airbyte-cdk 0.51.11__py3-none-any.whl → 0.51.12__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- airbyte_cdk/destinations/vector_db_based/config.py +16 -0
- airbyte_cdk/destinations/vector_db_based/document_processor.py +10 -6
- airbyte_cdk/destinations/vector_db_based/embedder.py +64 -9
- airbyte_cdk/destinations/vector_db_based/indexer.py +1 -3
- airbyte_cdk/destinations/vector_db_based/test_utils.py +1 -1
- airbyte_cdk/destinations/vector_db_based/writer.py +9 -3
- {airbyte_cdk-0.51.11.dist-info → airbyte_cdk-0.51.12.dist-info}/METADATA +1 -1
- {airbyte_cdk-0.51.11.dist-info → airbyte_cdk-0.51.12.dist-info}/RECORD +11 -11
- {airbyte_cdk-0.51.11.dist-info → airbyte_cdk-0.51.12.dist-info}/LICENSE.txt +0 -0
- {airbyte_cdk-0.51.11.dist-info → airbyte_cdk-0.51.12.dist-info}/WHEEL +0 -0
- {airbyte_cdk-0.51.11.dist-info → airbyte_cdk-0.51.12.dist-info}/top_level.txt +0 -0
@@ -59,6 +59,22 @@ class FakeEmbeddingConfigModel(BaseModel):
|
|
59
59
|
}
|
60
60
|
|
61
61
|
|
62
|
+
class FromFieldEmbeddingConfigModel(BaseModel):
|
63
|
+
mode: Literal["from_field"] = Field("from_field", const=True)
|
64
|
+
field_name: str = Field(
|
65
|
+
..., title="Field name", description="Name of the field in the record that contains the embedding", examples=["embedding", "vector"]
|
66
|
+
)
|
67
|
+
dimensions: int = Field(
|
68
|
+
..., title="Embedding dimensions", description="The number of dimensions the embedding model is generating", examples=[1536, 384]
|
69
|
+
)
|
70
|
+
|
71
|
+
class Config:
|
72
|
+
title = "From Field"
|
73
|
+
schema_extra = {
|
74
|
+
"description": "Use a field in the record as the embedding. This is useful if you already have an embedding for your data and want to store it in the vector store."
|
75
|
+
}
|
76
|
+
|
77
|
+
|
62
78
|
class CohereEmbeddingConfigModel(BaseModel):
|
63
79
|
mode: Literal["cohere"] = Field("cohere", const=True)
|
64
80
|
cohere_key: str = Field(..., title="Cohere API key", airbyte_secret=True)
|
@@ -9,6 +9,7 @@ from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
|
|
9
9
|
import dpath.util
|
10
10
|
from airbyte_cdk.destinations.vector_db_based.config import ProcessingConfigModel
|
11
11
|
from airbyte_cdk.models import AirbyteRecordMessage, AirbyteStream, ConfiguredAirbyteCatalog, ConfiguredAirbyteStream, DestinationSyncMode
|
12
|
+
from airbyte_cdk.utils.traced_exception import AirbyteTracedException, FailureType
|
12
13
|
from langchain.document_loaders.base import Document
|
13
14
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14
15
|
from langchain.utils import stringify_dict
|
@@ -21,8 +22,8 @@ METADATA_RECORD_ID_FIELD = "_ab_record_id"
|
|
21
22
|
class Chunk:
|
22
23
|
page_content: str
|
23
24
|
metadata: Dict[str, Any]
|
24
|
-
|
25
|
-
|
25
|
+
record: AirbyteRecordMessage
|
26
|
+
embedding: Optional[List[float]] = None
|
26
27
|
|
27
28
|
|
28
29
|
class DocumentProcessor:
|
@@ -66,11 +67,14 @@ class DocumentProcessor:
|
|
66
67
|
"""
|
67
68
|
doc = self._generate_document(record)
|
68
69
|
if doc is None:
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
70
|
+
text_fields = ", ".join(self.text_fields) if self.text_fields else "all fields"
|
71
|
+
raise AirbyteTracedException(
|
72
|
+
internal_message="No text fields found in record",
|
73
|
+
message=f"Record {str(record.data)[:250]}... does not contain any of the configured text fields: {text_fields}. Please check your processing configuration, there has to be at least one text field set in each record.",
|
74
|
+
failure_type=FailureType.config_error,
|
73
75
|
)
|
76
|
+
chunks = [
|
77
|
+
Chunk(page_content=chunk_document.page_content, metadata=chunk_document.metadata, record=record)
|
74
78
|
for chunk_document in self._split_document(doc)
|
75
79
|
]
|
76
80
|
id_to_delete = doc.metadata[METADATA_RECORD_ID_FIELD] if METADATA_RECORD_ID_FIELD in doc.metadata else None
|
@@ -5,8 +5,15 @@
|
|
5
5
|
from abc import ABC, abstractmethod
|
6
6
|
from typing import List, Optional
|
7
7
|
|
8
|
-
from airbyte_cdk.destinations.vector_db_based.config import
|
8
|
+
from airbyte_cdk.destinations.vector_db_based.config import (
|
9
|
+
CohereEmbeddingConfigModel,
|
10
|
+
FakeEmbeddingConfigModel,
|
11
|
+
FromFieldEmbeddingConfigModel,
|
12
|
+
OpenAIEmbeddingConfigModel,
|
13
|
+
)
|
14
|
+
from airbyte_cdk.destinations.vector_db_based.document_processor import Chunk
|
9
15
|
from airbyte_cdk.destinations.vector_db_based.utils import format_exception
|
16
|
+
from airbyte_cdk.utils.traced_exception import AirbyteTracedException, FailureType
|
10
17
|
from langchain.embeddings.cohere import CohereEmbeddings
|
11
18
|
from langchain.embeddings.fake import FakeEmbeddings
|
12
19
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
@@ -17,7 +24,7 @@ class Embedder(ABC):
|
|
17
24
|
Embedder is an abstract class that defines the interface for embedding text.
|
18
25
|
|
19
26
|
The Indexer class uses the Embedder class to internally embed text - each indexer is responsible to pass the text of all documents to the embedder and store the resulting embeddings in the destination.
|
20
|
-
The destination connector is responsible to create an embedder instance and pass it to the
|
27
|
+
The destination connector is responsible to create an embedder instance and pass it to the writer.
|
21
28
|
The CDK defines basic embedders that should be supported in each destination. It is possible to implement custom embedders for special destinations if needed.
|
22
29
|
"""
|
23
30
|
|
@@ -29,7 +36,11 @@ class Embedder(ABC):
|
|
29
36
|
pass
|
30
37
|
|
31
38
|
@abstractmethod
|
32
|
-
def
|
39
|
+
def embed_chunks(self, chunks: List[Chunk]) -> List[Optional[List[float]]]:
|
40
|
+
"""
|
41
|
+
Embed the text of each chunk and return the resulting embedding vectors.
|
42
|
+
If a chunk cannot be embedded or is configured to not be embedded, return None for that chunk.
|
43
|
+
"""
|
33
44
|
pass
|
34
45
|
|
35
46
|
@property
|
@@ -54,8 +65,8 @@ class OpenAIEmbedder(Embedder):
|
|
54
65
|
return format_exception(e)
|
55
66
|
return None
|
56
67
|
|
57
|
-
def
|
58
|
-
return self.embeddings.embed_documents(
|
68
|
+
def embed_chunks(self, chunks: List[Chunk]) -> List[List[float]]:
|
69
|
+
return self.embeddings.embed_documents([chunk.page_content for chunk in chunks])
|
59
70
|
|
60
71
|
@property
|
61
72
|
def embedding_dimensions(self) -> int:
|
@@ -79,8 +90,8 @@ class CohereEmbedder(Embedder):
|
|
79
90
|
return format_exception(e)
|
80
91
|
return None
|
81
92
|
|
82
|
-
def
|
83
|
-
return self.embeddings.embed_documents(
|
93
|
+
def embed_chunks(self, chunks: List[Chunk]) -> List[List[float]]:
|
94
|
+
return self.embeddings.embed_documents([chunk.page_content for chunk in chunks])
|
84
95
|
|
85
96
|
@property
|
86
97
|
def embedding_dimensions(self) -> int:
|
@@ -100,10 +111,54 @@ class FakeEmbedder(Embedder):
|
|
100
111
|
return format_exception(e)
|
101
112
|
return None
|
102
113
|
|
103
|
-
def
|
104
|
-
return self.embeddings.embed_documents(
|
114
|
+
def embed_chunks(self, chunks: List[Chunk]) -> List[List[float]]:
|
115
|
+
return self.embeddings.embed_documents([chunk.page_content for chunk in chunks])
|
105
116
|
|
106
117
|
@property
|
107
118
|
def embedding_dimensions(self) -> int:
|
108
119
|
# use same vector size as for OpenAI embeddings to keep it realistic
|
109
120
|
return OPEN_AI_VECTOR_SIZE
|
121
|
+
|
122
|
+
|
123
|
+
class FromFieldEmbedder(Embedder):
|
124
|
+
def __init__(self, config: FromFieldEmbeddingConfigModel):
|
125
|
+
super().__init__()
|
126
|
+
self.config = config
|
127
|
+
|
128
|
+
def check(self) -> Optional[str]:
|
129
|
+
return None
|
130
|
+
|
131
|
+
def embed_chunks(self, chunks: List[Chunk]) -> List[List[float]]:
|
132
|
+
"""
|
133
|
+
From each chunk, pull the embedding from the field specified in the config.
|
134
|
+
Check that the field exists, is a list of numbers and is the correct size. If not, raise an AirbyteTracedException explaining the problem.
|
135
|
+
"""
|
136
|
+
embeddings = []
|
137
|
+
for chunk in chunks:
|
138
|
+
data = chunk.record.data
|
139
|
+
if self.config.field_name not in data:
|
140
|
+
raise AirbyteTracedException(
|
141
|
+
internal_message="Embedding vector field not found",
|
142
|
+
failure_type=FailureType.config_error,
|
143
|
+
message=f"Record {str(data)[:250]}... in stream {chunk.record.stream} does not contain embedding vector field {self.config.field_name}. Please check your embedding configuration, the embedding vector field has to be set correctly on every record.",
|
144
|
+
)
|
145
|
+
field = data[self.config.field_name]
|
146
|
+
if not isinstance(field, list) or not all(isinstance(x, (int, float)) for x in field):
|
147
|
+
raise AirbyteTracedException(
|
148
|
+
internal_message="Embedding vector field not a list of numbers",
|
149
|
+
failure_type=FailureType.config_error,
|
150
|
+
message=f"Record {str(data)[:250]}... in stream {chunk.record.stream} does contain embedding vector field {self.config.field_name}, but it is not a list of numbers. Please check your embedding configuration, the embedding vector field has to be a list of numbers of length {self.config.dimensions} on every record.",
|
151
|
+
)
|
152
|
+
if len(field) != self.config.dimensions:
|
153
|
+
raise AirbyteTracedException(
|
154
|
+
internal_message="Embedding vector field has wrong length",
|
155
|
+
failure_type=FailureType.config_error,
|
156
|
+
message=f"Record {str(data)[:250]}... in stream {chunk.record.stream} does contain embedding vector field {self.config.field_name}, but it has length {len(field)} instead of the configured {self.config.dimensions}. Please check your embedding configuration, the embedding vector field has to be a list of numbers of length {self.config.dimensions} on every record.",
|
157
|
+
)
|
158
|
+
embeddings.append(field)
|
159
|
+
|
160
|
+
return embeddings
|
161
|
+
|
162
|
+
@property
|
163
|
+
def embedding_dimensions(self) -> int:
|
164
|
+
return self.config.dimensions
|
@@ -7,7 +7,6 @@ from abc import ABC, abstractmethod
|
|
7
7
|
from typing import Any, Generator, Iterable, List, Optional, Tuple, TypeVar
|
8
8
|
|
9
9
|
from airbyte_cdk.destinations.vector_db_based.document_processor import Chunk
|
10
|
-
from airbyte_cdk.destinations.vector_db_based.embedder import Embedder
|
11
10
|
from airbyte_cdk.models import AirbyteMessage, ConfiguredAirbyteCatalog
|
12
11
|
|
13
12
|
|
@@ -19,9 +18,8 @@ class Indexer(ABC):
|
|
19
18
|
In a destination connector, implement a custom indexer by extending this class and implementing the abstract methods.
|
20
19
|
"""
|
21
20
|
|
22
|
-
def __init__(self, config: Any
|
21
|
+
def __init__(self, config: Any):
|
23
22
|
self.config = config
|
24
|
-
self.embedder = embedder
|
25
23
|
pass
|
26
24
|
|
27
25
|
def pre_sync(self, catalog: ConfiguredAirbyteCatalog) -> None:
|
@@ -48,6 +48,6 @@ class BaseIntegrationTest(unittest.TestCase):
|
|
48
48
|
type=Type.RECORD, record=AirbyteRecordMessage(stream=stream, data={"str_col": str_value, "int_col": int_value}, emitted_at=0)
|
49
49
|
)
|
50
50
|
|
51
|
-
def setUp(self):
|
51
|
+
def setUp(self) -> None:
|
52
52
|
with open("secrets/config.json", "r") as f:
|
53
53
|
self.config = json.loads(f.read())
|
@@ -8,24 +8,27 @@ from typing import Iterable, List
|
|
8
8
|
from airbyte_cdk.destinations.vector_db_based.batcher import Batcher
|
9
9
|
from airbyte_cdk.destinations.vector_db_based.config import ProcessingConfigModel
|
10
10
|
from airbyte_cdk.destinations.vector_db_based.document_processor import Chunk, DocumentProcessor
|
11
|
+
from airbyte_cdk.destinations.vector_db_based.embedder import Embedder
|
11
12
|
from airbyte_cdk.destinations.vector_db_based.indexer import Indexer
|
12
13
|
from airbyte_cdk.models import AirbyteMessage, AirbyteRecordMessage, ConfiguredAirbyteCatalog, Type
|
13
14
|
|
14
15
|
|
15
16
|
class Writer:
|
16
17
|
"""
|
17
|
-
The Writer class is orchestrating the document processor, the batcher and the indexer:
|
18
|
+
The Writer class is orchestrating the document processor, the batcher, the embedder and the indexer:
|
18
19
|
* Incoming records are collected using the batcher
|
19
20
|
* The document processor generates documents from all records in the batch
|
20
|
-
* The
|
21
|
+
* The embedder embeds the documents
|
22
|
+
* The indexer indexes the resulting documents and their embeddings in the destination
|
21
23
|
|
22
24
|
The destination connector is responsible to create a writer instance and pass the input messages iterable to the write method.
|
23
25
|
The batch size can be configured by the destination connector to give the freedom of either letting the user configure it or hardcoding it to a sensible value depending on the destination.
|
24
26
|
"""
|
25
27
|
|
26
|
-
def __init__(self, processing_config: ProcessingConfigModel, indexer: Indexer, batch_size: int) -> None:
|
28
|
+
def __init__(self, processing_config: ProcessingConfigModel, indexer: Indexer, embedder: Embedder, batch_size: int) -> None:
|
27
29
|
self.processing_config = processing_config
|
28
30
|
self.indexer = indexer
|
31
|
+
self.embedder = embedder
|
29
32
|
self.batcher = Batcher(batch_size, lambda batch: self._process_batch(batch))
|
30
33
|
|
31
34
|
def _process_batch(self, batch: List[AirbyteRecordMessage]) -> None:
|
@@ -36,6 +39,9 @@ class Writer:
|
|
36
39
|
documents.extend(record_documents)
|
37
40
|
if record_id_to_delete is not None:
|
38
41
|
ids_to_delete.append(record_id_to_delete)
|
42
|
+
embeddings = self.embedder.embed_chunks(documents)
|
43
|
+
for i, document in enumerate(documents):
|
44
|
+
document.embedding = embeddings[i]
|
39
45
|
self.indexer.index(documents, ids_to_delete)
|
40
46
|
|
41
47
|
def write(self, configured_catalog: ConfiguredAirbyteCatalog, input_messages: Iterable[AirbyteMessage]) -> Iterable[AirbyteMessage]:
|
@@ -14,13 +14,13 @@ airbyte_cdk/destinations/__init__.py,sha256=0Uxmz3iBAyZJdk_bqUVt2pb0UwRTpFjTnFE6
|
|
14
14
|
airbyte_cdk/destinations/destination.py,sha256=_tIMnKcRQbtIsjVvNOVjfbIxgCNLuBXQwQj8MyVm3BI,5420
|
15
15
|
airbyte_cdk/destinations/vector_db_based/__init__.py,sha256=z5Pqxxt3v-JCcJQ6sK4tAz5sg1FB-3wTCd2p85MhFzc,711
|
16
16
|
airbyte_cdk/destinations/vector_db_based/batcher.py,sha256=U2RI0CACZ1WhJIdkC5oPlwZ90OZB40kyFCR5I7StqZw,1160
|
17
|
-
airbyte_cdk/destinations/vector_db_based/config.py,sha256=
|
18
|
-
airbyte_cdk/destinations/vector_db_based/document_processor.py,sha256=
|
19
|
-
airbyte_cdk/destinations/vector_db_based/embedder.py,sha256=
|
20
|
-
airbyte_cdk/destinations/vector_db_based/indexer.py,sha256=
|
21
|
-
airbyte_cdk/destinations/vector_db_based/test_utils.py,sha256=
|
17
|
+
airbyte_cdk/destinations/vector_db_based/config.py,sha256=xv5-IhPG_eKdRxstYmaFBUrYDECevE64OVRyUBZAJJw,4132
|
18
|
+
airbyte_cdk/destinations/vector_db_based/document_processor.py,sha256=KHvCSjt6amwpIYxK42OuT1Vh-RCA5A3vEBfAmowXpZI,6161
|
19
|
+
airbyte_cdk/destinations/vector_db_based/embedder.py,sha256=0YLm5wmqiwCyUD_GWzqetWclzzKsADOfjXu0jMhQS1Y,6837
|
20
|
+
airbyte_cdk/destinations/vector_db_based/indexer.py,sha256=DMic7D7ie4gGQ-yOgGXGYjBsY8H7X5O5Tz_sCr0ajBU,2327
|
21
|
+
airbyte_cdk/destinations/vector_db_based/test_utils.py,sha256=8d1Smk4jQRKtDfloXfEq12T-BU8ByyzzSBwAlchsU4A,1807
|
22
22
|
airbyte_cdk/destinations/vector_db_based/utils.py,sha256=ngJ6hc9mmzgAEEBd9nuoRcPPFUKijv2CA6zZYUVRm54,240
|
23
|
-
airbyte_cdk/destinations/vector_db_based/writer.py,sha256=
|
23
|
+
airbyte_cdk/destinations/vector_db_based/writer.py,sha256=zSVizVPupTjdF_dwniIU0RYnTZ9TMkizOK48tDNPxxk,3110
|
24
24
|
airbyte_cdk/models/__init__.py,sha256=rDARocDgxf4_qI66Bm6dHTBoecbWguTClGVBmOBiI2o,1674
|
25
25
|
airbyte_cdk/models/airbyte_protocol.py,sha256=DoJvnmGM3xMAZFTwA6_RGMiKSFqfE3ib_Ru0KJ65Ag4,100
|
26
26
|
airbyte_cdk/models/well_known_types.py,sha256=KKfNbow2gdLoC1Z4hcXy_JR8m_acsB2ol7gQuEgjobw,117
|
@@ -365,8 +365,8 @@ unit_tests/utils/test_schema_inferrer.py,sha256=Z2jHBZ540wnYkylIdV_2xr75Vtwlxuyg
|
|
365
365
|
unit_tests/utils/test_secret_utils.py,sha256=XKe0f1RHYii8iwE6ATmBr5JGDI1pzzrnZUGdUSMJQP4,4886
|
366
366
|
unit_tests/utils/test_stream_status_utils.py,sha256=NpV155JMXA6CG-2Zvofa14lItobyh3Onttc59X4m5DI,3382
|
367
367
|
unit_tests/utils/test_traced_exception.py,sha256=bDFP5zMBizFenz6V2WvEZTRCKGB5ijh3DBezjbfoYIs,4198
|
368
|
-
airbyte_cdk-0.51.
|
369
|
-
airbyte_cdk-0.51.
|
370
|
-
airbyte_cdk-0.51.
|
371
|
-
airbyte_cdk-0.51.
|
372
|
-
airbyte_cdk-0.51.
|
368
|
+
airbyte_cdk-0.51.12.dist-info/LICENSE.txt,sha256=Wfe61S4BaGPj404v8lrAbvhjYR68SHlkzeYrg3_bbuM,1051
|
369
|
+
airbyte_cdk-0.51.12.dist-info/METADATA,sha256=kP39_c0A5hJ-e8yU-oZ-zAbknbhsFKaz7I11AoLyh5o,9895
|
370
|
+
airbyte_cdk-0.51.12.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
371
|
+
airbyte_cdk-0.51.12.dist-info/top_level.txt,sha256=edvsDKTnE6sD2wfCUaeTfKf5gQIL6CPVMwVL2sWZzqo,51
|
372
|
+
airbyte_cdk-0.51.12.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|