aiqtoolkit 1.2.0a20250706__py3-none-any.whl → 1.2.0a20250730__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aiqtoolkit might be problematic. Click here for more details.

Files changed (197) hide show
  1. aiq/agent/base.py +171 -8
  2. aiq/agent/dual_node.py +1 -1
  3. aiq/agent/react_agent/agent.py +113 -113
  4. aiq/agent/react_agent/register.py +31 -14
  5. aiq/agent/rewoo_agent/agent.py +36 -35
  6. aiq/agent/rewoo_agent/register.py +2 -2
  7. aiq/agent/tool_calling_agent/agent.py +3 -7
  8. aiq/authentication/__init__.py +14 -0
  9. aiq/authentication/api_key/__init__.py +14 -0
  10. aiq/authentication/api_key/api_key_auth_provider.py +92 -0
  11. aiq/authentication/api_key/api_key_auth_provider_config.py +124 -0
  12. aiq/authentication/api_key/register.py +26 -0
  13. aiq/authentication/exceptions/__init__.py +14 -0
  14. aiq/authentication/exceptions/api_key_exceptions.py +38 -0
  15. aiq/authentication/exceptions/auth_code_grant_exceptions.py +86 -0
  16. aiq/authentication/exceptions/call_back_exceptions.py +38 -0
  17. aiq/authentication/exceptions/request_exceptions.py +54 -0
  18. aiq/authentication/http_basic_auth/__init__.py +0 -0
  19. aiq/authentication/http_basic_auth/http_basic_auth_provider.py +81 -0
  20. aiq/authentication/http_basic_auth/register.py +30 -0
  21. aiq/authentication/interfaces.py +93 -0
  22. aiq/authentication/oauth2/__init__.py +14 -0
  23. aiq/authentication/oauth2/oauth2_auth_code_flow_provider.py +107 -0
  24. aiq/authentication/oauth2/oauth2_auth_code_flow_provider_config.py +39 -0
  25. aiq/authentication/oauth2/register.py +25 -0
  26. aiq/authentication/register.py +21 -0
  27. aiq/builder/builder.py +64 -2
  28. aiq/builder/component_utils.py +16 -3
  29. aiq/builder/context.py +26 -0
  30. aiq/builder/eval_builder.py +43 -2
  31. aiq/builder/function.py +32 -4
  32. aiq/builder/function_base.py +1 -1
  33. aiq/builder/intermediate_step_manager.py +6 -8
  34. aiq/builder/user_interaction_manager.py +3 -0
  35. aiq/builder/workflow.py +23 -18
  36. aiq/builder/workflow_builder.py +420 -73
  37. aiq/cli/commands/info/list_mcp.py +103 -16
  38. aiq/cli/commands/sizing/__init__.py +14 -0
  39. aiq/cli/commands/sizing/calc.py +294 -0
  40. aiq/cli/commands/sizing/sizing.py +27 -0
  41. aiq/cli/commands/start.py +1 -0
  42. aiq/cli/entrypoint.py +2 -0
  43. aiq/cli/register_workflow.py +80 -0
  44. aiq/cli/type_registry.py +151 -30
  45. aiq/data_models/api_server.py +117 -11
  46. aiq/data_models/authentication.py +231 -0
  47. aiq/data_models/common.py +35 -7
  48. aiq/data_models/component.py +17 -9
  49. aiq/data_models/component_ref.py +33 -0
  50. aiq/data_models/config.py +60 -3
  51. aiq/data_models/embedder.py +1 -0
  52. aiq/data_models/function_dependencies.py +8 -0
  53. aiq/data_models/interactive.py +10 -1
  54. aiq/data_models/intermediate_step.py +15 -5
  55. aiq/data_models/its_strategy.py +30 -0
  56. aiq/data_models/llm.py +1 -0
  57. aiq/data_models/memory.py +1 -0
  58. aiq/data_models/object_store.py +44 -0
  59. aiq/data_models/retry_mixin.py +35 -0
  60. aiq/data_models/span.py +187 -0
  61. aiq/data_models/telemetry_exporter.py +2 -2
  62. aiq/embedder/nim_embedder.py +2 -1
  63. aiq/embedder/openai_embedder.py +2 -1
  64. aiq/eval/config.py +19 -1
  65. aiq/eval/dataset_handler/dataset_handler.py +75 -1
  66. aiq/eval/evaluate.py +53 -10
  67. aiq/eval/rag_evaluator/evaluate.py +23 -12
  68. aiq/eval/remote_workflow.py +7 -2
  69. aiq/eval/runners/__init__.py +14 -0
  70. aiq/eval/runners/config.py +39 -0
  71. aiq/eval/runners/multi_eval_runner.py +54 -0
  72. aiq/eval/usage_stats.py +6 -0
  73. aiq/eval/utils/weave_eval.py +5 -1
  74. aiq/experimental/__init__.py +0 -0
  75. aiq/experimental/decorators/__init__.py +0 -0
  76. aiq/experimental/decorators/experimental_warning_decorator.py +130 -0
  77. aiq/experimental/inference_time_scaling/__init__.py +0 -0
  78. aiq/experimental/inference_time_scaling/editing/__init__.py +0 -0
  79. aiq/experimental/inference_time_scaling/editing/iterative_plan_refinement_editor.py +147 -0
  80. aiq/experimental/inference_time_scaling/editing/llm_as_a_judge_editor.py +204 -0
  81. aiq/experimental/inference_time_scaling/editing/motivation_aware_summarization.py +107 -0
  82. aiq/experimental/inference_time_scaling/functions/__init__.py +0 -0
  83. aiq/experimental/inference_time_scaling/functions/execute_score_select_function.py +105 -0
  84. aiq/experimental/inference_time_scaling/functions/its_tool_orchestration_function.py +205 -0
  85. aiq/experimental/inference_time_scaling/functions/its_tool_wrapper_function.py +146 -0
  86. aiq/experimental/inference_time_scaling/functions/plan_select_execute_function.py +224 -0
  87. aiq/experimental/inference_time_scaling/models/__init__.py +0 -0
  88. aiq/experimental/inference_time_scaling/models/editor_config.py +132 -0
  89. aiq/experimental/inference_time_scaling/models/its_item.py +48 -0
  90. aiq/experimental/inference_time_scaling/models/scoring_config.py +112 -0
  91. aiq/experimental/inference_time_scaling/models/search_config.py +120 -0
  92. aiq/experimental/inference_time_scaling/models/selection_config.py +154 -0
  93. aiq/experimental/inference_time_scaling/models/stage_enums.py +43 -0
  94. aiq/experimental/inference_time_scaling/models/strategy_base.py +66 -0
  95. aiq/experimental/inference_time_scaling/models/tool_use_config.py +41 -0
  96. aiq/experimental/inference_time_scaling/register.py +36 -0
  97. aiq/experimental/inference_time_scaling/scoring/__init__.py +0 -0
  98. aiq/experimental/inference_time_scaling/scoring/llm_based_agent_scorer.py +168 -0
  99. aiq/experimental/inference_time_scaling/scoring/llm_based_plan_scorer.py +168 -0
  100. aiq/experimental/inference_time_scaling/scoring/motivation_aware_scorer.py +111 -0
  101. aiq/experimental/inference_time_scaling/search/__init__.py +0 -0
  102. aiq/experimental/inference_time_scaling/search/multi_llm_planner.py +128 -0
  103. aiq/experimental/inference_time_scaling/search/multi_query_retrieval_search.py +122 -0
  104. aiq/experimental/inference_time_scaling/search/single_shot_multi_plan_planner.py +128 -0
  105. aiq/experimental/inference_time_scaling/selection/__init__.py +0 -0
  106. aiq/experimental/inference_time_scaling/selection/best_of_n_selector.py +63 -0
  107. aiq/experimental/inference_time_scaling/selection/llm_based_agent_output_selector.py +131 -0
  108. aiq/experimental/inference_time_scaling/selection/llm_based_output_merging_selector.py +159 -0
  109. aiq/experimental/inference_time_scaling/selection/llm_based_plan_selector.py +128 -0
  110. aiq/experimental/inference_time_scaling/selection/threshold_selector.py +58 -0
  111. aiq/front_ends/console/authentication_flow_handler.py +233 -0
  112. aiq/front_ends/console/console_front_end_plugin.py +11 -2
  113. aiq/front_ends/fastapi/auth_flow_handlers/__init__.py +0 -0
  114. aiq/front_ends/fastapi/auth_flow_handlers/http_flow_handler.py +27 -0
  115. aiq/front_ends/fastapi/auth_flow_handlers/websocket_flow_handler.py +107 -0
  116. aiq/front_ends/fastapi/fastapi_front_end_config.py +20 -0
  117. aiq/front_ends/fastapi/fastapi_front_end_controller.py +68 -0
  118. aiq/front_ends/fastapi/fastapi_front_end_plugin.py +14 -1
  119. aiq/front_ends/fastapi/fastapi_front_end_plugin_worker.py +353 -31
  120. aiq/front_ends/fastapi/html_snippets/__init__.py +14 -0
  121. aiq/front_ends/fastapi/html_snippets/auth_code_grant_success.py +35 -0
  122. aiq/front_ends/fastapi/main.py +2 -0
  123. aiq/front_ends/fastapi/message_handler.py +102 -84
  124. aiq/front_ends/fastapi/step_adaptor.py +2 -1
  125. aiq/llm/aws_bedrock_llm.py +2 -1
  126. aiq/llm/nim_llm.py +2 -1
  127. aiq/llm/openai_llm.py +2 -1
  128. aiq/object_store/__init__.py +20 -0
  129. aiq/object_store/in_memory_object_store.py +74 -0
  130. aiq/object_store/interfaces.py +84 -0
  131. aiq/object_store/models.py +36 -0
  132. aiq/object_store/register.py +20 -0
  133. aiq/observability/__init__.py +14 -0
  134. aiq/observability/exporter/__init__.py +14 -0
  135. aiq/observability/exporter/base_exporter.py +449 -0
  136. aiq/observability/exporter/exporter.py +78 -0
  137. aiq/observability/exporter/file_exporter.py +33 -0
  138. aiq/observability/exporter/processing_exporter.py +269 -0
  139. aiq/observability/exporter/raw_exporter.py +52 -0
  140. aiq/observability/exporter/span_exporter.py +264 -0
  141. aiq/observability/exporter_manager.py +335 -0
  142. aiq/observability/mixin/__init__.py +14 -0
  143. aiq/observability/mixin/batch_config_mixin.py +26 -0
  144. aiq/observability/mixin/collector_config_mixin.py +23 -0
  145. aiq/observability/mixin/file_mixin.py +288 -0
  146. aiq/observability/mixin/file_mode.py +23 -0
  147. aiq/observability/mixin/resource_conflict_mixin.py +134 -0
  148. aiq/observability/mixin/serialize_mixin.py +61 -0
  149. aiq/observability/mixin/type_introspection_mixin.py +183 -0
  150. aiq/observability/processor/__init__.py +14 -0
  151. aiq/observability/processor/batching_processor.py +316 -0
  152. aiq/observability/processor/intermediate_step_serializer.py +28 -0
  153. aiq/observability/processor/processor.py +68 -0
  154. aiq/observability/register.py +32 -116
  155. aiq/observability/utils/__init__.py +14 -0
  156. aiq/observability/utils/dict_utils.py +236 -0
  157. aiq/observability/utils/time_utils.py +31 -0
  158. aiq/profiler/calc/__init__.py +14 -0
  159. aiq/profiler/calc/calc_runner.py +623 -0
  160. aiq/profiler/calc/calculations.py +288 -0
  161. aiq/profiler/calc/data_models.py +176 -0
  162. aiq/profiler/calc/plot.py +345 -0
  163. aiq/profiler/data_models.py +2 -0
  164. aiq/profiler/profile_runner.py +16 -13
  165. aiq/runtime/loader.py +8 -2
  166. aiq/runtime/runner.py +23 -9
  167. aiq/runtime/session.py +16 -5
  168. aiq/tool/chat_completion.py +74 -0
  169. aiq/tool/code_execution/README.md +152 -0
  170. aiq/tool/code_execution/code_sandbox.py +151 -72
  171. aiq/tool/code_execution/local_sandbox/.gitignore +1 -0
  172. aiq/tool/code_execution/local_sandbox/local_sandbox_server.py +139 -24
  173. aiq/tool/code_execution/local_sandbox/sandbox.requirements.txt +3 -1
  174. aiq/tool/code_execution/local_sandbox/start_local_sandbox.sh +27 -2
  175. aiq/tool/code_execution/register.py +7 -3
  176. aiq/tool/code_execution/test_code_execution_sandbox.py +414 -0
  177. aiq/tool/mcp/exceptions.py +142 -0
  178. aiq/tool/mcp/mcp_client.py +17 -3
  179. aiq/tool/mcp/mcp_tool.py +1 -1
  180. aiq/tool/register.py +1 -0
  181. aiq/tool/server_tools.py +2 -2
  182. aiq/utils/exception_handlers/automatic_retries.py +289 -0
  183. aiq/utils/exception_handlers/mcp.py +211 -0
  184. aiq/utils/io/model_processing.py +28 -0
  185. aiq/utils/log_utils.py +37 -0
  186. aiq/utils/string_utils.py +38 -0
  187. aiq/utils/type_converter.py +18 -2
  188. aiq/utils/type_utils.py +87 -0
  189. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/METADATA +37 -9
  190. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/RECORD +195 -80
  191. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/entry_points.txt +3 -0
  192. aiq/front_ends/fastapi/websocket.py +0 -153
  193. aiq/observability/async_otel_listener.py +0 -470
  194. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/WHEEL +0 -0
  195. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/licenses/LICENSE-3rd-party.txt +0 -0
  196. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/licenses/LICENSE.md +0 -0
  197. {aiqtoolkit-1.2.0a20250706.dist-info → aiqtoolkit-1.2.0a20250730.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,120 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import typing
17
+
18
+ from pydantic import Field
19
+ from pydantic import model_validator
20
+
21
+ from aiq.data_models.component_ref import LLMRef
22
+ from aiq.data_models.its_strategy import ITSStrategyBaseConfig
23
+
24
+
25
+ class SingleShotMultiPlanConfig(ITSStrategyBaseConfig, name="single_shot_multi_plan"):
26
+ num_plans: int = Field(default=4, description="Number of plans to generate.")
27
+ max_temperature: float = Field(default=1.0,
28
+ description="Maximum temperature to use for sampling when generating plans. "
29
+ "This can help control the randomness of the generated plans.")
30
+ min_temperature: float = Field(default=0.5,
31
+ description="Minimum temperature to use for sampling when generating plans. "
32
+ "This can help control the randomness of the generated plans.")
33
+ # If strategy is provided, LLM must be
34
+ planning_llm: LLMRef | typing.Any | None = Field(
35
+ default=None,
36
+ description="The LLM to use for planning. This can be a callable or an "
37
+ "instance of an LLM client.")
38
+
39
+ planning_template: str = Field(
40
+ default=("You are an expert reasoning model task with creating a detailed execution plan"
41
+ " for a system that has the following information to get the result of a given input:\n\n"
42
+ "**System Information:**\n {context}"
43
+ "**Input:** \n{prompt}\n\n"
44
+ "An example plan could look like this:\n\n"
45
+ "1. Call tool A with input X\n"
46
+ "2. Call tool B with input Y\n"
47
+ "3. Interpret the output of tool A and B\n"
48
+ "4. Return the final result"
49
+ "\n\nBegin the final plan with PLAN:\n"),
50
+ description="The template to use for generating plans.")
51
+
52
+ @model_validator(mode="before")
53
+ def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
54
+ """
55
+ Ensure that the required LLMs are provided based on the selected strategies.
56
+ """
57
+ # Validate planning strategy: planning_llm must be provided if planning_strategy is set
58
+ if values.get('planning_llm') is None:
59
+ raise ValueError('planning_llm must be provided when planning_strategy is set.')
60
+
61
+ return values
62
+
63
+
64
+ class MultiLLMPlanConfig(ITSStrategyBaseConfig, name="multi_llm_plan"):
65
+ """Configuration for a 'multi LLM plan generation' strategy."""
66
+ llms: list[LLMRef] = Field(
67
+ default_factory=list,
68
+ description="list of LLMs to use for plan generation. Each LLM can generate one or more plans.")
69
+ plans_per_llm: int = Field(default=2, description="Number of plans each LLM should generate.")
70
+ max_temperature: float = Field(default=1.0,
71
+ description="Maximum temperature to use for sampling when generating plans. "
72
+ "This can help control the randomness of the generated plans.")
73
+ min_temperature: float = Field(default=0.5,
74
+ description="Minimum temperature to use for sampling when generating plans. "
75
+ "This can help control the randomness of the generated plans.")
76
+ planning_template: str = Field(
77
+ default=("You are an expert reasoning model task with creating a detailed execution plan"
78
+ " for a system that has the following information to get the result of a given input:\n\n"
79
+ "**System Information:**\n {context}"
80
+ "**Input:** \n{prompt}\n\n"
81
+ "An example plan could look like this:\n\n"
82
+ "1. Call tool A with input X\n"
83
+ "2. Call tool B with input Y\n"
84
+ "3. Interpret the output of tool A and B\n"
85
+ "4. Return the final result"
86
+ "\n\nBegin the final plan with PLAN:\n"),
87
+ description="The template to use for generating plans.")
88
+
89
+ @model_validator(mode="before")
90
+ def validate_multi_llm_strategies(cls, values: dict) -> dict:
91
+ if not values.get('llms'):
92
+ raise ValueError('Must provide at least one LLMRef in `llms` for multi-LLM strategy.')
93
+ return values
94
+
95
+
96
+ class MultiQueryRetrievalSearchConfig(ITSStrategyBaseConfig, name="multi_query_retrieval_search"):
97
+ """
98
+ Configuration for the MultiQueryRetrievalSearch strategy.
99
+ This strategy generates multiple new 'ITSItem's per original item,
100
+ each containing a differently phrased or re-focused version of the original task.
101
+ """
102
+ llms: list[LLMRef] = Field(default_factory=list,
103
+ description="list of LLM references to use for generating diverse queries.")
104
+
105
+ query_generation_template: str = Field(
106
+ default=("You are an expert at re-framing a user's query to encourage new solution paths. "
107
+ "Given the task description and an optional motivation, produce a short alternative query "
108
+ "that addresses the same task from a different angle. By generating multiple "
109
+ "perspectives on the task, your goal is to help "
110
+ "the user overcome some of the limitations of distance-based similarity search.\n\n"
111
+ "Task: {task}\n"
112
+ "Motivation: {motivation}\n\n"
113
+ "Output a concise new query statement below. Only output the revised query and nothing else.\n"),
114
+ description="Prompt template for rewriting the task from a different perspective.")
115
+
116
+ @model_validator(mode="before")
117
+ def validate_llms(cls, values):
118
+ if not values.get('llms'):
119
+ raise ValueError("At least one LLMRef must be provided for multi_query_retrieval_search.")
120
+ return values
@@ -0,0 +1,154 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License..
15
+
16
+ import typing
17
+
18
+ from pydantic import Field
19
+ from pydantic import model_validator
20
+
21
+ from aiq.data_models.component_ref import LLMRef
22
+ from aiq.data_models.its_strategy import ITSStrategyBaseConfig
23
+
24
+
25
+ class LLMBasedPlanSelectionConfig(ITSStrategyBaseConfig, name="llm_based_plan_selection"):
26
+ """
27
+ Configuration for LLMBasedSelection.
28
+ """
29
+ selection_llm: LLMRef | typing.Any | None = Field(
30
+ default=None,
31
+ description="The LLM to use for selecting the best plan. This can be an instance of an LLM client.")
32
+
33
+ selection_template: str = Field(
34
+ default=("You are tasked with selecting the best plan from several alternative plans."
35
+ " Review the following plans and their feedback carefully to select the most "
36
+ "comprehensive, efficient, and effective one."
37
+ "The plan is for an agent system with the following objective and context:\n\n"
38
+ "{context}\n\n"
39
+ "The system is asked to achieve the following goal:\n\n"
40
+ "{original_prompt}\n\n"
41
+ "The generated plans are as follows."
42
+ "\n\n{plans}"
43
+ "\n\nBased on your analysis, which plan (numbered 1 and onwards) is the best? "
44
+ "Provide a thorough explanation of your choice,"
45
+ " referencing specific strengths from the feedback and how they outweigh any weaknesses."
46
+ "Make sure you begin your choice of selected plan with the words 'SELECTED PLAN:' "
47
+ "followed by the plan number."),
48
+ description="The template to use for selecting the best plan. This should guide the LLM on how to evaluate "
49
+ "the plans and select the best one. Ensure it is clear and concise.")
50
+
51
+ @model_validator(mode="before")
52
+ def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
53
+ """
54
+ Ensure that the selection_llm is provided when using LLMBasedSelection.
55
+ """
56
+ if values.get('selection_llm') is None:
57
+ raise ValueError('selection_llm must be provided when'
58
+ ' selection_strategy is set to LLM_BASED_PLAN_SELECTION.')
59
+
60
+ return values
61
+
62
+
63
+ class LLMBasedAgentOutputSelectionConfig(ITSStrategyBaseConfig, name="llm_based_agent_output_selection"):
64
+ """
65
+ Configuration for LLMBasedSelection.
66
+ """
67
+ selection_llm: LLMRef | typing.Any | None = Field(
68
+ default=None,
69
+ description="The LLM to use for selecting the best plan. This can be an instance of an LLM client.")
70
+
71
+ selection_template: str = Field(
72
+ default=("You are tasked with selecting the best output from several output."
73
+ "The outputs are from an agent system whose object and input will be provided below.\n "
74
+ "Review all the outputs and select one that fits the best. You will do this by "
75
+ "looking at how many outputs have the same classification. Chose the one that has the most. "
76
+ "Of the ones that have the same classification, choose the one that is the most complete, "
77
+ "clear, and comprehensive. The objective of the agent is: \n"
78
+ "{objective}\n\n"
79
+ "\n\nThe agent is asked to achieve the following goal:\n\n"
80
+ "{input}\n\n"
81
+ "The generated outputs are as follows."
82
+ "\n\n{results}"
83
+ "\n\nBased on your analysis, which plan (numbered 1 and onwards) is the best? "
84
+ "Provide a thorough explanation of your choice,"
85
+ " referencing specific strengths from the feedback and how they outweigh any weaknesses."
86
+ "You must ALWAYS select an option, even if the options are identical or similar. "
87
+ "Make sure you begin your choice of selected plan with the words 'SELECTED ITEM:' "
88
+ "followed by the plan number."),
89
+ description="The template to use for selecting the best output. This should guide the LLM on how to evaluate "
90
+ "the outputs and select the best one. Ensure it is clear and concise. Must contain {objective}, "
91
+ "{input}, and {results} ")
92
+
93
+ @model_validator(mode="before")
94
+ def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
95
+ """
96
+ Ensure that the selection_llm is provided when using LLMBasedSelection.
97
+ """
98
+ if values.get('selection_llm') is None:
99
+ raise ValueError('selection_llm must be provided when '
100
+ 'selection_strategy is set to LLM_BASED_AGENT_OUTPUT_SELECTION.')
101
+
102
+ return values
103
+
104
+
105
+ class LLMBasedOutputMergingConfig(ITSStrategyBaseConfig, name="llm_based_agent_output_merging"):
106
+ """
107
+ Configuration for LLMBasedSelection.
108
+ """
109
+ selection_llm: LLMRef | typing.Any | None = Field(
110
+ default=None,
111
+ description="The LLM to use for selecting the best plan. This can be an instance of an LLM client.")
112
+
113
+ selection_template: str = Field(
114
+ default=("You are tasked with merging the output of an agent systems that produces {pipeline_type}."
115
+ "The outputs are from an agent system whose objective and input will be provided below.\n "
116
+ "Review all the outputs, please combine them all into one output, keeping with the intended structure "
117
+ "generated by the outputs and general tone. Capture the important pieces of each of the outputs "
118
+ "to create comprehensive output that achieves the input and objective. "
119
+ "The objective of the agent is: \n"
120
+ "{objective}\n\n"
121
+ "\n\nThe agent is asked to achieve the following goal:\n\n"
122
+ "{input}\n\n"
123
+ "The generated outputs are as follows."
124
+ "\n\n{results}"
125
+ "\n\n Make sure you begin your updated output with the words 'MERGED OUTPUT:' "),
126
+ description="The template to use for selecting the best output. This should guide the LLM on how to evaluate "
127
+ "the outputs and select the best one. Ensure it is clear and concise. Must contain {objective}, "
128
+ "{input}, and {results} ")
129
+
130
+ @model_validator(mode="before")
131
+ def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
132
+ """
133
+ Ensure that the selection_llm is provided when using LLMBasedSelection.
134
+ """
135
+ if values.get('selection_llm') is None:
136
+ raise ValueError('selection_llm must be provided when '
137
+ 'selection_strategy is set to LLM_BASED_AGENT_OUTPUT_SELECTION.')
138
+
139
+ return values
140
+
141
+
142
+ class ThresholdSelectionConfig(ITSStrategyBaseConfig, name="threshold_selection"):
143
+ """
144
+ Configuration for a selection strategy that keeps only the items
145
+ whose scores exceed a specified threshold.
146
+ """
147
+ threshold: float = Field(default=5.0, description="Only keep ITSItems with score >= this value.")
148
+
149
+
150
+ class BestOfNSelectionConfig(ITSStrategyBaseConfig, name="best_of_n_selection"):
151
+ """
152
+ Configuration for Best of N Selection
153
+ """
154
+ pass
@@ -0,0 +1,43 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from enum import Enum
17
+
18
+
19
+ class PipelineTypeEnum(str, Enum):
20
+ """
21
+ Enum to represent the type of pipeline used in Inference Time Scaling.
22
+ """
23
+ PLANNING = "planning"
24
+ TOOL_USE = "tool_use"
25
+ AGENT_EXECUTION = "agent_execution"
26
+ CUSTOM = "custom"
27
+
28
+ def __str__(self) -> str:
29
+ return self.value
30
+
31
+
32
+ class StageTypeEnum(str, Enum):
33
+ """
34
+ Enum to represent the type of stage in a pipeline.
35
+ """
36
+ SEARCH = "search"
37
+ EDITING = "editing"
38
+ SCORING = "scoring"
39
+ SELECTION = "selection"
40
+ CUSTOM = "custom"
41
+
42
+ def __str__(self) -> str:
43
+ return self.value
@@ -0,0 +1,66 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from abc import ABC
17
+ from abc import abstractmethod
18
+
19
+ from aiq.builder.builder import Builder
20
+ from aiq.experimental.inference_time_scaling.models.its_item import ITSItem
21
+ from aiq.experimental.inference_time_scaling.models.stage_enums import StageTypeEnum, PipelineTypeEnum
22
+ from aiq.data_models.its_strategy import ITSStrategyBaseConfig
23
+
24
+
25
+ class StrategyBase(ABC):
26
+ """
27
+ Abstract base class for strategy implementations.
28
+
29
+ This class defines the interface for strategies that can be used in the
30
+ Inference Time Scaling (ITS) framework. Concrete strategy classes should
31
+ implement the methods defined in this class.
32
+ """
33
+
34
+ def __init__(self, config: ITSStrategyBaseConfig) -> None:
35
+ self.config: ITSStrategyBaseConfig = config
36
+ self.pipeline_type: PipelineTypeEnum | None = None
37
+
38
+ @abstractmethod
39
+ async def build_components(self, builder: Builder) -> None:
40
+ """Build the components required for the selector."""
41
+ pass
42
+
43
+ @abstractmethod
44
+ async def ainvoke(self,
45
+ items: list[ITSItem],
46
+ original_prompt: str | None = None,
47
+ agent_context: str | None = None,
48
+ **kwargs) -> [ITSItem]:
49
+ pass
50
+
51
+ @abstractmethod
52
+ def supported_pipeline_types(self) -> [PipelineTypeEnum]:
53
+ """Return the stage types supported by this selector."""
54
+ pass
55
+
56
+ @abstractmethod
57
+ def stage_type(self) -> StageTypeEnum:
58
+ """Return the stage type of this strategy."""
59
+ pass
60
+
61
+ def set_pipeline_type(self, pipeline_type: PipelineTypeEnum) -> None:
62
+ """Set the pipeline type for this strategy."""
63
+ if pipeline_type in self.supported_pipeline_types():
64
+ self.pipeline_type = pipeline_type
65
+ else:
66
+ raise ValueError(f"Pipeline type {pipeline_type} is not supported by this strategy.")
@@ -0,0 +1,41 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from pydantic import BaseModel
17
+ from pydantic import Field
18
+
19
+
20
+ class ToolUseInputSchema(BaseModel):
21
+ """
22
+ Input schema for the tool use function.
23
+ """
24
+ tool_name: str = Field(description="The name of the tool to use. Must be registered in the system.", )
25
+ task_description: str = Field(description="The description of the task to perform with the tool.", )
26
+ motivation: str | None = Field(
27
+ default=None,
28
+ description="An optional motivation for the tool use, providing additional context or reasoning.",
29
+ )
30
+ output: str | None = Field(
31
+ default=None,
32
+ description="The output of the tool use. This can be used to store the result of the tool execution.",
33
+ )
34
+
35
+
36
+ class ToolUselist(BaseModel):
37
+ """
38
+ A list of tools to use.
39
+ """
40
+ tools: list[ToolUseInputSchema] = Field(
41
+ description="A list of tool use inputs, each containing the tool name and task description.", )
@@ -0,0 +1,36 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # pylint: disable=unused-import
17
+ # flake8: noqa
18
+
19
+ from .editing import iterative_plan_refinement_editor
20
+ from .editing import llm_as_a_judge_editor
21
+ from .editing import motivation_aware_summarization
22
+ from .functions import execute_score_select_function
23
+ from .functions import its_tool_orchestration_function
24
+ from .functions import its_tool_wrapper_function
25
+ from .functions import plan_select_execute_function
26
+ from .scoring import llm_based_agent_scorer
27
+ from .scoring import llm_based_plan_scorer
28
+ from .scoring import motivation_aware_scorer
29
+ from .search import multi_llm_planner
30
+ from .search import multi_query_retrieval_search
31
+ from .search import single_shot_multi_plan_planner
32
+ from .selection import best_of_n_selector
33
+ from .selection import llm_based_agent_output_selector
34
+ from .selection import llm_based_output_merging_selector
35
+ from .selection import llm_based_plan_selector
36
+ from .selection import threshold_selector
@@ -0,0 +1,168 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import asyncio
17
+ import logging
18
+ import re
19
+
20
+ from aiq.builder.builder import Builder
21
+ from aiq.builder.framework_enum import LLMFrameworkEnum
22
+ from aiq.cli.register_workflow import register_its_strategy
23
+ from aiq.data_models.its_strategy import ITSStrategyBaseConfig
24
+ from aiq.experimental.inference_time_scaling.models.its_item import ITSItem
25
+ from aiq.experimental.inference_time_scaling.models.scoring_config import LLMBasedAgentScoringConfig
26
+ from aiq.experimental.inference_time_scaling.models.stage_enums import PipelineTypeEnum
27
+ from aiq.experimental.inference_time_scaling.models.stage_enums import StageTypeEnum
28
+ from aiq.experimental.inference_time_scaling.models.strategy_base import StrategyBase
29
+ from aiq.utils.io.model_processing import remove_r1_think_tags
30
+
31
+ logger = logging.getLogger(__name__)
32
+
33
+
34
+ class LLMBasedAgentScorer(StrategyBase):
35
+
36
+ def __init__(self, config: ITSStrategyBaseConfig) -> None:
37
+ super().__init__(config)
38
+ self.llm_bound = None
39
+
40
+ async def build_components(self, builder: Builder) -> None:
41
+ """
42
+ Build the components required for the planner.
43
+ """
44
+ self.llm_bound = await builder.get_llm(self.config.scoring_llm, wrapper_type=LLMFrameworkEnum.LANGCHAIN)
45
+
46
+ def supported_pipeline_types(self) -> [PipelineTypeEnum]:
47
+ return [PipelineTypeEnum.AGENT_EXECUTION]
48
+
49
+ def stage_type(self) -> StageTypeEnum:
50
+ return StageTypeEnum.SCORING
51
+
52
+ async def score_single(self, original_prompt: str, agent_context: str, item: ITSItem) -> float:
53
+ """
54
+ Score a single planning item using the LLM.
55
+
56
+ Args:
57
+ original_prompt (str): The original prompt.
58
+ agent_context (str): The agent context.
59
+ item (ITSItem): The item to score.
60
+
61
+ Returns:
62
+ float: The score of the item.
63
+ """
64
+
65
+ try:
66
+ from langchain_core.language_models import BaseChatModel
67
+ from langchain_core.prompts import PromptTemplate
68
+ except ImportError:
69
+ raise ImportError("langchain-core is not installed. Please install it to use SingleShotMultiPlanPlanner.\n"
70
+ "This error can be resolved by installing aiqtoolkit-langchain.")
71
+
72
+ if not isinstance(self.llm_bound, BaseChatModel):
73
+ raise ValueError("The `scoring_llm` must be an instance of `BaseChatModel`.")
74
+
75
+ model: BaseChatModel = self.llm_bound
76
+
77
+ prompt_template = PromptTemplate(
78
+ template=self.config.scoring_template,
79
+ input_variables=["objective", "input", "output"],
80
+ validate_template=True,
81
+ )
82
+
83
+ prompt = (await prompt_template.ainvoke(
84
+ input={
85
+ "objective": agent_context,
86
+ "input": str(item.input) if not original_prompt else original_prompt,
87
+ "output": str(item.output)
88
+ }))
89
+
90
+ response = (await model.ainvoke(prompt)).content
91
+ response = remove_r1_think_tags(response)
92
+
93
+ # Score will following the format of `FINAL SCORE: <float>` in the response from the LLM
94
+ if not isinstance(response, str):
95
+ logger.warning(f"Invalid response from LLM for scoring: {response}.")
96
+ raise ValueError("Unable to parse the score from the LLM response.")
97
+
98
+ response = response.strip()
99
+ match = re.search(r'FINAL SCORE:\s*([\d.]+)', response)
100
+ if not match:
101
+ logger.warning(f"Could not parse the score from the response: {response}.")
102
+ score_str = '0.0'
103
+ else:
104
+ score_str = match.group(1)
105
+
106
+ try:
107
+ score = float(score_str)
108
+ except ValueError:
109
+ logger.warning(f"Could not convert the score string '{score_str}' to float.")
110
+ raise ValueError(f"Unable to convert the extracted score '{score_str}' to a float.")
111
+
112
+ return score
113
+
114
+ async def ainvoke(self,
115
+ items: list[ITSItem],
116
+ original_prompt: str | None = None,
117
+ agent_context: str | None = None,
118
+ **kwargs) -> list[ITSItem]:
119
+ """
120
+ Score a list of planning items.
121
+
122
+ Args:
123
+ original_prompt (str): The original prompt.
124
+ agent_context (str): The agent context.
125
+ items (list[ITSItem]): The list of planning items to score.
126
+
127
+ Returns:
128
+ list[float]: A list of scores corresponding to each planning item.
129
+ """
130
+ # Run score single concurrently for all planning items
131
+ # Then set the score attribute on each planning item
132
+ if not items:
133
+ return []
134
+ tasks = [
135
+ self.score_single(original_prompt=original_prompt, agent_context=agent_context, item=item) for item in items
136
+ ]
137
+
138
+ # Gather all scores concurrently
139
+ scores = await asyncio.gather(*tasks)
140
+
141
+ if len(scores) != len(items):
142
+ logger.warning(f"Number of scores {len(scores)} does not match the number of items {len(items)}.")
143
+ raise ValueError("Mismatch in number of scores and planning items.")
144
+
145
+ logger.debug("Scores for planning items: %s", scores)
146
+
147
+ # Set the score on each planning item for reference
148
+ for idx, score in enumerate(scores):
149
+ items[idx].score = score
150
+
151
+ return items
152
+
153
+
154
+ @register_its_strategy(config_type=LLMBasedAgentScoringConfig)
155
+ async def register_llm_based_agent_scorer(config: LLMBasedAgentScoringConfig, builder: Builder):
156
+ """
157
+ Register the LLM-based agent scorer with the provided configuration and builder.
158
+
159
+ Args:
160
+ config (LLMBasedAgentScoringConfig): The configuration for the LLM-based agent scorer.
161
+ builder (Builder): The builder instance to use for building components.
162
+
163
+ Returns:
164
+ LLMBasedAgentScorer: The registered LLM-based agent scorer.
165
+ """
166
+ scorer = LLMBasedAgentScorer(config)
167
+ await scorer.build_components(builder)
168
+ yield scorer