akitallm 1.1.1__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,140 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: akitallm
3
- Version: 1.1.1
4
- Summary: AkitaLLM: An open-source local-first AI system for programming.
5
- Author: KerubinDev
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
8
- Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
9
- Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
10
- Keywords: ai,cli,programming,local-first,llm
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: Developers
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Classifier: Programming Language :: Python :: 3.12
18
- Requires-Python: >=3.10
19
- Description-Content-Type: text/markdown
20
- License-File: LICENSE
21
- Requires-Dist: typer[all]
22
- Requires-Dist: litellm
23
- Requires-Dist: pydantic
24
- Requires-Dist: rich
25
- Requires-Dist: python-dotenv
26
- Requires-Dist: pytest
27
- Requires-Dist: pytest-mock
28
- Requires-Dist: gitpython
29
- Requires-Dist: tomli-w
30
- Requires-Dist: tomli
31
- Requires-Dist: whatthepatch>=1.0.5
32
- Requires-Dist: tree-sitter>=0.21.3
33
- Requires-Dist: tree-sitter-python>=0.21.0
34
- Dynamic: license-file
35
-
36
- # AkitaLLM
37
- ### A deterministic, local-first AI orchestrator for software engineers.
38
-
39
- ---
40
-
41
- ## What is AkitaLLM?
42
-
43
- AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
44
-
45
- Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
46
-
47
- ---
48
-
49
- ## Why AkitaLLM exists
50
-
51
- Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
52
- - **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
53
- - **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
54
- - **Verification**: Automatically ensuring that proposed changes don't break existing logic.
55
-
56
- AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
57
-
58
- ---
59
-
60
- ## The Engineering Difference
61
-
62
- | Feature | Generic AI Tools | AkitaLLM |
63
- | :--- | :--- | :--- |
64
- | **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
65
- | **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
66
- | **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
67
- | **Validation** | Post-facto manual review | Automated local test execution |
68
- | **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
69
-
70
- ---
71
-
72
- ## Core Principles
73
-
74
- 1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
75
- 2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
76
- 3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
77
- 4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
78
-
79
- ---
80
-
81
- ## Key Features
82
-
83
- - **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
84
- - **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
85
- - **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
86
- - **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
87
- - **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
88
-
89
- ---
90
-
91
- ## Installation
92
-
93
- AkitaLLM is available on PyPI. You can install it directly using pip:
94
-
95
- ```bash
96
- pip install akitallm
97
- ```
98
-
99
- ---
100
-
101
- ## Usage
102
-
103
- ### 1. Project Initialization
104
- Run any command to trigger the initial configuration and onboarding.
105
- ```bash
106
- akita review .
107
- ```
108
-
109
- ### 2. Strategic Code Review
110
- Analyze a directory for potential architectural risks and bugs.
111
- ```bash
112
- akita review src/
113
- ```
114
-
115
- ### 3. Implementation Planning
116
- Generate a technical plan for a specific goal.
117
- ```bash
118
- akita plan "Implement JWT authentication with Redis-based session storage"
119
- ```
120
-
121
- ### 4. Code Problem Solving
122
- Generate a diff to solve a precise issue or refactor a module.
123
- ```bash
124
- akita solve "Improve error handling in the reasoning engine to prevent silent failures"
125
- ```
126
-
127
- ---
128
-
129
- ### 🔌 Extensibility
130
- AkitaLLM is built to be extended. You can create your own tools and plugins. Check the [Plugin Development Guide](PLUGINS.md) for more details.
131
-
132
- ## 🤝 Contributing
133
-
134
- We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
135
-
136
- Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
137
-
138
- ---
139
-
140
- *“Understanding the internals is the first step to excellence.”*