airtrain 0.1.39__py3-none-any.whl → 0.1.41__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
airtrain/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  """Airtrain - A platform for building and deploying AI agents with structured skills"""
2
2
 
3
- __version__ = "0.1.39"
3
+ __version__ = "0.1.41"
4
4
 
5
5
  # Core imports
6
6
  from .core.skills import Skill, ProcessingError
@@ -22,6 +22,10 @@ from .ollama.skills import OllamaChatSkill
22
22
  from .sambanova.skills import SambanovaChatSkill
23
23
  from .cerebras.skills import CerebrasChatSkill
24
24
 
25
+ # Model configurations
26
+ from .openai.models_config import OPENAI_MODELS, OpenAIModelConfig
27
+ from .anthropic.models_config import ANTHROPIC_MODELS, AnthropicModelConfig
28
+
25
29
  __all__ = [
26
30
  # Credentials
27
31
  "OpenAICredentials",
@@ -38,10 +42,15 @@ __all__ = [
38
42
  "OpenAIParserSkill",
39
43
  "AnthropicChatSkill",
40
44
  "AWSBedrockSkill",
41
- "VertexAISkill",
45
+ "GoogleChatSkill",
42
46
  "GroqChatSkill",
43
47
  "TogetherAIChatSkill",
44
48
  "OllamaChatSkill",
45
49
  "SambanovaChatSkill",
46
50
  "CerebrasChatSkill",
51
+ # Model configurations
52
+ "OPENAI_MODELS",
53
+ "OpenAIModelConfig",
54
+ "ANTHROPIC_MODELS",
55
+ "AnthropicModelConfig",
47
56
  ]
@@ -2,10 +2,22 @@
2
2
 
3
3
  from .credentials import AnthropicCredentials
4
4
  from .skills import AnthropicChatSkill, AnthropicInput, AnthropicOutput
5
+ from .models_config import (
6
+ ANTHROPIC_MODELS,
7
+ AnthropicModelConfig,
8
+ get_model_config,
9
+ get_default_model,
10
+ calculate_cost,
11
+ )
5
12
 
6
13
  __all__ = [
7
14
  "AnthropicCredentials",
8
15
  "AnthropicChatSkill",
9
16
  "AnthropicInput",
10
17
  "AnthropicOutput",
18
+ "ANTHROPIC_MODELS",
19
+ "AnthropicModelConfig",
20
+ "get_model_config",
21
+ "get_default_model",
22
+ "calculate_cost",
11
23
  ]
@@ -0,0 +1,100 @@
1
+ from typing import Dict, NamedTuple, Optional
2
+ from decimal import Decimal
3
+
4
+
5
+ class AnthropicModelConfig(NamedTuple):
6
+ display_name: str
7
+ base_model: str
8
+ input_price: Decimal
9
+ cached_write_price: Optional[Decimal]
10
+ cached_read_price: Optional[Decimal]
11
+ output_price: Decimal
12
+
13
+
14
+ ANTHROPIC_MODELS: Dict[str, AnthropicModelConfig] = {
15
+ "claude-3-7-sonnet": AnthropicModelConfig(
16
+ display_name="Claude 3.7 Sonnet",
17
+ base_model="claude-3-7-sonnet",
18
+ input_price=Decimal("3.00"),
19
+ cached_write_price=Decimal("3.75"),
20
+ cached_read_price=Decimal("0.30"),
21
+ output_price=Decimal("15.00"),
22
+ ),
23
+ "claude-3-5-haiku": AnthropicModelConfig(
24
+ display_name="Claude 3.5 Haiku",
25
+ base_model="claude-3-5-haiku",
26
+ input_price=Decimal("0.80"),
27
+ cached_write_price=Decimal("1.00"),
28
+ cached_read_price=Decimal("0.08"),
29
+ output_price=Decimal("4.00"),
30
+ ),
31
+ "claude-3-opus": AnthropicModelConfig(
32
+ display_name="Claude 3 Opus",
33
+ base_model="claude-3-opus",
34
+ input_price=Decimal("15.00"),
35
+ cached_write_price=Decimal("18.75"),
36
+ cached_read_price=Decimal("1.50"),
37
+ output_price=Decimal("75.00"),
38
+ ),
39
+ "claude-3-sonnet": AnthropicModelConfig(
40
+ display_name="Claude 3 Sonnet",
41
+ base_model="claude-3-sonnet",
42
+ input_price=Decimal("3.00"),
43
+ cached_write_price=Decimal("3.75"),
44
+ cached_read_price=Decimal("0.30"),
45
+ output_price=Decimal("15.00"),
46
+ ),
47
+ "claude-3-haiku": AnthropicModelConfig(
48
+ display_name="Claude 3 Haiku",
49
+ base_model="claude-3-haiku",
50
+ input_price=Decimal("0.25"),
51
+ cached_write_price=Decimal("0.31"),
52
+ cached_read_price=Decimal("0.025"),
53
+ output_price=Decimal("1.25"),
54
+ ),
55
+ }
56
+
57
+
58
+ def get_model_config(model_id: str) -> AnthropicModelConfig:
59
+ """Get model configuration by model ID"""
60
+ if model_id not in ANTHROPIC_MODELS:
61
+ raise ValueError(f"Model {model_id} not found in Anthropic models")
62
+ return ANTHROPIC_MODELS[model_id]
63
+
64
+
65
+ def get_default_model() -> str:
66
+ """Get the default model ID"""
67
+ return "claude-3-sonnet"
68
+
69
+
70
+ def calculate_cost(
71
+ model_id: str,
72
+ input_tokens: int,
73
+ output_tokens: int,
74
+ use_cached: bool = False,
75
+ cache_type: str = "read"
76
+ ) -> Decimal:
77
+ """Calculate cost for token usage
78
+
79
+ Args:
80
+ model_id: The model ID to calculate costs for
81
+ input_tokens: Number of input tokens
82
+ output_tokens: Number of output tokens
83
+ use_cached: Whether to use cached pricing
84
+ cache_type: Either "read" or "write" for cached pricing type
85
+ """
86
+ config = get_model_config(model_id)
87
+
88
+ if not use_cached:
89
+ input_cost = config.input_price * Decimal(str(input_tokens))
90
+ else:
91
+ if cache_type == "read" and config.cached_read_price is not None:
92
+ input_cost = config.cached_read_price * Decimal(str(input_tokens))
93
+ elif cache_type == "write" and config.cached_write_price is not None:
94
+ input_cost = config.cached_write_price * Decimal(str(input_tokens))
95
+ else:
96
+ input_cost = config.input_price * Decimal(str(input_tokens))
97
+
98
+ output_cost = config.output_price * Decimal(str(output_tokens))
99
+
100
+ return (input_cost + output_cost) / Decimal("1000")
@@ -2,10 +2,20 @@
2
2
 
3
3
  from .credentials import FireworksCredentials
4
4
  from .skills import FireworksChatSkill, FireworksInput, FireworksOutput
5
+ from .list_models import (
6
+ FireworksListModelsSkill,
7
+ FireworksListModelsInput,
8
+ FireworksListModelsOutput,
9
+ )
10
+ from .models import FireworksModel
5
11
 
6
12
  __all__ = [
7
13
  "FireworksCredentials",
8
14
  "FireworksChatSkill",
9
15
  "FireworksInput",
10
16
  "FireworksOutput",
17
+ "FireworksListModelsSkill",
18
+ "FireworksListModelsInput",
19
+ "FireworksListModelsOutput",
20
+ "FireworksModel",
11
21
  ]
@@ -1,4 +1,4 @@
1
- from pydantic import SecretStr, BaseModel
1
+ from pydantic import SecretStr, BaseModel, Field
2
2
  from typing import Optional
3
3
  import os
4
4
 
@@ -6,7 +6,15 @@ import os
6
6
  class FireworksCredentials(BaseModel):
7
7
  """Credentials for Fireworks AI API"""
8
8
 
9
- fireworks_api_key: SecretStr
9
+ fireworks_api_key: SecretStr = Field(..., min_length=1)
10
+
11
+ def __repr__(self) -> str:
12
+ """Return a string representation of the credentials."""
13
+ return f"FireworksCredentials(fireworks_api_key=SecretStr('**********'))"
14
+
15
+ def __str__(self) -> str:
16
+ """Return a string representation of the credentials."""
17
+ return self.__repr__()
10
18
 
11
19
  @classmethod
12
20
  def from_env(cls) -> "FireworksCredentials":
@@ -0,0 +1,128 @@
1
+ from typing import Optional, List
2
+ import requests
3
+ from pydantic import Field
4
+
5
+ from airtrain.core.skills import Skill, ProcessingError
6
+ from airtrain.core.schemas import InputSchema, OutputSchema
7
+ from .credentials import FireworksCredentials
8
+ from .models import FireworksModel
9
+
10
+
11
+ class FireworksListModelsInput(InputSchema):
12
+ """Schema for Fireworks AI list models input"""
13
+
14
+ account_id: str = Field(..., description="The Account Id")
15
+ page_size: Optional[int] = Field(
16
+ default=50,
17
+ description=(
18
+ "The maximum number of models to return. The maximum page_size is 200, "
19
+ "values above 200 will be coerced to 200."
20
+ ),
21
+ le=200
22
+ )
23
+ page_token: Optional[str] = Field(
24
+ default=None,
25
+ description=(
26
+ "A page token, received from a previous ListModels call. Provide this "
27
+ "to retrieve the subsequent page. When paginating, all other parameters "
28
+ "provided to ListModels must match the call that provided the page token."
29
+ )
30
+ )
31
+ filter: Optional[str] = Field(
32
+ default=None,
33
+ description=(
34
+ "Only model satisfying the provided filter (if specified) will be "
35
+ "returned. See https://google.aip.dev/160 for the filter grammar."
36
+ )
37
+ )
38
+ order_by: Optional[str] = Field(
39
+ default=None,
40
+ description=(
41
+ "A comma-separated list of fields to order by. e.g. \"foo,bar\" "
42
+ "The default sort order is ascending. To specify a descending order for a "
43
+ "field, append a \" desc\" suffix. e.g. \"foo desc,bar\" "
44
+ "Subfields are specified with a \".\" character. e.g. \"foo.bar\" "
45
+ "If not specified, the default order is by \"name\"."
46
+ )
47
+ )
48
+
49
+
50
+ class FireworksListModelsOutput(OutputSchema):
51
+ """Schema for Fireworks AI list models output"""
52
+
53
+ models: List[FireworksModel] = Field(
54
+ default_factory=list,
55
+ description="List of Fireworks models"
56
+ )
57
+ next_page_token: Optional[str] = Field(
58
+ default=None,
59
+ description="Token for retrieving the next page of results"
60
+ )
61
+ total_size: Optional[int] = Field(
62
+ default=None,
63
+ description="Total number of models available"
64
+ )
65
+
66
+
67
+ class FireworksListModelsSkill(
68
+ Skill[FireworksListModelsInput, FireworksListModelsOutput]
69
+ ):
70
+ """Skill for listing Fireworks AI models"""
71
+
72
+ input_schema = FireworksListModelsInput
73
+ output_schema = FireworksListModelsOutput
74
+
75
+ def __init__(self, credentials: Optional[FireworksCredentials] = None):
76
+ """Initialize the skill with optional credentials"""
77
+ super().__init__()
78
+ self.credentials = credentials or FireworksCredentials.from_env()
79
+ self.base_url = "https://api.fireworks.ai/v1"
80
+
81
+ def process(
82
+ self, input_data: FireworksListModelsInput
83
+ ) -> FireworksListModelsOutput:
84
+ """Process the input and return a list of models."""
85
+ try:
86
+ # Build the URL
87
+ url = f"{self.base_url}/accounts/{input_data.account_id}/models"
88
+
89
+ # Prepare query parameters
90
+ params = {}
91
+ if input_data.page_size:
92
+ params["pageSize"] = input_data.page_size
93
+ if input_data.page_token:
94
+ params["pageToken"] = input_data.page_token
95
+ if input_data.filter:
96
+ params["filter"] = input_data.filter
97
+ if input_data.order_by:
98
+ params["orderBy"] = input_data.order_by
99
+
100
+ # Make the request
101
+ headers = {
102
+ "Authorization": (
103
+ f"Bearer {self.credentials.fireworks_api_key.get_secret_value()}"
104
+ )
105
+ }
106
+
107
+ response = requests.get(url, headers=headers, params=params)
108
+ response.raise_for_status()
109
+
110
+ # Parse the response
111
+ result = response.json()
112
+
113
+ # Convert the models to FireworksModel objects
114
+ models = []
115
+ for model_data in result.get("models", []):
116
+ models.append(FireworksModel(**model_data))
117
+
118
+ # Return the output
119
+ return FireworksListModelsOutput(
120
+ models=models,
121
+ next_page_token=result.get("nextPageToken"),
122
+ total_size=result.get("totalSize")
123
+ )
124
+
125
+ except requests.RequestException as e:
126
+ raise ProcessingError(f"Failed to list Fireworks models: {str(e)}")
127
+ except Exception as e:
128
+ raise ProcessingError(f"Error listing Fireworks models: {str(e)}")
@@ -25,3 +25,115 @@ class FireworksResponse(BaseModel):
25
25
  created: int
26
26
  model: str
27
27
  usage: FireworksUsage
28
+
29
+
30
+ class FireworksModelStatus(BaseModel):
31
+ """Schema for Fireworks model status"""
32
+ # This would be filled with actual fields from the API response
33
+
34
+
35
+ class FireworksModelBaseDetails(BaseModel):
36
+ """Schema for Fireworks base model details"""
37
+ # This would be filled with actual fields from the API response
38
+
39
+
40
+ class FireworksPeftDetails(BaseModel):
41
+ """Schema for Fireworks PEFT details"""
42
+ # This would be filled with actual fields from the API response
43
+
44
+
45
+ class FireworksConversationConfig(BaseModel):
46
+ """Schema for Fireworks conversation configuration"""
47
+ # This would be filled with actual fields from the API response
48
+
49
+
50
+ class FireworksModelDeployedRef(BaseModel):
51
+ """Schema for Fireworks deployed model reference"""
52
+ # This would be filled with actual fields from the API response
53
+
54
+
55
+ class FireworksDeprecationDate(BaseModel):
56
+ """Schema for Fireworks deprecation date"""
57
+ # This would be filled with actual fields from the API response
58
+
59
+
60
+ class FireworksModel(BaseModel):
61
+ """Schema for a Fireworks model"""
62
+
63
+ name: str
64
+ display_name: Optional[str] = None
65
+ description: Optional[str] = None
66
+ create_time: Optional[str] = None
67
+ created_by: Optional[str] = None
68
+ state: Optional[str] = None
69
+ status: Optional[Dict[str, Any]] = None
70
+ kind: Optional[str] = None
71
+ github_url: Optional[str] = None
72
+ hugging_face_url: Optional[str] = None
73
+ base_model_details: Optional[Dict[str, Any]] = None
74
+ peft_details: Optional[Dict[str, Any]] = None
75
+ teft_details: Optional[Dict[str, Any]] = None
76
+ public: Optional[bool] = None
77
+ conversation_config: Optional[Dict[str, Any]] = None
78
+ context_length: Optional[int] = None
79
+ supports_image_input: Optional[bool] = None
80
+ supports_tools: Optional[bool] = None
81
+ imported_from: Optional[str] = None
82
+ fine_tuning_job: Optional[str] = None
83
+ default_draft_model: Optional[str] = None
84
+ default_draft_token_count: Optional[int] = None
85
+ precisions: Optional[List[str]] = None
86
+ deployed_model_refs: Optional[List[Dict[str, Any]]] = None
87
+ cluster: Optional[str] = None
88
+ deprecation_date: Optional[Dict[str, Any]] = None
89
+ calibrated: Optional[bool] = None
90
+ tunable: Optional[bool] = None
91
+ supports_lora: Optional[bool] = None
92
+ use_hf_apply_chat_template: Optional[bool] = None
93
+
94
+
95
+ class ListModelsInput(BaseModel):
96
+ """Schema for listing Fireworks models input"""
97
+
98
+ account_id: str = Field(..., description="The Account Id")
99
+ page_size: Optional[int] = Field(
100
+ default=50,
101
+ description=(
102
+ "The maximum number of models to return. The maximum page_size is 200, "
103
+ "values above 200 will be coerced to 200."
104
+ ),
105
+ le=200
106
+ )
107
+ page_token: Optional[str] = Field(
108
+ default=None,
109
+ description=(
110
+ "A page token, received from a previous ListModels call. Provide this "
111
+ "to retrieve the subsequent page. When paginating, all other parameters "
112
+ "provided to ListModels must match the call that provided the page token."
113
+ )
114
+ )
115
+ filter: Optional[str] = Field(
116
+ default=None,
117
+ description=(
118
+ "Only model satisfying the provided filter (if specified) will be "
119
+ "returned. See https://google.aip.dev/160 for the filter grammar."
120
+ )
121
+ )
122
+ order_by: Optional[str] = Field(
123
+ default=None,
124
+ description=(
125
+ "A comma-separated list of fields to order by. e.g. \"foo,bar\" "
126
+ "The default sort order is ascending. To specify a descending order for a "
127
+ "field, append a \" desc\" suffix. e.g. \"foo desc,bar\" "
128
+ "Subfields are specified with a \".\" character. e.g. \"foo.bar\" "
129
+ "If not specified, the default order is by \"name\"."
130
+ )
131
+ )
132
+
133
+
134
+ class ListModelsOutput(BaseModel):
135
+ """Schema for listing Fireworks models output"""
136
+
137
+ models: List[FireworksModel]
138
+ next_page_token: Optional[str] = None
139
+ total_size: Optional[int] = None
@@ -1,14 +1,10 @@
1
- from typing import List, Optional, Dict, Any, Generator
1
+ from typing import List, Optional, Dict, Any, Generator, Union
2
2
  from pydantic import Field
3
- import requests
4
- from loguru import logger
5
3
  from openai import OpenAI
6
- from openai.types.chat import ChatCompletionChunk
7
4
 
8
5
  from airtrain.core.skills import Skill, ProcessingError
9
6
  from airtrain.core.schemas import InputSchema, OutputSchema
10
7
  from .credentials import FireworksCredentials
11
- from .models import FireworksMessage, FireworksResponse
12
8
 
13
9
 
14
10
  class FireworksInput(InputSchema):
@@ -19,9 +15,9 @@ class FireworksInput(InputSchema):
19
15
  default="You are a helpful assistant.",
20
16
  description="System prompt to guide the model's behavior",
21
17
  )
22
- conversation_history: List[Dict[str, str]] = Field(
18
+ conversation_history: List[Dict[str, Any]] = Field(
23
19
  default_factory=list,
24
- description="List of previous conversation messages in [{'role': 'user|assistant', 'content': 'message'}] format",
20
+ description="List of previous conversation messages",
25
21
  )
26
22
  model: str = Field(
27
23
  default="accounts/fireworks/models/deepseek-r1",
@@ -40,6 +36,20 @@ class FireworksInput(InputSchema):
40
36
  default=False,
41
37
  description="Whether to stream the response token by token",
42
38
  )
39
+ tools: Optional[List[Dict[str, Any]]] = Field(
40
+ default=None,
41
+ description=(
42
+ "A list of tools the model may use. "
43
+ "Currently only functions supported."
44
+ ),
45
+ )
46
+ tool_choice: Optional[Union[str, Dict[str, Any]]] = Field(
47
+ default=None,
48
+ description=(
49
+ "Controls which tool is called by the model. "
50
+ "'none', 'auto', or specific tool."
51
+ ),
52
+ )
43
53
 
44
54
 
45
55
  class FireworksOutput(OutputSchema):
@@ -48,6 +58,9 @@ class FireworksOutput(OutputSchema):
48
58
  response: str = Field(..., description="Model's response text")
49
59
  used_model: str = Field(..., description="Model used for generation")
50
60
  usage: Dict[str, int] = Field(default_factory=dict, description="Usage statistics")
61
+ tool_calls: Optional[List[Dict[str, Any]]] = Field(
62
+ default=None, description="Tool calls generated by the model"
63
+ )
51
64
 
52
65
 
53
66
  class FireworksChatSkill(Skill[FireworksInput, FireworksOutput]):
@@ -65,7 +78,7 @@ class FireworksChatSkill(Skill[FireworksInput, FireworksOutput]):
65
78
  api_key=self.credentials.fireworks_api_key.get_secret_value(),
66
79
  )
67
80
 
68
- def _build_messages(self, input_data: FireworksInput) -> List[Dict[str, str]]:
81
+ def _build_messages(self, input_data: FireworksInput) -> List[Dict[str, Any]]:
69
82
  """Build messages list from input data including conversation history."""
70
83
  messages = [{"role": "system", "content": input_data.system_prompt}]
71
84
 
@@ -104,8 +117,8 @@ class FireworksChatSkill(Skill[FireworksInput, FireworksOutput]):
104
117
  for chunk in self.process_stream(input_data):
105
118
  response_chunks.append(chunk)
106
119
  response = "".join(response_chunks)
107
- else:
108
- # For non-streaming, use regular completion
120
+
121
+ # Create completion object for usage stats
109
122
  messages = self._build_messages(input_data)
110
123
  completion = self.client.chat.completions.create(
111
124
  model=input_data.model,
@@ -114,7 +127,44 @@ class FireworksChatSkill(Skill[FireworksInput, FireworksOutput]):
114
127
  max_tokens=input_data.max_tokens,
115
128
  stream=False,
116
129
  )
117
- response = completion.choices[0].message.content
130
+ else:
131
+ # For non-streaming, use regular completion
132
+ messages = self._build_messages(input_data)
133
+
134
+ # Prepare API call parameters
135
+ api_params = {
136
+ "model": input_data.model,
137
+ "messages": messages,
138
+ "temperature": input_data.temperature,
139
+ "max_tokens": input_data.max_tokens,
140
+ "stream": False,
141
+ }
142
+
143
+ # Add tools and tool_choice if provided
144
+ if input_data.tools:
145
+ api_params["tools"] = input_data.tools
146
+
147
+ if input_data.tool_choice:
148
+ api_params["tool_choice"] = input_data.tool_choice
149
+
150
+ completion = self.client.chat.completions.create(**api_params)
151
+ response = completion.choices[0].message.content or ""
152
+
153
+ # Check for tool calls in the response
154
+ tool_calls = None
155
+ if (hasattr(completion.choices[0].message, "tool_calls") and
156
+ completion.choices[0].message.tool_calls):
157
+ tool_calls = [
158
+ {
159
+ "id": tool_call.id,
160
+ "type": tool_call.type,
161
+ "function": {
162
+ "name": tool_call.function.name,
163
+ "arguments": tool_call.function.arguments
164
+ }
165
+ }
166
+ for tool_call in completion.choices[0].message.tool_calls
167
+ ]
118
168
 
119
169
  return FireworksOutput(
120
170
  response=response,
@@ -124,6 +174,7 @@ class FireworksChatSkill(Skill[FireworksInput, FireworksOutput]):
124
174
  "prompt_tokens": completion.usage.prompt_tokens,
125
175
  "completion_tokens": completion.usage.completion_tokens,
126
176
  },
177
+ tool_calls=tool_calls
127
178
  )
128
179
 
129
180
  except Exception as e:
@@ -1,14 +1,13 @@
1
- from typing import Type, TypeVar, Optional, List, Dict, Any, Generator
1
+ from typing import Any, Dict, Generator, List, Optional, Type, TypeVar
2
2
  from pydantic import BaseModel, Field
3
3
  import requests
4
4
  import json
5
- from loguru import logger
6
5
 
7
6
  from airtrain.core.skills import Skill, ProcessingError
8
7
  from airtrain.core.schemas import InputSchema, OutputSchema
9
8
  from .credentials import FireworksCredentials
10
9
 
11
- ResponseT = TypeVar("ResponseT", bound=BaseModel)
10
+ ResponseT = TypeVar("ResponseT")
12
11
 
13
12
 
14
13
  class FireworksStructuredCompletionInput(InputSchema):
@@ -26,7 +25,7 @@ class FireworksStructuredCompletionInput(InputSchema):
26
25
  response_model: Type[ResponseT]
27
26
  stream: bool = Field(
28
27
  default=False,
29
- description="Whether to stream the response",
28
+ description="Whether to stream the response token by token",
30
29
  )
31
30
 
32
31
  class Config:
@@ -39,6 +38,13 @@ class FireworksStructuredCompletionOutput(OutputSchema):
39
38
  parsed_response: Any
40
39
  used_model: str
41
40
  usage: Dict[str, int]
41
+ tool_calls: Optional[List[Dict[str, Any]]] = Field(
42
+ default=None,
43
+ description=(
44
+ "Tool calls are not applicable for completions, "
45
+ "included for compatibility"
46
+ )
47
+ )
42
48
 
43
49
 
44
50
  class FireworksStructuredCompletionSkill(