info/top_level.txt,sha256=kNiucyLVAGa89wmUSpXbBLWD7pF_RuahuiaOfLHZSyw,12
39
+ akshare_one-0.3.7.dist-info/RECORD,,