airbyte-agent-zendesk-chat 0.1.9__py3-none-any.whl → 0.1.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of airbyte-agent-zendesk-chat might be problematic. Click here for more details.

@@ -15,8 +15,8 @@ from .models import (
15
15
  AgentTimeline,
16
16
  Ban,
17
17
  ChatConversion,
18
- ChatHistoryItem,
19
18
  WebpathItem,
19
+ ChatHistoryItem,
20
20
  ChatEngagement,
21
21
  Chat,
22
22
  Visitor,
@@ -110,8 +110,8 @@ __all__ = [
110
110
  "AgentTimeline",
111
111
  "Ban",
112
112
  "ChatConversion",
113
- "ChatHistoryItem",
114
113
  "WebpathItem",
114
+ "ChatHistoryItem",
115
115
  "ChatEngagement",
116
116
  "Chat",
117
117
  "Visitor",
@@ -62,6 +62,53 @@ class TokenExtractValidationError(ConnectorModelLoaderError):
62
62
  pass
63
63
 
64
64
 
65
+ # Expected auth_mapping keys for each auth type.
66
+ # These are the auth parameters that each security scheme expects, NOT the user's credential field names.
67
+ EXPECTED_AUTH_MAPPING_KEYS: dict[AuthType, set[str]] = {
68
+ AuthType.BEARER: {"token"},
69
+ AuthType.BASIC: {"username", "password"},
70
+ AuthType.API_KEY: {"api_key"},
71
+ AuthType.OAUTH2: {"access_token", "refresh_token", "client_id", "client_secret"},
72
+ }
73
+
74
+
75
+ def _validate_auth_mapping_keys(
76
+ auth_type: AuthType,
77
+ auth_config: AirbyteAuthConfig | None,
78
+ scheme_name: str = "default",
79
+ ) -> None:
80
+ """Validate that auth_mapping keys match expected parameters for the auth type.
81
+
82
+ The auth_mapping keys must be the parameters expected by the security scheme
83
+ (e.g., "token" for bearer), not the user's credential field names.
84
+
85
+ Args:
86
+ auth_type: The authentication type
87
+ auth_config: The x-airbyte-auth-config containing auth_mapping
88
+ scheme_name: Name of the security scheme for error messages
89
+
90
+ Raises:
91
+ InvalidOpenAPIError: If auth_mapping keys don't match expected parameters
92
+ """
93
+ if auth_config is None or auth_config.auth_mapping is None:
94
+ return # No explicit auth_mapping, will use defaults
95
+
96
+ expected_keys = EXPECTED_AUTH_MAPPING_KEYS.get(auth_type)
97
+ if expected_keys is None:
98
+ return # Unknown auth type, skip validation
99
+
100
+ actual_keys = set(auth_config.auth_mapping.keys())
101
+ invalid_keys = actual_keys - expected_keys
102
+
103
+ if invalid_keys:
104
+ raise InvalidOpenAPIError(
105
+ f"Invalid auth_mapping keys for {auth_type.value} auth in scheme '{scheme_name}': {invalid_keys}. "
106
+ f"Expected keys for {auth_type.value}: {sorted(expected_keys)}. "
107
+ f"Note: auth_mapping keys must be the auth parameters (e.g., 'token' for bearer), "
108
+ f'not your credential field names. Use template syntax to map: token: "${{your_field}}"'
109
+ )
110
+
111
+
65
112
  def extract_path_params(path: str) -> list[str]:
66
113
  """Extract parameter names from path template.
67
114
 
@@ -145,6 +192,87 @@ def _deproxy_schema(obj: Any) -> Any:
145
192
  return obj
146
193
 
147
194
 
195
+ def _type_includes(type_value: Any, target: str) -> bool:
196
+ if isinstance(type_value, list):
197
+ return target in type_value
198
+ return type_value == target
199
+
200
+
201
+ def _flatten_cache_properties(properties: dict[str, Any], prefix: str) -> list[str]:
202
+ entries: list[str] = []
203
+ for prop_name, prop in properties.items():
204
+ path = f"{prefix}{prop_name}" if prefix else prop_name
205
+ entries.append(path)
206
+
207
+ prop_type = getattr(prop, "type", None) if not isinstance(prop, dict) else prop.get("type")
208
+ prop_properties = getattr(prop, "properties", None) if not isinstance(prop, dict) else prop.get("properties")
209
+
210
+ if _type_includes(prop_type, "array"):
211
+ array_path = f"{path}[]"
212
+ entries.append(array_path)
213
+ if isinstance(prop_properties, dict):
214
+ entries.extend(_flatten_cache_properties(prop_properties, prefix=f"{array_path}."))
215
+ elif isinstance(prop_properties, dict):
216
+ entries.extend(_flatten_cache_properties(prop_properties, prefix=f"{path}."))
217
+
218
+ return entries
219
+
220
+
221
+ def _flatten_cache_field_paths(field: Any) -> list[str]:
222
+ field_name = getattr(field, "name", None) if not isinstance(field, dict) else field.get("name")
223
+ if not isinstance(field_name, str) or not field_name:
224
+ return []
225
+
226
+ field_type = getattr(field, "type", None) if not isinstance(field, dict) else field.get("type")
227
+ field_properties = getattr(field, "properties", None) if not isinstance(field, dict) else field.get("properties")
228
+
229
+ entries = [field_name]
230
+ if _type_includes(field_type, "array"):
231
+ array_path = f"{field_name}[]"
232
+ entries.append(array_path)
233
+ if isinstance(field_properties, dict):
234
+ entries.extend(_flatten_cache_properties(field_properties, prefix=f"{array_path}."))
235
+ elif isinstance(field_properties, dict):
236
+ entries.extend(_flatten_cache_properties(field_properties, prefix=f"{field_name}."))
237
+
238
+ return entries
239
+
240
+
241
+ def _dedupe_strings(values: list[str]) -> list[str]:
242
+ seen: set[str] = set()
243
+ ordered: list[str] = []
244
+ for value in values:
245
+ if value not in seen:
246
+ seen.add(value)
247
+ ordered.append(value)
248
+ return ordered
249
+
250
+
251
+ def _extract_search_field_paths(spec: OpenAPIConnector) -> dict[str, list[str]]:
252
+ cache_config = getattr(spec.info, "x_airbyte_cache", None)
253
+ entities = getattr(cache_config, "entities", None)
254
+ if not isinstance(entities, list):
255
+ return {}
256
+
257
+ search_fields: dict[str, list[str]] = {}
258
+ for entity in entities:
259
+ entity_name = getattr(entity, "entity", None) if not isinstance(entity, dict) else entity.get("entity")
260
+ if not isinstance(entity_name, str) or not entity_name:
261
+ continue
262
+
263
+ fields = getattr(entity, "fields", None) if not isinstance(entity, dict) else entity.get("fields")
264
+ if not isinstance(fields, list):
265
+ continue
266
+
267
+ field_paths: list[str] = []
268
+ for field in fields:
269
+ field_paths.extend(_flatten_cache_field_paths(field))
270
+
271
+ search_fields[entity_name] = _dedupe_strings(field_paths)
272
+
273
+ return search_fields
274
+
275
+
148
276
  def parse_openapi_spec(raw_config: dict) -> OpenAPIConnector:
149
277
  """Parse OpenAPI specification from YAML.
150
278
 
@@ -434,6 +562,8 @@ def convert_openapi_to_connector_model(spec: OpenAPIConnector) -> ConnectorModel
434
562
  if not connector_id:
435
563
  raise InvalidOpenAPIError("Missing required x-airbyte-connector-id field")
436
564
 
565
+ search_field_paths = _extract_search_field_paths(spec)
566
+
437
567
  # Create ConnectorModel
438
568
  model = ConnectorModel(
439
569
  id=connector_id,
@@ -444,6 +574,7 @@ def convert_openapi_to_connector_model(spec: OpenAPIConnector) -> ConnectorModel
444
574
  entities=entities,
445
575
  openapi_spec=spec,
446
576
  retry_config=retry_config,
577
+ search_field_paths=search_field_paths,
447
578
  )
448
579
 
449
580
  return model
@@ -840,6 +971,9 @@ def _parse_single_security_scheme(scheme: Any) -> AuthConfig:
840
971
  oauth2_config = _parse_oauth2_config(scheme)
841
972
  # Use explicit x-airbyte-auth-config if present, otherwise generate default
842
973
  auth_config_obj = scheme.x_airbyte_auth_config or _generate_default_auth_config(AuthType.OAUTH2)
974
+ # Validate auth_mapping keys if explicitly provided
975
+ if scheme.x_airbyte_auth_config:
976
+ _validate_auth_mapping_keys(AuthType.OAUTH2, scheme.x_airbyte_auth_config)
843
977
  return AuthConfig(
844
978
  type=AuthType.OAUTH2,
845
979
  config=oauth2_config,
@@ -850,6 +984,10 @@ def _parse_single_security_scheme(scheme: Any) -> AuthConfig:
850
984
  # Use explicit x-airbyte-auth-config if present, otherwise generate default
851
985
  auth_config_obj = scheme.x_airbyte_auth_config or _generate_default_auth_config(auth_type)
852
986
 
987
+ # Validate auth_mapping keys if explicitly provided
988
+ if scheme.x_airbyte_auth_config:
989
+ _validate_auth_mapping_keys(auth_type, scheme.x_airbyte_auth_config)
990
+
853
991
  return AuthConfig(
854
992
  type=auth_type,
855
993
  config=auth_config,
@@ -1032,7 +1032,9 @@ class LocalExecutor:
1032
1032
  if "variables" in graphql_config and graphql_config["variables"]:
1033
1033
  variables = self._interpolate_variables(graphql_config["variables"], params, param_defaults)
1034
1034
  # Filter out None values (optional fields not provided) - matches REST _extract_body() behavior
1035
- body["variables"] = {k: v for k, v in variables.items() if v is not None}
1035
+ # But preserve None for variables explicitly marked as nullable (e.g., to unassign a user)
1036
+ nullable_vars = set(graphql_config.get("x-airbyte-nullable-variables") or [])
1037
+ body["variables"] = {k: v for k, v in variables.items() if v is not None or k in nullable_vars}
1036
1038
 
1037
1039
  # Add operation name if specified
1038
1040
  if "operationName" in graphql_config:
@@ -18,6 +18,185 @@ from typing import Any, Protocol
18
18
  MAX_EXAMPLE_QUESTIONS = 5 # Maximum number of example questions to include in description
19
19
 
20
20
 
21
+ def _type_includes(type_value: Any, target: str) -> bool:
22
+ if isinstance(type_value, list):
23
+ return target in type_value
24
+ return type_value == target
25
+
26
+
27
+ def _is_object_schema(schema: dict[str, Any]) -> bool:
28
+ if "properties" in schema:
29
+ return True
30
+ return _type_includes(schema.get("type"), "object")
31
+
32
+
33
+ def _is_array_schema(schema: dict[str, Any]) -> bool:
34
+ if "items" in schema:
35
+ return True
36
+ return _type_includes(schema.get("type"), "array")
37
+
38
+
39
+ def _dedupe_param_entries(entries: list[tuple[str, bool]]) -> list[tuple[str, bool]]:
40
+ seen: dict[str, bool] = {}
41
+ ordered: list[str] = []
42
+ for name, required in entries:
43
+ if name not in seen:
44
+ seen[name] = required
45
+ ordered.append(name)
46
+ else:
47
+ seen[name] = seen[name] or required
48
+ return [(name, seen[name]) for name in ordered]
49
+
50
+
51
+ def _flatten_schema_params(
52
+ schema: dict[str, Any],
53
+ prefix: str = "",
54
+ parent_required: bool = True,
55
+ seen_stack: set[int] | None = None,
56
+ ) -> list[tuple[str, bool]]:
57
+ if not isinstance(schema, dict):
58
+ return []
59
+
60
+ if seen_stack is None:
61
+ seen_stack = set()
62
+
63
+ schema_id = id(schema)
64
+ if schema_id in seen_stack:
65
+ return []
66
+
67
+ seen_stack.add(schema_id)
68
+ try:
69
+ entries: list[tuple[str, bool]] = []
70
+
71
+ for subschema in schema.get("allOf", []) or []:
72
+ if isinstance(subschema, dict):
73
+ entries.extend(_flatten_schema_params(subschema, prefix, parent_required, seen_stack))
74
+
75
+ for keyword in ("anyOf", "oneOf"):
76
+ for subschema in schema.get(keyword, []) or []:
77
+ if isinstance(subschema, dict):
78
+ entries.extend(_flatten_schema_params(subschema, prefix, False, seen_stack))
79
+
80
+ properties = schema.get("properties")
81
+ if isinstance(properties, dict):
82
+ required_fields = set(schema.get("required", [])) if isinstance(schema.get("required"), list) else set()
83
+ for prop_name, prop_schema in properties.items():
84
+ path = f"{prefix}{prop_name}" if prefix else prop_name
85
+ is_required = parent_required and prop_name in required_fields
86
+ entries.append((path, is_required))
87
+
88
+ if isinstance(prop_schema, dict):
89
+ if _is_array_schema(prop_schema):
90
+ array_path = f"{path}[]"
91
+ entries.append((array_path, is_required))
92
+ items = prop_schema.get("items")
93
+ if isinstance(items, dict):
94
+ entries.extend(_flatten_schema_params(items, prefix=f"{array_path}.", parent_required=is_required, seen_stack=seen_stack))
95
+ if _is_object_schema(prop_schema):
96
+ entries.extend(_flatten_schema_params(prop_schema, prefix=f"{path}.", parent_required=is_required, seen_stack=seen_stack))
97
+
98
+ return _dedupe_param_entries(entries)
99
+ finally:
100
+ seen_stack.remove(schema_id)
101
+
102
+
103
+ def _cache_field_value(field: Any, key: str) -> Any:
104
+ if isinstance(field, dict):
105
+ return field.get(key)
106
+ return getattr(field, key, None)
107
+
108
+
109
+ def _flatten_cache_properties(properties: dict[str, Any], prefix: str) -> list[str]:
110
+ entries: list[str] = []
111
+ for prop_name, prop in properties.items():
112
+ path = f"{prefix}{prop_name}" if prefix else prop_name
113
+ entries.append(path)
114
+
115
+ prop_type = _cache_field_value(prop, "type")
116
+ prop_properties = _cache_field_value(prop, "properties")
117
+
118
+ if _type_includes(prop_type, "array"):
119
+ array_path = f"{path}[]"
120
+ entries.append(array_path)
121
+ if isinstance(prop_properties, dict):
122
+ entries.extend(_flatten_cache_properties(prop_properties, prefix=f"{array_path}."))
123
+ elif isinstance(prop_properties, dict):
124
+ entries.extend(_flatten_cache_properties(prop_properties, prefix=f"{path}."))
125
+
126
+ return entries
127
+
128
+
129
+ def _flatten_cache_field_paths(field: Any) -> list[str]:
130
+ field_name = _cache_field_value(field, "name")
131
+ if not isinstance(field_name, str) or not field_name:
132
+ return []
133
+
134
+ field_type = _cache_field_value(field, "type")
135
+ field_properties = _cache_field_value(field, "properties")
136
+
137
+ entries = [field_name]
138
+ if _type_includes(field_type, "array"):
139
+ array_path = f"{field_name}[]"
140
+ entries.append(array_path)
141
+ if isinstance(field_properties, dict):
142
+ entries.extend(_flatten_cache_properties(field_properties, prefix=f"{array_path}."))
143
+ elif isinstance(field_properties, dict):
144
+ entries.extend(_flatten_cache_properties(field_properties, prefix=f"{field_name}."))
145
+
146
+ return entries
147
+
148
+
149
+ def _dedupe_strings(values: list[str]) -> list[str]:
150
+ seen: set[str] = set()
151
+ ordered: list[str] = []
152
+ for value in values:
153
+ if value not in seen:
154
+ seen.add(value)
155
+ ordered.append(value)
156
+ return ordered
157
+
158
+
159
+ def _collect_search_field_paths(model: ConnectorModelProtocol) -> dict[str, list[str]]:
160
+ search_field_paths = getattr(model, "search_field_paths", None)
161
+ if isinstance(search_field_paths, dict) and search_field_paths:
162
+ normalized: dict[str, list[str]] = {}
163
+ for entity, fields in search_field_paths.items():
164
+ if not isinstance(entity, str) or not entity:
165
+ continue
166
+ if isinstance(fields, list):
167
+ normalized[entity] = _dedupe_strings([field for field in fields if isinstance(field, str) and field])
168
+ return normalized
169
+
170
+ openapi_spec = getattr(model, "openapi_spec", None)
171
+ info = getattr(openapi_spec, "info", None)
172
+ cache_config = getattr(info, "x_airbyte_cache", None)
173
+ entities = getattr(cache_config, "entities", None)
174
+ if not isinstance(entities, list):
175
+ return {}
176
+
177
+ search_fields: dict[str, list[str]] = {}
178
+ for entity in entities:
179
+ entity_name = _cache_field_value(entity, "entity")
180
+ if not isinstance(entity_name, str) or not entity_name:
181
+ continue
182
+
183
+ fields = _cache_field_value(entity, "fields") or []
184
+ if not isinstance(fields, list):
185
+ continue
186
+ field_paths: list[str] = []
187
+ for field in fields:
188
+ field_paths.extend(_flatten_cache_field_paths(field))
189
+
190
+ search_fields[entity_name] = _dedupe_strings(field_paths)
191
+
192
+ return search_fields
193
+
194
+
195
+ def _format_search_param_signature() -> str:
196
+ params = ["query*", "limit?", "cursor?", "fields?"]
197
+ return f"({', '.join(params)})"
198
+
199
+
21
200
  class EndpointProtocol(Protocol):
22
201
  """Protocol defining the expected interface for endpoint parameters.
23
202
 
@@ -54,6 +233,9 @@ class ConnectorModelProtocol(Protocol):
54
233
  @property
55
234
  def openapi_spec(self) -> Any: ...
56
235
 
236
+ @property
237
+ def search_field_paths(self) -> dict[str, list[str]] | None: ...
238
+
57
239
 
58
240
  def format_param_signature(endpoint: EndpointProtocol) -> str:
59
241
  """Format parameter signature for an endpoint action.
@@ -86,9 +268,12 @@ def format_param_signature(endpoint: EndpointProtocol) -> str:
86
268
  required = schema.get("required", False)
87
269
  params.append(f"{name}{'*' if required else '?'}")
88
270
 
89
- # Body fields
90
- if request_schema:
91
- required_fields = set(request_schema.get("required", []))
271
+ # Body fields (include nested params from schema when available)
272
+ if isinstance(request_schema, dict):
273
+ for name, required in _flatten_schema_params(request_schema):
274
+ params.append(f"{name}{'*' if required else '?'}")
275
+ elif request_schema:
276
+ required_fields = set(request_schema.get("required", [])) if isinstance(request_schema, dict) else set()
92
277
  for name in body_fields:
93
278
  params.append(f"{name}{'*' if name in required_fields else '?'}")
94
279
 
@@ -99,7 +284,7 @@ def describe_entities(model: ConnectorModelProtocol) -> list[dict[str, Any]]:
99
284
  """Generate entity descriptions from ConnectorModel.
100
285
 
101
286
  Returns a list of entity descriptions with detailed parameter information
102
- for each action. This is used by generated connectors' describe() method.
287
+ for each action. This is used by generated connectors' list_entities() method.
103
288
 
104
289
  Args:
105
290
  model: Object conforming to ConnectorModelProtocol (e.g., ConnectorModel)
@@ -203,8 +388,8 @@ def generate_tool_description(model: ConnectorModelProtocol) -> str:
203
388
  - Response structure documentation with pagination hints
204
389
  - Example questions if available in the OpenAPI spec
205
390
 
206
- This is used by the Connector.describe class method decorator to populate
207
- function docstrings for AI framework integration.
391
+ This is used by the Connector.tool_utils decorator to populate function
392
+ docstrings for AI framework integration.
208
393
 
209
394
  Args:
210
395
  model: Object conforming to ConnectorModelProtocol (e.g., ConnectorModel)
@@ -213,8 +398,11 @@ def generate_tool_description(model: ConnectorModelProtocol) -> str:
213
398
  Formatted description string suitable for AI tool documentation
214
399
  """
215
400
  lines = []
401
+ # NOTE: Do not insert blank lines in the docstring; pydantic-ai parsing truncates
402
+ # at the first empty line and only keeps the initial section.
216
403
 
217
404
  # Entity/action parameter details (including pagination params like limit, starting_after)
405
+ search_field_paths = _collect_search_field_paths(model)
218
406
  lines.append("ENTITIES AND PARAMETERS:")
219
407
  for entity in model.entities:
220
408
  lines.append(f" {entity.name}:")
@@ -228,14 +416,41 @@ def generate_tool_description(model: ConnectorModelProtocol) -> str:
228
416
  lines.append(f" - {action_str}{param_sig}")
229
417
  else:
230
418
  lines.append(f" - {action_str}()")
419
+ if entity.name in search_field_paths:
420
+ search_sig = _format_search_param_signature()
421
+ lines.append(f" - search{search_sig}")
231
422
 
232
423
  # Response structure (brief, includes pagination hint)
233
- lines.append("")
234
424
  lines.append("RESPONSE STRUCTURE:")
235
425
  lines.append(" - list/api_search: {data: [...], meta: {has_more: bool}}")
236
426
  lines.append(" - get: Returns entity directly (no envelope)")
237
427
  lines.append(" To paginate: pass starting_after=<last_id> while has_more is true")
238
428
 
429
+ lines.append("GUIDELINES:")
430
+ lines.append(' - Prefer cached search over direct API calls when using execute(): action="search" whenever possible.')
431
+ lines.append(" - Direct API actions (list/get/download) are slower and should be used only if search cannot answer the query.")
432
+ lines.append(" - Keep results small: use params.fields, params.query.filter, small params.limit, and cursor pagination.")
433
+ lines.append(" - If output is too large, refine the query with tighter filters/fields/limit.")
434
+
435
+ if search_field_paths:
436
+ lines.append("SEARCH (PREFERRED):")
437
+ lines.append(' execute(entity, action="search", params={')
438
+ lines.append(' "query": {"filter": <condition>, "sort": [{"field": "asc|desc"}, ...]},')
439
+ lines.append(' "limit": <int>, "cursor": <str>, "fields": ["field", "nested.field", ...]')
440
+ lines.append(" })")
441
+ lines.append(' Example: {"query": {"filter": {"eq": {"title": "Intro to Airbyte | Miinto"}}}, "limit": 1,')
442
+ lines.append(' "fields": ["id", "title", "started", "primaryUserId"]}')
443
+ lines.append(" Conditions are composable:")
444
+ lines.append(" - eq, neq, gt, gte, lt, lte, in, like, fuzzy, keyword, contains, any")
445
+ lines.append(' - and/or/not to combine conditions (e.g., {"and": [cond1, cond2]})')
446
+
447
+ lines.append("SEARCHABLE FIELDS:")
448
+ for entity_name, field_paths in search_field_paths.items():
449
+ if field_paths:
450
+ lines.append(f" {entity_name}: {', '.join(field_paths)}")
451
+ else:
452
+ lines.append(f" {entity_name}: (no fields listed)")
453
+
239
454
  # Add example questions if available in openapi_spec
240
455
  openapi_spec = getattr(model, "openapi_spec", None)
241
456
  if openapi_spec:
@@ -245,18 +460,15 @@ def generate_tool_description(model: ConnectorModelProtocol) -> str:
245
460
  if example_questions:
246
461
  supported = getattr(example_questions, "supported", None)
247
462
  if supported:
248
- lines.append("")
249
463
  lines.append("EXAMPLE QUESTIONS:")
250
464
  for q in supported[:MAX_EXAMPLE_QUESTIONS]:
251
465
  lines.append(f" - {q}")
252
466
 
253
467
  # Generic parameter description for function signature
254
- lines.append("")
255
468
  lines.append("FUNCTION PARAMETERS:")
256
469
  lines.append(" - entity: Entity name (string)")
257
470
  lines.append(" - action: Operation to perform (string)")
258
471
  lines.append(" - params: Operation parameters (dict) - see entity details above")
259
- lines.append("")
260
472
  lines.append("Parameter markers: * = required, ? = optional")
261
473
 
262
474
  return "\n".join(lines)
@@ -13,7 +13,7 @@ from uuid import UUID
13
13
  from pydantic import BaseModel, ConfigDict, Field, field_validator
14
14
  from pydantic_core import Url
15
15
 
16
- from .extensions import CacheConfig, RetryConfig
16
+ from .extensions import CacheConfig, ReplicationConfig, RetryConfig
17
17
 
18
18
 
19
19
  class ExampleQuestions(BaseModel):
@@ -106,6 +106,7 @@ class Info(BaseModel):
106
106
  - x-airbyte-retry-config: Retry configuration for transient errors (Airbyte extension)
107
107
  - x-airbyte-example-questions: Example questions for AI connector README (Airbyte extension)
108
108
  - x-airbyte-cache: Cache configuration for field mapping between API and cache schemas (Airbyte extension)
109
+ - x-airbyte-replication-config: Replication configuration for MULTI mode connectors (Airbyte extension)
109
110
  """
110
111
 
111
112
  model_config = ConfigDict(populate_by_name=True, extra="forbid")
@@ -124,6 +125,7 @@ class Info(BaseModel):
124
125
  x_airbyte_retry_config: RetryConfig | None = Field(None, alias="x-airbyte-retry-config")
125
126
  x_airbyte_example_questions: ExampleQuestions | None = Field(None, alias="x-airbyte-example-questions")
126
127
  x_airbyte_cache: CacheConfig | None = Field(None, alias="x-airbyte-cache")
128
+ x_airbyte_replication_config: ReplicationConfig | None = Field(None, alias="x-airbyte-replication-config")
127
129
 
128
130
 
129
131
  class ServerVariable(BaseModel):
@@ -134,6 +134,11 @@ class GraphQLBodyConfig(BaseModel):
134
134
  None,
135
135
  description="Default fields to select if not provided in request parameters. Can be a string or array of field names.",
136
136
  )
137
+ nullable_variables: List[str] | None = Field(
138
+ default=None,
139
+ alias="x-airbyte-nullable-variables",
140
+ description="Variable names that can be explicitly set to null (e.g., to unassign a user)",
141
+ )
137
142
 
138
143
 
139
144
  # Union type for all body type configs (extensible for future types like XML, SOAP, etc.)
@@ -182,6 +182,77 @@ class CacheEntityConfig(BaseModel):
182
182
  return self.x_airbyte_name or self.entity
183
183
 
184
184
 
185
+ class ReplicationConfigProperty(BaseModel):
186
+ """
187
+ Property definition for replication configuration fields.
188
+
189
+ Defines a single field in the replication configuration with its type,
190
+ description, and optional default value.
191
+
192
+ Example YAML usage:
193
+ x-airbyte-replication-config:
194
+ properties:
195
+ start_date:
196
+ type: string
197
+ title: Start Date
198
+ description: UTC date and time from which to replicate data
199
+ format: date-time
200
+ """
201
+
202
+ model_config = ConfigDict(populate_by_name=True, extra="forbid")
203
+
204
+ type: str
205
+ title: str | None = None
206
+ description: str | None = None
207
+ format: str | None = None
208
+ default: str | int | float | bool | None = None
209
+ enum: list[str] | None = None
210
+
211
+
212
+ class ReplicationConfig(BaseModel):
213
+ """
214
+ Replication configuration extension (x-airbyte-replication-config).
215
+
216
+ Defines replication-specific settings for MULTI mode connectors that need
217
+ to configure the underlying replication connector. This allows users who
218
+ use the direct-style API (credentials + environment) to also specify
219
+ replication settings like start_date, lookback_window, etc.
220
+
221
+ This extension is added to the Info model and provides field definitions
222
+ for replication configuration that gets merged into the source config
223
+ when creating sources.
224
+
225
+ Example YAML usage:
226
+ info:
227
+ title: HubSpot API
228
+ x-airbyte-replication-config:
229
+ title: Replication Configuration
230
+ description: Settings for data replication
231
+ properties:
232
+ start_date:
233
+ type: string
234
+ title: Start Date
235
+ description: UTC date and time from which to replicate data
236
+ format: date-time
237
+ required:
238
+ - start_date
239
+ replication_config_key_mapping:
240
+ start_date: start_date
241
+ """
242
+
243
+ model_config = ConfigDict(populate_by_name=True, extra="forbid")
244
+
245
+ title: str | None = None
246
+ description: str | None = None
247
+ properties: dict[str, ReplicationConfigProperty] = Field(default_factory=dict)
248
+ required: list[str] = Field(default_factory=list)
249
+ replication_config_key_mapping: dict[str, str] = Field(
250
+ default_factory=dict,
251
+ alias="replication_config_key_mapping",
252
+ description="Mapping from replication_config field names to source_config field names",
253
+ )
254
+
255
+
185
256
  class CacheConfig(BaseModel):
186
257
  """
187
258
  Cache configuration extension (x-airbyte-cache).
@@ -252,3 +252,4 @@ class ConnectorModel(BaseModel):
252
252
  entities: list[EntityDefinition]
253
253
  openapi_spec: Any | None = None # Optional reference to OpenAPIConnector
254
254
  retry_config: RetryConfig | None = None # Optional retry configuration
255
+ search_field_paths: dict[str, list[str]] | None = None
@@ -4,8 +4,11 @@ Zendesk-Chat connector.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
+ import inspect
8
+ import json
7
9
  import logging
8
- from typing import TYPE_CHECKING, Any, Callable, TypeVar, overload
10
+ from functools import wraps
11
+ from typing import TYPE_CHECKING, Any, Callable, Mapping, TypeVar, overload
9
12
  try:
10
13
  from typing import Literal
11
14
  except ImportError:
@@ -91,6 +94,38 @@ from .models import (
91
94
  # TypeVar for decorator type preservation
92
95
  _F = TypeVar("_F", bound=Callable[..., Any])
93
96
 
97
+ DEFAULT_MAX_OUTPUT_CHARS = 50_000 # ~50KB default, configurable per-tool
98
+
99
+
100
+ def _raise_output_too_large(message: str) -> None:
101
+ try:
102
+ from pydantic_ai import ModelRetry # type: ignore[import-not-found]
103
+ except Exception as exc:
104
+ raise RuntimeError(message) from exc
105
+ raise ModelRetry(message)
106
+
107
+
108
+ def _check_output_size(result: Any, max_chars: int | None, tool_name: str) -> Any:
109
+ if max_chars is None or max_chars <= 0:
110
+ return result
111
+
112
+ try:
113
+ serialized = json.dumps(result, default=str)
114
+ except (TypeError, ValueError):
115
+ return result
116
+
117
+ if len(serialized) > max_chars:
118
+ truncated_preview = serialized[:500] + "..." if len(serialized) > 500 else serialized
119
+ _raise_output_too_large(
120
+ f"Tool '{tool_name}' output too large ({len(serialized):,} chars, limit {max_chars:,}). "
121
+ "Please narrow your query by: using the 'fields' parameter to select only needed fields, "
122
+ "adding filters, or reducing the 'limit'. "
123
+ f"Preview: {truncated_preview}"
124
+ )
125
+
126
+ return result
127
+
128
+
94
129
 
95
130
 
96
131
  class ZendeskChatConnector:
@@ -101,7 +136,7 @@ class ZendeskChatConnector:
101
136
  """
102
137
 
103
138
  connector_name = "zendesk-chat"
104
- connector_version = "0.1.3"
139
+ connector_version = "0.1.4"
105
140
  vendored_sdk_version = "0.1.0" # Version of vendored connector-sdk
106
141
 
107
142
  # Map of (entity, action) -> needs_envelope for envelope wrapping decision
@@ -407,15 +442,15 @@ class ZendeskChatConnector:
407
442
  async def execute(
408
443
  self,
409
444
  entity: str,
410
- action: str,
411
- params: dict[str, Any]
445
+ action: Literal["get", "list", "search"],
446
+ params: Mapping[str, Any]
412
447
  ) -> ZendeskChatExecuteResult[Any] | ZendeskChatExecuteResultWithMeta[Any, Any] | Any: ...
413
448
 
414
449
  async def execute(
415
450
  self,
416
451
  entity: str,
417
- action: str,
418
- params: dict[str, Any] | None = None
452
+ action: Literal["get", "list", "search"],
453
+ params: Mapping[str, Any] | None = None
419
454
  ) -> Any:
420
455
  """
421
456
  Execute an entity operation with full type safety.
@@ -443,16 +478,17 @@ class ZendeskChatConnector:
443
478
  from ._vendored.connector_sdk.executor import ExecutionConfig
444
479
 
445
480
  # Remap parameter names from snake_case (TypedDict keys) to API parameter names
446
- if params:
481
+ resolved_params = dict(params) if params is not None else None
482
+ if resolved_params:
447
483
  param_map = self._PARAM_MAP.get((entity, action), {})
448
484
  if param_map:
449
- params = {param_map.get(k, k): v for k, v in params.items()}
485
+ resolved_params = {param_map.get(k, k): v for k, v in resolved_params.items()}
450
486
 
451
487
  # Use ExecutionConfig for both local and hosted executors
452
488
  config = ExecutionConfig(
453
489
  entity=entity,
454
490
  action=action,
455
- params=params
491
+ params=resolved_params
456
492
  )
457
493
 
458
494
  result = await self._executor.execute(config)
@@ -479,41 +515,67 @@ class ZendeskChatConnector:
479
515
  # ===== INTROSPECTION METHODS =====
480
516
 
481
517
  @classmethod
482
- def describe(cls, func: _F) -> _F:
518
+ def tool_utils(
519
+ cls,
520
+ func: _F | None = None,
521
+ *,
522
+ update_docstring: bool = True,
523
+ max_output_chars: int | None = DEFAULT_MAX_OUTPUT_CHARS,
524
+ ) -> _F | Callable[[_F], _F]:
483
525
  """
484
- Decorator that populates a function's docstring with connector capabilities.
485
-
486
- This class method can be used as a decorator to automatically generate
487
- comprehensive documentation for AI tool functions.
526
+ Decorator that adds tool utilities like docstring augmentation and output limits.
488
527
 
489
528
  Usage:
490
529
  @mcp.tool()
491
- @ZendeskChatConnector.describe
530
+ @ZendeskChatConnector.tool_utils
492
531
  async def execute(entity: str, action: str, params: dict):
493
- '''Execute operations.'''
494
532
  ...
495
533
 
496
- The decorated function's __doc__ will be updated with:
497
- - Available entities and their actions
498
- - Parameter signatures with required (*) and optional (?) markers
499
- - Response structure documentation
500
- - Example questions (if available in OpenAPI spec)
534
+ @mcp.tool()
535
+ @ZendeskChatConnector.tool_utils(update_docstring=False, max_output_chars=None)
536
+ async def execute(entity: str, action: str, params: dict):
537
+ ...
501
538
 
502
539
  Args:
503
- func: The function to decorate
504
-
505
- Returns:
506
- The same function with updated __doc__
540
+ update_docstring: When True, append connector capabilities to __doc__.
541
+ max_output_chars: Max serialized output size before raising. Use None to disable.
507
542
  """
508
- description = generate_tool_description(ZendeskChatConnectorModel)
509
543
 
510
- original_doc = func.__doc__ or ""
511
- if original_doc.strip():
512
- func.__doc__ = f"{original_doc.strip()}\n{description}"
513
- else:
514
- func.__doc__ = description
544
+ def decorate(inner: _F) -> _F:
545
+ if update_docstring:
546
+ description = generate_tool_description(ZendeskChatConnectorModel)
547
+ original_doc = inner.__doc__ or ""
548
+ if original_doc.strip():
549
+ full_doc = f"{original_doc.strip()}\n{description}"
550
+ else:
551
+ full_doc = description
552
+ else:
553
+ full_doc = ""
554
+
555
+ if inspect.iscoroutinefunction(inner):
556
+
557
+ @wraps(inner)
558
+ async def aw(*args: Any, **kwargs: Any) -> Any:
559
+ result = await inner(*args, **kwargs)
560
+ return _check_output_size(result, max_output_chars, inner.__name__)
561
+
562
+ wrapped = aw
563
+ else:
564
+
565
+ @wraps(inner)
566
+ def sw(*args: Any, **kwargs: Any) -> Any:
567
+ result = inner(*args, **kwargs)
568
+ return _check_output_size(result, max_output_chars, inner.__name__)
569
+
570
+ wrapped = sw
571
+
572
+ if update_docstring:
573
+ wrapped.__doc__ = full_doc
574
+ return wrapped # type: ignore[return-value]
515
575
 
516
- return func
576
+ if func is not None:
577
+ return decorate(func)
578
+ return decorate
517
579
 
518
580
  def list_entities(self) -> list[dict[str, Any]]:
519
581
  """
@@ -26,7 +26,7 @@ from uuid import (
26
26
  ZendeskChatConnectorModel: ConnectorModel = ConnectorModel(
27
27
  id=UUID('40d24d0f-b8f9-4fe0-9e6c-b06c0f3f45e4'),
28
28
  name='zendesk-chat',
29
- version='0.1.3',
29
+ version='0.1.4',
30
30
  base_url='https://{subdomain}.zendesk.com/api/v2/chat',
31
31
  auth=AuthConfig(
32
32
  type=AuthType.BEARER,
@@ -45,6 +45,7 @@ ZendeskChatConnectorModel: ConnectorModel = ConnectorModel(
45
45
  },
46
46
  auth_mapping={'token': '${access_token}'},
47
47
  replication_auth_key_mapping={'credentials.access_token': 'access_token'},
48
+ replication_auth_key_constants={'credentials.credentials': 'access_token'},
48
49
  ),
49
50
  ),
50
51
  entities=[
@@ -2421,4 +2422,45 @@ ZendeskChatConnectorModel: ConnectorModel = ConnectorModel(
2421
2422
  },
2422
2423
  ),
2423
2424
  ],
2425
+ search_field_paths={
2426
+ 'agents': [
2427
+ 'id',
2428
+ 'email',
2429
+ 'display_name',
2430
+ 'first_name',
2431
+ 'last_name',
2432
+ 'enabled',
2433
+ 'role_id',
2434
+ 'departments',
2435
+ 'departments[]',
2436
+ 'create_date',
2437
+ ],
2438
+ 'chats': [
2439
+ 'id',
2440
+ 'timestamp',
2441
+ 'update_timestamp',
2442
+ 'department_id',
2443
+ 'department_name',
2444
+ 'duration',
2445
+ 'rating',
2446
+ 'missed',
2447
+ 'agent_ids',
2448
+ 'agent_ids[]',
2449
+ ],
2450
+ 'departments': [
2451
+ 'id',
2452
+ 'name',
2453
+ 'enabled',
2454
+ 'members',
2455
+ 'members[]',
2456
+ ],
2457
+ 'shortcuts': [
2458
+ 'id',
2459
+ 'name',
2460
+ 'message',
2461
+ 'tags',
2462
+ 'tags[]',
2463
+ ],
2464
+ 'triggers': ['id', 'name', 'enabled'],
2465
+ },
2424
2466
  )
@@ -142,6 +142,13 @@ class ChatConversion(BaseModel):
142
142
  timestamp: Union[str | None, Any] = Field(default=None)
143
143
  attribution: Union[Any, Any] = Field(default=None)
144
144
 
145
+ class WebpathItem(BaseModel):
146
+ """WebpathItem type definition"""
147
+ model_config = ConfigDict(extra="allow", populate_by_name=True)
148
+
149
+ from_: Union[str | None, Any] = Field(default=None, alias="from")
150
+ timestamp: Union[str | None, Any] = Field(default=None)
151
+
145
152
  class ChatHistoryItem(BaseModel):
146
153
  """ChatHistoryItem type definition"""
147
154
  model_config = ConfigDict(extra="allow", populate_by_name=True)
@@ -161,13 +168,6 @@ class ChatHistoryItem(BaseModel):
161
168
  new_tags: Union[list[str] | None, Any] = Field(default=None)
162
169
  options: Union[str | None, Any] = Field(default=None)
163
170
 
164
- class WebpathItem(BaseModel):
165
- """WebpathItem type definition"""
166
- model_config = ConfigDict(extra="allow", populate_by_name=True)
167
-
168
- from_: Union[str | None, Any] = Field(default=None, alias="from")
169
- timestamp: Union[str | None, Any] = Field(default=None)
170
-
171
171
  class ChatEngagement(BaseModel):
172
172
  """ChatEngagement type definition"""
173
173
  model_config = ConfigDict(extra="allow", populate_by_name=True)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: airbyte-agent-zendesk-chat
3
- Version: 0.1.9
3
+ Version: 0.1.14
4
4
  Summary: Airbyte Zendesk-Chat Connector for AI platforms
5
5
  Project-URL: Homepage, https://github.com/airbytehq/airbyte-agent-connectors
6
6
  Project-URL: Documentation, https://docs.airbyte.com/ai-agents/
@@ -104,7 +104,7 @@ connector = ZendeskChatConnector(
104
104
  )
105
105
 
106
106
  @agent.tool_plain # assumes you're using Pydantic AI
107
- @ZendeskChatConnector.describe
107
+ @ZendeskChatConnector.tool_utils
108
108
  async def zendesk-chat_execute(entity: str, action: str, params: dict | None = None):
109
109
  return await connector.execute(entity, action, params or {})
110
110
  ```
@@ -119,17 +119,21 @@ This example assumes you've already authenticated your connector with Airbyte. S
119
119
  from airbyte_agent_zendesk-chat import ZendeskChatConnector
120
120
 
121
121
  connector = ZendeskChatConnector(
122
- external_user_id="<your-scoped-token>",
122
+ external_user_id="<your_external_user_id>",
123
123
  airbyte_client_id="<your-client-id>",
124
124
  airbyte_client_secret="<your-client-secret>"
125
125
  )
126
126
 
127
127
  @agent.tool_plain # assumes you're using Pydantic AI
128
- @ZendeskChatConnector.describe
128
+ @ZendeskChatConnector.tool_utils
129
129
  async def zendesk-chat_execute(entity: str, action: str, params: dict | None = None):
130
130
  return await connector.execute(entity, action, params or {})
131
131
  ```
132
132
 
133
+ ## Replication Configuration
134
+
135
+ This connector supports replication configuration for MULTI mode sources. See the [full reference documentation](./REFERENCE.md#replication-configuration) for details on available options like `start_date`.
136
+
133
137
  ## Full documentation
134
138
 
135
139
  This connector supports the following entities and actions.
@@ -158,6 +162,6 @@ For the service's official API docs, see the [Zendesk-Chat API reference](https:
158
162
 
159
163
  ## Version information
160
164
 
161
- - **Package version:** 0.1.9
162
- - **Connector version:** 0.1.3
163
- - **Generated with Connector SDK commit SHA:** 416466da4970ae5fd6c7f2c658a68e047e51efd9
165
+ - **Package version:** 0.1.14
166
+ - **Connector version:** 0.1.4
167
+ - **Generated with Connector SDK commit SHA:** 4bded58d3cabff3ac257c30c425ccab118f6ed87
@@ -1,27 +1,27 @@
1
- airbyte_agent_zendesk_chat/__init__.py,sha256=_Ysh9kDU1H0foZ8pBgGi64NclVgkcOUlwrNsoaIxlRs,4292
2
- airbyte_agent_zendesk_chat/connector.py,sha256=a_xt5L6rMOcW2DjUCNvsjCCSDrHPAfxhd7pLp_znsPo,43092
3
- airbyte_agent_zendesk_chat/connector_model.py,sha256=Z0Q2nmk8jl3rJH5FWkUlDbuL00ACnxQWBGN7DaPdUM4,121081
4
- airbyte_agent_zendesk_chat/models.py,sha256=o9ukKeRhqVsz4Rc1VjI6E4I6Ha-tGjZ5zLn4bpB4unA,23905
1
+ airbyte_agent_zendesk_chat/__init__.py,sha256=ZnKvI-0KdSc5Kf6IDTqh9Fz7Y6x8T0Oap73oyPggN6I,4292
2
+ airbyte_agent_zendesk_chat/connector.py,sha256=R_JDuiJ0kpk4_xNfgUPg1LNHlrcpYLx56Vkq8z8HesI,45365
3
+ airbyte_agent_zendesk_chat/connector_model.py,sha256=phL6Mh98faJyMEC9KshDl8vtJrV6cWctRvgBOoKB4Sg,122093
4
+ airbyte_agent_zendesk_chat/models.py,sha256=daD_L8bL04iOmLCOPNimrtIEtnsOsn7nmRMRNPvEYN8,23905
5
5
  airbyte_agent_zendesk_chat/types.py,sha256=C5laH7V__abYm0F1Jck49Az6SCJQdnXLgtahxponDgM,28925
6
6
  airbyte_agent_zendesk_chat/_vendored/__init__.py,sha256=ILl7AHXMui__swyrjxrh9yRa4dLiwBvV6axPWFWty80,38
7
7
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/__init__.py,sha256=T5o7roU6NSpH-lCAGZ338sE5dlh4ZU6i6IkeG1zpems,1949
8
8
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/auth_strategies.py,sha256=5Sb9moUp623o67Q2wMa8iZldJH08y4gQdoutoO_75Iw,42088
9
9
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/auth_template.py,sha256=nju4jqlFC_KI82ILNumNIyiUtRJcy7J94INIZ0QraI4,4454
10
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/connector_model_loader.py,sha256=SY_Juqw-cap156MsdgrMfe5MAuFdX0vUcSbH5LUYNK0,36295
10
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/connector_model_loader.py,sha256=VPNu4KKQPDmF9YIDH0qVvvpZ-BACDZ6joNgFQEZbjo8,41828
11
11
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/constants.py,sha256=AtzOvhDMWbRJgpsQNWl5tkogHD6mWgEY668PgRmgtOY,2737
12
12
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/exceptions.py,sha256=ss5MGv9eVPmsbLcLWetuu3sDmvturwfo6Pw3M37Oq5k,481
13
13
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/extensions.py,sha256=XWRRoJOOrwUHSKbuQt5DU7CCu8ePzhd_HuP7c_uD77w,21376
14
14
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/http_client.py,sha256=yucwu3OvJh5wLQa1mk-gTKjtqjKKucMw5ltmlE7mk1c,28000
15
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/introspection.py,sha256=2CyKXZHT74-1Id97uw1RLeyOi6TV24_hoNbQ6-6y7uI,10335
15
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/introspection.py,sha256=kRVI4TDQDLdcCnTBUML8ycAtdqAQufVh-027sMkb4i8,19165
16
16
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/secrets.py,sha256=J9ezMu4xNnLW11xY5RCre6DHP7YMKZCqwGJfk7ufHAM,6855
17
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/types.py,sha256=d8PidSD5nzhSSgFwUeYtRKw8pTm0Gft_IHsGeELifuk,8748
17
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/types.py,sha256=in8gHsn5nsScujOfHZmkOgNmqmJKiPyNNjg59m5fGWc,8807
18
18
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/utils.py,sha256=G4LUXOC2HzPoND2v4tQW68R9uuPX9NQyCjaGxb7Kpl0,1958
19
19
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/validation.py,sha256=4MPrxYmQh8TbCU0KdvvRKe35Lg1YYLEBd0u4aKySl_E,32122
20
20
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/cloud_utils/__init__.py,sha256=4799Hv9f2zxDVj1aLyQ8JpTEuFTp_oOZMRz-NZCdBJg,134
21
21
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/cloud_utils/client.py,sha256=YxdRpQr9XjDzih6csSseBVGn9kfMtaqbOCXP0TPuzFY,7189
22
22
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/executor/__init__.py,sha256=EmG9YQNAjSuYCVB4D5VoLm4qpD1KfeiiOf7bpALj8p8,702
23
23
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/executor/hosted_executor.py,sha256=ydHcG-biRS1ITT5ELwPShdJW-KYpvK--Fos1ipNgHho,6995
24
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/executor/local_executor.py,sha256=Vg4rPk0sbgXEdYLx2n2Spgj9XrDUWykD2E2o7sWloRM,73849
24
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/executor/local_executor.py,sha256=tVbfstxOrm5qJt1NawTwjhIIpDgPCC4wSrKM5eALPSQ,74064
25
25
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/executor/models.py,sha256=lYVT_bNcw-PoIks4WHNyl2VY-lJVf2FntzINSOBIheE,5845
26
26
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/http/__init__.py,sha256=y8fbzZn-3yV9OxtYz8Dy6FFGI5v6TOqADd1G3xHH3Hw,911
27
27
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/http/config.py,sha256=6J7YIIwHC6sRu9i-yKa5XvArwK2KU60rlnmxzDZq3lw,3283
@@ -42,16 +42,16 @@ airbyte_agent_zendesk_chat/_vendored/connector_sdk/performance/__init__.py,sha25
42
42
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/performance/instrumentation.py,sha256=_dXvNiqdndIBwDjeDKNViWzn_M5FkSUsMmJtFldrmsM,1504
43
43
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/performance/metrics.py,sha256=FRff7dKt4iwt_A7pxV5n9kAGBR756PC7q8-weWygPSM,2817
44
44
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/__init__.py,sha256=Uymu-QuzGJuMxexBagIvUxpVAigIuIhz3KeBl_Vu4Ko,1638
45
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/base.py,sha256=KX3OUSnWu_M6yq-IMTH4dI420x-VRSvKc7uery6gFUU,6303
46
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/components.py,sha256=x3YCM1p2n_xHi50fMeOX0mXUiPqjGlLHs3Go8jXokb0,7895
45
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/base.py,sha256=IoAucZQ0j0xTdm4VWotB636R4jsrkYnppMQhXE0uoyU,6541
46
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/components.py,sha256=nJIPieavwX3o3ODvdtLHPk84d_V229xmg6LDfwEHjzc,8119
47
47
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/connector.py,sha256=mSZk1wr2YSdRj9tTRsPAuIlCzd_xZLw-Bzl1sMwE0rE,3731
48
- airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/extensions.py,sha256=f7VhHrcIYxaPOJHMc4g0lpy04pZTbx5nlroNzAu5B9Q,7135
48
+ airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/extensions.py,sha256=5hgpFHK7fzpzegCkJk882DeIP79bCx_qairKJhvPMZ8,9590
49
49
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/operations.py,sha256=RpzGtAI4yvAtMHAfMUMcUwgHv_qJojnKlNb75_agUF8,5729
50
50
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/schema/security.py,sha256=6ljzf_JHs4amnQX9AhePcEsT8P3ZnTSC4xeg7-cvsNQ,9100
51
51
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/telemetry/__init__.py,sha256=RaLgkBU4dfxn1LC5Y0Q9rr2PJbrwjxvPgBLmq8_WafE,211
52
52
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/telemetry/config.py,sha256=tLmQwAFD0kP1WyBGWBS3ysaudN9H3e-3EopKZi6cGKg,885
53
53
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/telemetry/events.py,sha256=8Y1NbXiwISX-V_wRofY7PqcwEXD0dLMnntKkY6XFU2s,1328
54
54
  airbyte_agent_zendesk_chat/_vendored/connector_sdk/telemetry/tracker.py,sha256=Ftrk0_ddfM7dZG8hF9xBuPwhbc9D6JZ7Q9qs5o3LEyA,5579
55
- airbyte_agent_zendesk_chat-0.1.9.dist-info/METADATA,sha256=hZfnODjRhrxiFTVA5WLqzyEda7uYTOVSQEod7Ky3k6M,6362
56
- airbyte_agent_zendesk_chat-0.1.9.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
57
- airbyte_agent_zendesk_chat-0.1.9.dist-info/RECORD,,
55
+ airbyte_agent_zendesk_chat-0.1.14.dist-info/METADATA,sha256=4CmpJ8x7tmDzomQBrhNrlq63at9pAoqELpq50h1VTyc,6610
56
+ airbyte_agent_zendesk_chat-0.1.14.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
57
+ airbyte_agent_zendesk_chat-0.1.14.dist-info/RECORD,,