akshare-one 0.2.3__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. akshare_one/__init__.py +31 -31
  2. akshare_one/financial.py +46 -46
  3. akshare_one/indicators.py +395 -0
  4. akshare_one/insider.py +33 -33
  5. akshare_one/modules/cache.py +9 -9
  6. akshare_one/modules/eastmoney/client.py +88 -88
  7. akshare_one/modules/eastmoney/utils.py +104 -104
  8. akshare_one/modules/financial/base.py +22 -22
  9. akshare_one/modules/financial/factory.py +44 -44
  10. akshare_one/modules/financial/sina.py +273 -273
  11. akshare_one/modules/historical/base.py +47 -39
  12. akshare_one/modules/historical/eastmoney.py +241 -241
  13. akshare_one/modules/historical/eastmoney_direct.py +79 -79
  14. akshare_one/modules/historical/factory.py +48 -48
  15. akshare_one/modules/historical/sina.py +218 -218
  16. akshare_one/modules/indicators/__init__.py +0 -0
  17. akshare_one/modules/indicators/base.py +158 -0
  18. akshare_one/modules/indicators/factory.py +33 -0
  19. akshare_one/modules/indicators/simple.py +230 -0
  20. akshare_one/modules/indicators/talib.py +263 -0
  21. akshare_one/modules/insider/base.py +28 -28
  22. akshare_one/modules/insider/factory.py +44 -44
  23. akshare_one/modules/insider/xueqiu.py +115 -115
  24. akshare_one/modules/news/base.py +22 -22
  25. akshare_one/modules/news/eastmoney.py +47 -47
  26. akshare_one/modules/news/factory.py +44 -44
  27. akshare_one/modules/realtime/base.py +27 -27
  28. akshare_one/modules/realtime/eastmoney.py +57 -57
  29. akshare_one/modules/realtime/eastmoney_direct.py +37 -37
  30. akshare_one/modules/realtime/factory.py +48 -48
  31. akshare_one/modules/realtime/xueqiu.py +60 -60
  32. akshare_one/modules/utils.py +10 -10
  33. akshare_one/news.py +27 -27
  34. akshare_one/stock.py +78 -78
  35. {akshare_one-0.2.3.dist-info → akshare_one-0.3.0.dist-info}/METADATA +70 -66
  36. akshare_one-0.3.0.dist-info/RECORD +39 -0
  37. {akshare_one-0.2.3.dist-info → akshare_one-0.3.0.dist-info}/licenses/LICENSE +21 -21
  38. akshare_one-0.2.3.dist-info/RECORD +0 -33
  39. {akshare_one-0.2.3.dist-info → akshare_one-0.3.0.dist-info}/WHEEL +0 -0
  40. {akshare_one-0.2.3.dist-info → akshare_one-0.3.0.dist-info}/top_level.txt +0 -0
@@ -1,28 +1,28 @@
1
- from abc import ABC, abstractmethod
2
- import pandas as pd
3
-
4
-
5
- class InsiderDataProvider(ABC):
6
- def __init__(self, symbol: str) -> None:
7
- self.symbol = symbol
8
-
9
- @abstractmethod
10
- def get_inner_trade_data(self) -> pd.DataFrame:
11
- """Fetches insider trade data
12
-
13
- Returns:
14
- pd.DataFrame:
15
- - symbol: 股票代码
16
- - issuer: 股票名称
17
- - name: 变动人
18
- - title: 董监高职务
19
- - transaction_date: 变动日期(UTC时区)
20
- - transaction_shares: 变动股数
21
- - transaction_price_per_share: 成交均价
22
- - shares_owned_after_transaction: 变动后持股数
23
- - relationship: 与董监高关系
24
- - is_board_director: 是否为董事会成员
25
- - transaction_value: 交易金额(变动股数*成交均价)
26
- - shares_owned_before_transaction: 变动前持股数
27
- """
28
- pass
1
+ from abc import ABC, abstractmethod
2
+ import pandas as pd
3
+
4
+
5
+ class InsiderDataProvider(ABC):
6
+ def __init__(self, symbol: str) -> None:
7
+ self.symbol = symbol
8
+
9
+ @abstractmethod
10
+ def get_inner_trade_data(self) -> pd.DataFrame:
11
+ """Fetches insider trade data
12
+
13
+ Returns:
14
+ pd.DataFrame:
15
+ - symbol: 股票代码
16
+ - issuer: 股票名称
17
+ - name: 变动人
18
+ - title: 董监高职务
19
+ - transaction_date: 变动日期(UTC时区)
20
+ - transaction_shares: 变动股数
21
+ - transaction_price_per_share: 成交均价
22
+ - shares_owned_after_transaction: 变动后持股数
23
+ - relationship: 与董监高关系
24
+ - is_board_director: 是否为董事会成员
25
+ - transaction_value: 交易金额(变动股数*成交均价)
26
+ - shares_owned_before_transaction: 变动前持股数
27
+ """
28
+ pass
@@ -1,44 +1,44 @@
1
- from .xueqiu import XueQiuInsider
2
- from .base import InsiderDataProvider
3
-
4
-
5
- class InsiderDataFactory:
6
- """
7
- Factory class for creating insider data providers
8
- """
9
-
10
- _providers = {
11
- "xueqiu": XueQiuInsider,
12
- }
13
-
14
- @classmethod
15
- def get_provider(cls, provider_name: str, **kwargs) -> InsiderDataProvider:
16
- """
17
- Get an insider data provider by name
18
-
19
- Args:
20
- provider_name: Name of the provider (e.g., 'xueqiu')
21
- **kwargs: Additional arguments to pass to the provider's constructor
22
-
23
- Returns:
24
- InsiderDataProvider: An instance of the requested provider
25
-
26
- Raises:
27
- ValueError: If the requested provider is not found
28
- """
29
- provider_class = cls._providers.get(provider_name.lower())
30
- if not provider_class:
31
- raise ValueError(f"Unknown insider data provider: {provider_name}")
32
-
33
- return provider_class(**kwargs)
34
-
35
- @classmethod
36
- def register_provider(cls, name: str, provider_class: type):
37
- """
38
- Register a new insider data provider
39
-
40
- Args:
41
- name: Name to associate with this provider
42
- provider_class: The provider class to register
43
- """
44
- cls._providers[name.lower()] = provider_class
1
+ from .xueqiu import XueQiuInsider
2
+ from .base import InsiderDataProvider
3
+
4
+
5
+ class InsiderDataFactory:
6
+ """
7
+ Factory class for creating insider data providers
8
+ """
9
+
10
+ _providers = {
11
+ "xueqiu": XueQiuInsider,
12
+ }
13
+
14
+ @classmethod
15
+ def get_provider(cls, provider_name: str, **kwargs) -> InsiderDataProvider:
16
+ """
17
+ Get an insider data provider by name
18
+
19
+ Args:
20
+ provider_name: Name of the provider (e.g., 'xueqiu')
21
+ **kwargs: Additional arguments to pass to the provider's constructor
22
+
23
+ Returns:
24
+ InsiderDataProvider: An instance of the requested provider
25
+
26
+ Raises:
27
+ ValueError: If the requested provider is not found
28
+ """
29
+ provider_class = cls._providers.get(provider_name.lower())
30
+ if not provider_class:
31
+ raise ValueError(f"Unknown insider data provider: {provider_name}")
32
+
33
+ return provider_class(**kwargs)
34
+
35
+ @classmethod
36
+ def register_provider(cls, name: str, provider_class: type):
37
+ """
38
+ Register a new insider data provider
39
+
40
+ Args:
41
+ name: Name to associate with this provider
42
+ provider_class: The provider class to register
43
+ """
44
+ cls._providers[name.lower()] = provider_class
@@ -1,115 +1,115 @@
1
- from cachetools import cached
2
- import pandas as pd
3
- import akshare as ak
4
- from .base import InsiderDataProvider
5
- from ..utils import convert_xieqiu_symbol
6
- from ..cache import CACHE_CONFIG
7
-
8
-
9
- class XueQiuInsider(InsiderDataProvider):
10
- """Provider for XueQiu insider trading data"""
11
-
12
- @cached(
13
- cache=CACHE_CONFIG["financial_cache"],
14
- key=lambda self, symbol=None: f"xueqiu_insider_{symbol if symbol else 'all'}",
15
- )
16
- def get_inner_trade_data(self) -> pd.DataFrame:
17
- """获取雪球内部交易数据
18
-
19
- Args:
20
- symbol: 可选股票代码,如"600000",不传则返回所有数据
21
-
22
- Returns:
23
- Standardized DataFrame with insider trading data:
24
- - symbol: 股票代码
25
- - name: 股票名称
26
- - change_date: 变动日期
27
- - insider: 变动人
28
- - shares_changed: 变动股数
29
- - avg_price: 成交均价
30
- - shares_after: 变动后持股数
31
- - relationship: 与董监高关系
32
- - position: 董监高职务
33
- """
34
- raw_df = ak.stock_inner_trade_xq()
35
- if self.symbol:
36
- xueqiu_symbol = convert_xieqiu_symbol(self.symbol)
37
- raw_df = raw_df[raw_df["股票代码"] == xueqiu_symbol]
38
- return self._clean_insider_data(raw_df)
39
-
40
- def _clean_insider_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
41
- """清理和标准化内部交易数据
42
-
43
- Args:
44
- raw_df: Raw DataFrame from XueQiu API
45
-
46
- Returns:
47
- Standardized DataFrame with consistent columns
48
- """
49
- column_mapping = {
50
- "股票代码": "symbol",
51
- "股票名称": "issuer",
52
- "变动人": "name",
53
- "董监高职务": "title",
54
- "变动日期": "transaction_date",
55
- "变动股数": "transaction_shares",
56
- "成交均价": "transaction_price_per_share",
57
- "变动后持股数": "shares_owned_after_transaction",
58
- "与董监高关系": "relationship",
59
- }
60
-
61
- df = raw_df.rename(columns=column_mapping)
62
-
63
- # Convert symbol back to original format (remove SH/SZ prefix)
64
- if "symbol" in df.columns:
65
- df["symbol"] = df["symbol"].str.replace(r"^[A-Z]{2}", "", regex=True)
66
-
67
- # Add is_board_director column
68
- df["is_board_director"] = df["title"].str.contains("董事")
69
-
70
- # Calculate transaction_value
71
- if (
72
- "transaction_shares" in df.columns
73
- and "transaction_price_per_share" in df.columns
74
- ):
75
- df["transaction_value"] = (
76
- df["transaction_shares"] * df["transaction_price_per_share"]
77
- )
78
-
79
- # Add shares_owned_before_transaction if possible
80
- if (
81
- "shares_owned_after_transaction" in df.columns
82
- and "transaction_shares" in df.columns
83
- ):
84
- df["shares_owned_before_transaction"] = (
85
- df["shares_owned_after_transaction"] - df["transaction_shares"]
86
- )
87
-
88
- # Convert date format
89
- if "transaction_date" in df.columns:
90
- df["transaction_date"] = (
91
- pd.to_datetime(df["transaction_date"])
92
- .dt.tz_localize("Asia/Shanghai")
93
- .dt.tz_convert("UTC")
94
- )
95
-
96
- if "filing_date" in df.columns:
97
- df["filing_date"] = (
98
- pd.to_datetime(df["filing_date"])
99
- .dt.tz_localize("Asia/Shanghai")
100
- .dt.tz_convert("UTC")
101
- )
102
-
103
- # Convert numeric columns
104
- numeric_cols = [
105
- "transaction_shares",
106
- "transaction_price_per_share",
107
- "transaction_value",
108
- "shares_owned_before_transaction",
109
- "shares_owned_after_transaction",
110
- ]
111
- for col in numeric_cols:
112
- if col in df.columns:
113
- df[col] = pd.to_numeric(df[col], errors="coerce")
114
-
115
- return df
1
+ from cachetools import cached
2
+ import pandas as pd
3
+ import akshare as ak
4
+ from .base import InsiderDataProvider
5
+ from ..utils import convert_xieqiu_symbol
6
+ from ..cache import CACHE_CONFIG
7
+
8
+
9
+ class XueQiuInsider(InsiderDataProvider):
10
+ """Provider for XueQiu insider trading data"""
11
+
12
+ @cached(
13
+ cache=CACHE_CONFIG["financial_cache"],
14
+ key=lambda self, symbol=None: f"xueqiu_insider_{symbol if symbol else 'all'}",
15
+ )
16
+ def get_inner_trade_data(self) -> pd.DataFrame:
17
+ """获取雪球内部交易数据
18
+
19
+ Args:
20
+ symbol: 可选股票代码,如"600000",不传则返回所有数据
21
+
22
+ Returns:
23
+ Standardized DataFrame with insider trading data:
24
+ - symbol: 股票代码
25
+ - name: 股票名称
26
+ - change_date: 变动日期
27
+ - insider: 变动人
28
+ - shares_changed: 变动股数
29
+ - avg_price: 成交均价
30
+ - shares_after: 变动后持股数
31
+ - relationship: 与董监高关系
32
+ - position: 董监高职务
33
+ """
34
+ raw_df = ak.stock_inner_trade_xq()
35
+ if self.symbol:
36
+ xueqiu_symbol = convert_xieqiu_symbol(self.symbol)
37
+ raw_df = raw_df[raw_df["股票代码"] == xueqiu_symbol]
38
+ return self._clean_insider_data(raw_df)
39
+
40
+ def _clean_insider_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
41
+ """清理和标准化内部交易数据
42
+
43
+ Args:
44
+ raw_df: Raw DataFrame from XueQiu API
45
+
46
+ Returns:
47
+ Standardized DataFrame with consistent columns
48
+ """
49
+ column_mapping = {
50
+ "股票代码": "symbol",
51
+ "股票名称": "issuer",
52
+ "变动人": "name",
53
+ "董监高职务": "title",
54
+ "变动日期": "transaction_date",
55
+ "变动股数": "transaction_shares",
56
+ "成交均价": "transaction_price_per_share",
57
+ "变动后持股数": "shares_owned_after_transaction",
58
+ "与董监高关系": "relationship",
59
+ }
60
+
61
+ df = raw_df.rename(columns=column_mapping)
62
+
63
+ # Convert symbol back to original format (remove SH/SZ prefix)
64
+ if "symbol" in df.columns:
65
+ df["symbol"] = df["symbol"].str.replace(r"^[A-Z]{2}", "", regex=True)
66
+
67
+ # Add is_board_director column
68
+ df["is_board_director"] = df["title"].str.contains("董事")
69
+
70
+ # Calculate transaction_value
71
+ if (
72
+ "transaction_shares" in df.columns
73
+ and "transaction_price_per_share" in df.columns
74
+ ):
75
+ df["transaction_value"] = (
76
+ df["transaction_shares"] * df["transaction_price_per_share"]
77
+ )
78
+
79
+ # Add shares_owned_before_transaction if possible
80
+ if (
81
+ "shares_owned_after_transaction" in df.columns
82
+ and "transaction_shares" in df.columns
83
+ ):
84
+ df["shares_owned_before_transaction"] = (
85
+ df["shares_owned_after_transaction"] - df["transaction_shares"]
86
+ )
87
+
88
+ # Convert date format
89
+ if "transaction_date" in df.columns:
90
+ df["transaction_date"] = (
91
+ pd.to_datetime(df["transaction_date"])
92
+ .dt.tz_localize("Asia/Shanghai")
93
+ .dt.tz_convert("UTC")
94
+ )
95
+
96
+ if "filing_date" in df.columns:
97
+ df["filing_date"] = (
98
+ pd.to_datetime(df["filing_date"])
99
+ .dt.tz_localize("Asia/Shanghai")
100
+ .dt.tz_convert("UTC")
101
+ )
102
+
103
+ # Convert numeric columns
104
+ numeric_cols = [
105
+ "transaction_shares",
106
+ "transaction_price_per_share",
107
+ "transaction_value",
108
+ "shares_owned_before_transaction",
109
+ "shares_owned_after_transaction",
110
+ ]
111
+ for col in numeric_cols:
112
+ if col in df.columns:
113
+ df[col] = pd.to_numeric(df[col], errors="coerce")
114
+
115
+ return df
@@ -1,22 +1,22 @@
1
- from abc import ABC, abstractmethod
2
- import pandas as pd
3
-
4
-
5
- class NewsDataProvider(ABC):
6
- def __init__(self, symbol: str) -> None:
7
- self.symbol = symbol
8
-
9
- @abstractmethod
10
- def get_news_data(self) -> pd.DataFrame:
11
- """Fetches news data for given symbol
12
-
13
- Returns:
14
- pd.DataFrame:
15
- - keyword: 关键词
16
- - title: 新闻标题
17
- - content: 新闻内容
18
- - publish_time: 发布时间 (UTC)
19
- - source: 文章来源
20
- - url: 新闻链接
21
- """
22
- pass
1
+ from abc import ABC, abstractmethod
2
+ import pandas as pd
3
+
4
+
5
+ class NewsDataProvider(ABC):
6
+ def __init__(self, symbol: str) -> None:
7
+ self.symbol = symbol
8
+
9
+ @abstractmethod
10
+ def get_news_data(self) -> pd.DataFrame:
11
+ """Fetches news data for given symbol
12
+
13
+ Returns:
14
+ pd.DataFrame:
15
+ - keyword: 关键词
16
+ - title: 新闻标题
17
+ - content: 新闻内容
18
+ - publish_time: 发布时间 (UTC)
19
+ - source: 文章来源
20
+ - url: 新闻链接
21
+ """
22
+ pass
@@ -1,47 +1,47 @@
1
- from cachetools import cached
2
- import pandas as pd
3
- import akshare as ak
4
-
5
- from ..cache import CACHE_CONFIG
6
- from .base import NewsDataProvider
7
-
8
-
9
- class EastMoneyNews(NewsDataProvider):
10
- @cached(
11
- CACHE_CONFIG["news_cache"],
12
- key=lambda self: f"eastmoney_news_{self.symbol}",
13
- )
14
- def get_news_data(self) -> pd.DataFrame:
15
- """获取东方财富个股新闻数据"""
16
- raw_df = ak.stock_news_em(symbol=self.symbol)
17
- return self._clean_news_data(raw_df)
18
-
19
- def _clean_news_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
20
- """清理和标准化新闻数据"""
21
- column_mapping = {
22
- "关键词": "keyword",
23
- "新闻标题": "title",
24
- "新闻内容": "content",
25
- "发布时间": "publish_time",
26
- "文章来源": "source",
27
- "新闻链接": "url",
28
- }
29
-
30
- df = raw_df.rename(columns=column_mapping)
31
-
32
- # Convert time to UTC
33
- df["publish_time"] = (
34
- pd.to_datetime(df["publish_time"])
35
- .dt.tz_localize("Asia/Shanghai")
36
- .dt.tz_convert("UTC")
37
- )
38
-
39
- required_columns = [
40
- "keyword",
41
- "title",
42
- "content",
43
- "publish_time",
44
- "source",
45
- "url",
46
- ]
47
- return df[required_columns]
1
+ from cachetools import cached
2
+ import pandas as pd
3
+ import akshare as ak
4
+
5
+ from ..cache import CACHE_CONFIG
6
+ from .base import NewsDataProvider
7
+
8
+
9
+ class EastMoneyNews(NewsDataProvider):
10
+ @cached(
11
+ CACHE_CONFIG["news_cache"],
12
+ key=lambda self: f"eastmoney_news_{self.symbol}",
13
+ )
14
+ def get_news_data(self) -> pd.DataFrame:
15
+ """获取东方财富个股新闻数据"""
16
+ raw_df = ak.stock_news_em(symbol=self.symbol)
17
+ return self._clean_news_data(raw_df)
18
+
19
+ def _clean_news_data(self, raw_df: pd.DataFrame) -> pd.DataFrame:
20
+ """清理和标准化新闻数据"""
21
+ column_mapping = {
22
+ "关键词": "keyword",
23
+ "新闻标题": "title",
24
+ "新闻内容": "content",
25
+ "发布时间": "publish_time",
26
+ "文章来源": "source",
27
+ "新闻链接": "url",
28
+ }
29
+
30
+ df = raw_df.rename(columns=column_mapping)
31
+
32
+ # Convert time to UTC
33
+ df["publish_time"] = (
34
+ pd.to_datetime(df["publish_time"])
35
+ .dt.tz_localize("Asia/Shanghai")
36
+ .dt.tz_convert("UTC")
37
+ )
38
+
39
+ required_columns = [
40
+ "keyword",
41
+ "title",
42
+ "content",
43
+ "publish_time",
44
+ "source",
45
+ "url",
46
+ ]
47
+ return df[required_columns]
@@ -1,44 +1,44 @@
1
- from .eastmoney import EastMoneyNews
2
- from .base import NewsDataProvider
3
-
4
-
5
- class NewsDataFactory:
6
- """
7
- Factory class for creating news data providers
8
- """
9
-
10
- _providers = {
11
- "eastmoney": EastMoneyNews,
12
- }
13
-
14
- @classmethod
15
- def get_provider(cls, provider_name: str, **kwargs) -> NewsDataProvider:
16
- """
17
- Get a news data provider by name
18
-
19
- Args:
20
- provider_name: Name of the provider (e.g., 'eastmoney')
21
- **kwargs: Additional arguments to pass to the provider's constructor
22
-
23
- Returns:
24
- NewsDataProvider: An instance of the requested provider
25
-
26
- Raises:
27
- ValueError: If the requested provider is not found
28
- """
29
- provider_class = cls._providers.get(provider_name.lower())
30
- if not provider_class:
31
- raise ValueError(f"Unknown news data provider: {provider_name}")
32
-
33
- return provider_class(**kwargs)
34
-
35
- @classmethod
36
- def register_provider(cls, name: str, provider_class: type):
37
- """
38
- Register a new news data provider
39
-
40
- Args:
41
- name: Name to associate with this provider
42
- provider_class: The provider class to register
43
- """
44
- cls._providers[name.lower()] = provider_class
1
+ from .eastmoney import EastMoneyNews
2
+ from .base import NewsDataProvider
3
+
4
+
5
+ class NewsDataFactory:
6
+ """
7
+ Factory class for creating news data providers
8
+ """
9
+
10
+ _providers = {
11
+ "eastmoney": EastMoneyNews,
12
+ }
13
+
14
+ @classmethod
15
+ def get_provider(cls, provider_name: str, **kwargs) -> NewsDataProvider:
16
+ """
17
+ Get a news data provider by name
18
+
19
+ Args:
20
+ provider_name: Name of the provider (e.g., 'eastmoney')
21
+ **kwargs: Additional arguments to pass to the provider's constructor
22
+
23
+ Returns:
24
+ NewsDataProvider: An instance of the requested provider
25
+
26
+ Raises:
27
+ ValueError: If the requested provider is not found
28
+ """
29
+ provider_class = cls._providers.get(provider_name.lower())
30
+ if not provider_class:
31
+ raise ValueError(f"Unknown news data provider: {provider_name}")
32
+
33
+ return provider_class(**kwargs)
34
+
35
+ @classmethod
36
+ def register_provider(cls, name: str, provider_class: type):
37
+ """
38
+ Register a new news data provider
39
+
40
+ Args:
41
+ name: Name to associate with this provider
42
+ provider_class: The provider class to register
43
+ """
44
+ cls._providers[name.lower()] = provider_class
@@ -1,27 +1,27 @@
1
- from abc import ABC, abstractmethod
2
- import pandas as pd
3
-
4
-
5
- class RealtimeDataProvider(ABC):
6
- def __init__(self, symbol: str) -> None:
7
- self.symbol = symbol
8
-
9
- @abstractmethod
10
- def get_current_data(self) -> pd.DataFrame:
11
- """Fetches realtime market data
12
-
13
- Returns:
14
- pd.DataFrame:
15
- - symbol: 股票代码
16
- - price: 最新价
17
- - change: 涨跌额
18
- - pct_change: 涨跌幅(%)
19
- - timestamp: 时间戳
20
- - volume: 成交量(手)
21
- - amount: 成交额(元)
22
- - open: 今开
23
- - high: 最高
24
- - low: 最低
25
- - prev_close: 昨收
26
- """
27
- pass
1
+ from abc import ABC, abstractmethod
2
+ import pandas as pd
3
+
4
+
5
+ class RealtimeDataProvider(ABC):
6
+ def __init__(self, symbol: str) -> None:
7
+ self.symbol = symbol
8
+
9
+ @abstractmethod
10
+ def get_current_data(self) -> pd.DataFrame:
11
+ """Fetches realtime market data
12
+
13
+ Returns:
14
+ pd.DataFrame:
15
+ - symbol: 股票代码
16
+ - price: 最新价
17
+ - change: 涨跌额
18
+ - pct_change: 涨跌幅(%)
19
+ - timestamp: 时间戳
20
+ - volume: 成交量(手)
21
+ - amount: 成交额(元)
22
+ - open: 今开
23
+ - high: 最高
24
+ - low: 最低
25
+ - prev_close: 昨收
26
+ """
27
+ pass