aiqa-client 0.5.2__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiqa/__init__.py +8 -2
- aiqa/client.py +90 -5
- aiqa/constants.py +1 -1
- aiqa/experiment_runner.py +245 -109
- aiqa/llm_as_judge.py +282 -0
- aiqa/object_serialiser.py +5 -2
- aiqa/span_helpers.py +511 -0
- aiqa/tracing.py +252 -565
- aiqa/tracing_llm_utils.py +20 -9
- aiqa/types.py +61 -0
- {aiqa_client-0.5.2.dist-info → aiqa_client-0.7.0.dist-info}/METADATA +1 -1
- aiqa_client-0.7.0.dist-info/RECORD +17 -0
- {aiqa_client-0.5.2.dist-info → aiqa_client-0.7.0.dist-info}/WHEEL +1 -1
- aiqa_client-0.5.2.dist-info/RECORD +0 -14
- {aiqa_client-0.5.2.dist-info → aiqa_client-0.7.0.dist-info}/licenses/LICENSE.txt +0 -0
- {aiqa_client-0.5.2.dist-info → aiqa_client-0.7.0.dist-info}/top_level.txt +0 -0
aiqa/tracing.py
CHANGED
|
@@ -1,51 +1,24 @@
|
|
|
1
1
|
"""
|
|
2
|
-
OpenTelemetry tracing
|
|
3
|
-
Provides WithTracing decorator to automatically trace function calls.
|
|
2
|
+
OpenTelemetry tracing decorator. Provides WithTracing decorator to automatically trace function calls.
|
|
4
3
|
"""
|
|
5
4
|
|
|
6
|
-
import json
|
|
7
5
|
import logging
|
|
8
6
|
import inspect
|
|
9
|
-
import
|
|
10
|
-
import copy
|
|
11
|
-
import requests
|
|
7
|
+
import fnmatch
|
|
12
8
|
from typing import Any, Callable, Optional, List
|
|
13
9
|
from functools import wraps
|
|
14
10
|
from opentelemetry import trace
|
|
15
|
-
from opentelemetry.
|
|
16
|
-
|
|
17
|
-
from
|
|
18
|
-
from .
|
|
19
|
-
from .constants import AIQA_TRACER_NAME, LOG_TAG
|
|
11
|
+
from opentelemetry.trace import Status, StatusCode
|
|
12
|
+
|
|
13
|
+
from .client import get_aiqa_client, get_component_tag, get_aiqa_tracer
|
|
14
|
+
from .constants import LOG_TAG
|
|
20
15
|
from .object_serialiser import serialize_for_span
|
|
21
|
-
from .http_utils import build_headers, get_server_url, get_api_key
|
|
22
16
|
from .tracing_llm_utils import _extract_and_set_token_usage, _extract_and_set_provider_and_model
|
|
23
17
|
|
|
24
18
|
logger = logging.getLogger(LOG_TAG)
|
|
25
19
|
|
|
26
20
|
|
|
27
|
-
|
|
28
|
-
"""
|
|
29
|
-
Flush all pending spans to the server.
|
|
30
|
-
Flushes also happen automatically every few seconds. So you only need to call this function
|
|
31
|
-
if you want to flush immediately, e.g. before exiting a process.
|
|
32
|
-
A common use is if you are tracing unit tests or experiment runs.
|
|
33
|
-
|
|
34
|
-
This flushes the BatchSpanProcessor (OTLP exporter doesn't have a separate flush method).
|
|
35
|
-
"""
|
|
36
|
-
client = get_aiqa_client()
|
|
37
|
-
if client.provider:
|
|
38
|
-
client.provider.force_flush() # Synchronous method
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
# Export provider and exporter accessors for advanced usage
|
|
42
|
-
|
|
43
|
-
__all__ = [
|
|
44
|
-
"flush_tracing", "WithTracing",
|
|
45
|
-
"set_span_attribute", "set_span_name", "get_active_span",
|
|
46
|
-
"get_active_trace_id", "get_span_id", "create_span_from_trace_id", "inject_trace_context", "extract_trace_context",
|
|
47
|
-
"set_conversation_id", "set_component_tag", "set_token_usage", "set_provider_and_model", "get_span", "submit_feedback"
|
|
48
|
-
]
|
|
21
|
+
__all__ = ["WithTracing"]
|
|
49
22
|
|
|
50
23
|
|
|
51
24
|
class TracingOptions:
|
|
@@ -73,20 +46,25 @@ class TracingOptions:
|
|
|
73
46
|
descriptive names.
|
|
74
47
|
|
|
75
48
|
ignore_input: Iterable of keys (e.g., list, set) to exclude from
|
|
76
|
-
input data when recording span attributes.
|
|
77
|
-
|
|
78
|
-
|
|
49
|
+
input data when recording span attributes. Applies after filter_input if both are set.
|
|
50
|
+
Supports "self" and simple wildcards (e.g., `"_*"`
|
|
51
|
+
matches `"_apple"`, `"_fruit"`). The pattern `"_*"` is applied by default
|
|
52
|
+
to filter properties starting with '_' in nested objects.
|
|
79
53
|
|
|
80
54
|
ignore_output: Iterable of keys (e.g., list, set) to exclude from
|
|
81
55
|
output data when recording span attributes. Only applies when
|
|
82
|
-
output is a dictionary.
|
|
83
|
-
|
|
56
|
+
output is a dictionary. Supports simple wildcards (e.g., `"_*"`
|
|
57
|
+
matches `"_apple"`, `"_fruit"`). The pattern `"_*"` is applied by default
|
|
58
|
+
to filter properties starting with '_' in nested objects. Useful for excluding
|
|
59
|
+
large or sensitive fields from traces.
|
|
84
60
|
|
|
85
|
-
filter_input: Callable function that receives the
|
|
86
|
-
and returns a filtered/transformed
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
61
|
+
filter_input: Callable function that receives the same arguments as the
|
|
62
|
+
decorated function (*args, **kwargs) and returns a filtered/transformed
|
|
63
|
+
version to be recorded in the span. This allows you to extract specific
|
|
64
|
+
properties from any kind of object, including `self` for methods.
|
|
65
|
+
The function receives the exact same inputs as the decorated function,
|
|
66
|
+
including `self` for bound methods. Returns a dict or any value that
|
|
67
|
+
will be converted to a dict. Applied before ignore_input filtering.
|
|
90
68
|
|
|
91
69
|
filter_output: Callable function that receives the output data and
|
|
92
70
|
returns a filtered/transformed version to be recorded in the span.
|
|
@@ -107,6 +85,22 @@ class TracingOptions:
|
|
|
107
85
|
)
|
|
108
86
|
def process_data(items):
|
|
109
87
|
return items
|
|
88
|
+
|
|
89
|
+
# Extract properties from self in a method
|
|
90
|
+
class ExperimentRunner:
|
|
91
|
+
def __init__(self, dataset_id, experiment_id):
|
|
92
|
+
self.dataset_id = dataset_id
|
|
93
|
+
self.experiment_id = experiment_id
|
|
94
|
+
|
|
95
|
+
@WithTracing(
|
|
96
|
+
filter_input=lambda self, example: {
|
|
97
|
+
"dataset": self.dataset_id,
|
|
98
|
+
"experiment": self.experiment_id,
|
|
99
|
+
"example": example.id if hasattr(example, 'id') else None
|
|
100
|
+
}
|
|
101
|
+
)
|
|
102
|
+
def run_example(self, example):
|
|
103
|
+
return self.process(example)
|
|
110
104
|
"""
|
|
111
105
|
self.name = name
|
|
112
106
|
self.ignore_input = ignore_input
|
|
@@ -115,6 +109,23 @@ class TracingOptions:
|
|
|
115
109
|
self.filter_output = filter_output
|
|
116
110
|
|
|
117
111
|
|
|
112
|
+
def _matches_ignore_pattern(key: str, ignore_patterns: List[str]) -> bool:
|
|
113
|
+
"""
|
|
114
|
+
Check if a key matches any pattern in the ignore list.
|
|
115
|
+
Supports simple wildcards (e.g., "_*" matches "_apple", "_fruit").
|
|
116
|
+
"""
|
|
117
|
+
for pattern in ignore_patterns:
|
|
118
|
+
if "*" in pattern or "?" in pattern:
|
|
119
|
+
# Use fnmatch for wildcard matching
|
|
120
|
+
if fnmatch.fnmatch(key, pattern):
|
|
121
|
+
return True
|
|
122
|
+
else:
|
|
123
|
+
# Exact match for non-wildcard patterns
|
|
124
|
+
if key == pattern:
|
|
125
|
+
return True
|
|
126
|
+
return False
|
|
127
|
+
|
|
128
|
+
|
|
118
129
|
def _prepare_input(args: tuple, kwargs: dict, sig: Optional[inspect.Signature] = None) -> Any:
|
|
119
130
|
"""Prepare input for span attributes.
|
|
120
131
|
Converts args and kwargs into a unified dict structure using function signature when available.
|
|
@@ -157,6 +168,89 @@ def _prepare_input(args: tuple, kwargs: dict, sig: Optional[inspect.Signature] =
|
|
|
157
168
|
return result
|
|
158
169
|
|
|
159
170
|
|
|
171
|
+
def _apply_ignore_patterns(
|
|
172
|
+
data_dict: dict,
|
|
173
|
+
ignore_patterns: Optional[List[str]],
|
|
174
|
+
recursive: bool = True,
|
|
175
|
+
max_depth: int = 100,
|
|
176
|
+
current_depth: int = 0
|
|
177
|
+
) -> dict:
|
|
178
|
+
"""
|
|
179
|
+
Apply ignore patterns to a dict, optionally recursively.
|
|
180
|
+
Supports string keys, wildcard patterns (*), and list of patterns.
|
|
181
|
+
Used for both ignore_input and ignore_output.
|
|
182
|
+
|
|
183
|
+
Args:
|
|
184
|
+
data_dict: Dictionary to filter (may contain nested dictionaries)
|
|
185
|
+
ignore_patterns: List of patterns to exclude (e.g., ["self", "_*", "password"])
|
|
186
|
+
recursive: Whether to apply patterns recursively to nested dictionaries
|
|
187
|
+
max_depth: Maximum recursion depth to prevent infinite loops (default: 100)
|
|
188
|
+
current_depth: Current recursion depth (internal use)
|
|
189
|
+
|
|
190
|
+
Returns:
|
|
191
|
+
Filtered dictionary with matching keys removed
|
|
192
|
+
"""
|
|
193
|
+
if not isinstance(data_dict, dict):
|
|
194
|
+
return data_dict
|
|
195
|
+
|
|
196
|
+
# Safety check: prevent infinite loops from extremely deep nesting
|
|
197
|
+
if current_depth >= max_depth:
|
|
198
|
+
logger.warning(
|
|
199
|
+
f"_apply_ignore_patterns: max depth {max_depth} reached, "
|
|
200
|
+
f"stopping recursion to prevent infinite loop"
|
|
201
|
+
)
|
|
202
|
+
return data_dict
|
|
203
|
+
|
|
204
|
+
# If no patterns, return copy (no filtering needed, even if recursive=True)
|
|
205
|
+
if not ignore_patterns:
|
|
206
|
+
return data_dict.copy()
|
|
207
|
+
|
|
208
|
+
result = {}
|
|
209
|
+
for key, value in data_dict.items():
|
|
210
|
+
# Skip keys that match ignore patterns
|
|
211
|
+
if _matches_ignore_pattern(key, ignore_patterns):
|
|
212
|
+
continue
|
|
213
|
+
|
|
214
|
+
# Recursively process nested dictionaries if recursive=True
|
|
215
|
+
if recursive and isinstance(value, dict):
|
|
216
|
+
result[key] = _apply_ignore_patterns(
|
|
217
|
+
value, ignore_patterns, recursive, max_depth, current_depth + 1
|
|
218
|
+
)
|
|
219
|
+
else:
|
|
220
|
+
result[key] = value
|
|
221
|
+
|
|
222
|
+
return result
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def _merge_with_default_ignore_patterns(
|
|
226
|
+
ignore_patterns: Optional[List[str]],
|
|
227
|
+
client: Optional[Any] = None
|
|
228
|
+
) -> List[str]:
|
|
229
|
+
"""
|
|
230
|
+
Merge user-provided ignore patterns with client's default ignore patterns.
|
|
231
|
+
|
|
232
|
+
Args:
|
|
233
|
+
ignore_patterns: Optional list of user-provided patterns
|
|
234
|
+
client: Optional client instance (to avoid repeated get_aiqa_client() calls)
|
|
235
|
+
|
|
236
|
+
Returns:
|
|
237
|
+
List of patterns including client's default ignore patterns
|
|
238
|
+
"""
|
|
239
|
+
if client is None:
|
|
240
|
+
client = get_aiqa_client()
|
|
241
|
+
default_patterns = client.default_ignore_patterns
|
|
242
|
+
|
|
243
|
+
if ignore_patterns is None:
|
|
244
|
+
return default_patterns.copy() if default_patterns else []
|
|
245
|
+
|
|
246
|
+
# Merge patterns, avoiding duplicates
|
|
247
|
+
merged = list(default_patterns)
|
|
248
|
+
for pattern in ignore_patterns:
|
|
249
|
+
if pattern not in merged:
|
|
250
|
+
merged.append(pattern)
|
|
251
|
+
return merged
|
|
252
|
+
|
|
253
|
+
|
|
160
254
|
def _prepare_and_filter_input(
|
|
161
255
|
args: tuple,
|
|
162
256
|
kwargs: dict,
|
|
@@ -165,44 +259,73 @@ def _prepare_and_filter_input(
|
|
|
165
259
|
sig: Optional[inspect.Signature] = None,
|
|
166
260
|
) -> Any:
|
|
167
261
|
"""
|
|
168
|
-
Prepare and filter input for span attributes
|
|
169
|
-
|
|
262
|
+
Prepare and filter input for span attributes.
|
|
263
|
+
|
|
264
|
+
Process flow:
|
|
265
|
+
1. Apply filter_input to args, kwargs (receives same inputs as decorated function, including self)
|
|
266
|
+
2. Convert into dict ready for span.attributes.input
|
|
267
|
+
3. Apply ignore_input to the dict (supports string, wildcard, and list patterns)
|
|
268
|
+
Client's default ignore patterns are automatically merged with ignore_input.
|
|
269
|
+
|
|
270
|
+
Args:
|
|
271
|
+
args: Positional arguments (including self for bound methods)
|
|
272
|
+
kwargs: Keyword arguments
|
|
273
|
+
filter_input: Optional function to filter/transform args and kwargs before conversion.
|
|
274
|
+
Receives *args, **kwargs with the same signature as the function being decorated,
|
|
275
|
+
including `self` for bound methods. This allows extracting properties from any object.
|
|
276
|
+
ignore_input: Optional list of keys/patterns to exclude from the final dict.
|
|
277
|
+
If "self" is in ignore_input, it will be removed from the final dict but filter_input
|
|
278
|
+
still receives it. Client's default ignore patterns are automatically merged.
|
|
279
|
+
sig: Optional function signature for proper arg name resolution
|
|
280
|
+
|
|
281
|
+
Returns:
|
|
282
|
+
Prepared input data (dict, list, or other) ready for span.attributes.input
|
|
170
283
|
"""
|
|
171
|
-
#
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
#
|
|
183
|
-
if
|
|
184
|
-
|
|
185
|
-
# Adjust signature to remove "self" parameter if present
|
|
186
|
-
# This is needed because we removed self from args, so signature binding will fail otherwise
|
|
187
|
-
if filtered_sig is not None:
|
|
188
|
-
params = list(filtered_sig.parameters.values())
|
|
189
|
-
if params and params[0].name == "self":
|
|
190
|
-
filtered_sig = filtered_sig.replace(parameters=params[1:])
|
|
191
|
-
# turn args, kwargs into one "nice" object (now always a dict when signature is available)
|
|
192
|
-
input_data = _prepare_input(filtered_args, filtered_kwargs, filtered_sig)
|
|
193
|
-
if filter_input and input_data is not None:
|
|
194
|
-
input_data = filter_input(input_data)
|
|
195
|
-
if filtered_ignore_input and len(filtered_ignore_input) > 0:
|
|
196
|
-
if not isinstance(input_data, dict):
|
|
197
|
-
logger.warning(f"_prepare_and_filter_input: skip: ignore_input is set beyond 'self': {filtered_ignore_input} but input_data is not a dict: {type(input_data)}")
|
|
284
|
+
# Step 1: Apply filter_input to args, kwargs (same inputs as decorated function, including self)
|
|
285
|
+
if filter_input:
|
|
286
|
+
# filter_input receives the exact same args/kwargs as the decorated function
|
|
287
|
+
# This allows it to access self and extract properties from any object
|
|
288
|
+
try:
|
|
289
|
+
filtered_result = filter_input(*args, **kwargs)
|
|
290
|
+
except TypeError:
|
|
291
|
+
# Fallback: backward compatibility - convert to dict first
|
|
292
|
+
temp_dict = _prepare_input(args, kwargs, sig)
|
|
293
|
+
filtered_result = filter_input(temp_dict)
|
|
294
|
+
|
|
295
|
+
# Step 2: Convert filter_input result into dict ready for span.attributes.input
|
|
296
|
+
if isinstance(filtered_result, dict):
|
|
297
|
+
input_data = filtered_result
|
|
198
298
|
else:
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
299
|
+
# Convert filter_input result to dict using signature
|
|
300
|
+
# Use original sig (not filtered) since filter_input received all args including self
|
|
301
|
+
input_data = _prepare_input(
|
|
302
|
+
(filtered_result,) if not isinstance(filtered_result, tuple) else filtered_result,
|
|
303
|
+
{},
|
|
304
|
+
sig
|
|
305
|
+
)
|
|
306
|
+
else:
|
|
307
|
+
# Step 2: Convert into dict ready for span.attributes.input
|
|
308
|
+
input_data = _prepare_input(args, kwargs, sig)
|
|
309
|
+
|
|
310
|
+
# Step 3: Apply ignore_input to the dict (removes "self" from final dict if specified)
|
|
311
|
+
# Merge with client's default ignore patterns
|
|
312
|
+
client = get_aiqa_client()
|
|
313
|
+
merged_ignore_input = _merge_with_default_ignore_patterns(ignore_input, client)
|
|
314
|
+
should_ignore_self = "self" in merged_ignore_input
|
|
315
|
+
|
|
316
|
+
if isinstance(input_data, dict):
|
|
317
|
+
input_data = _apply_ignore_patterns(
|
|
318
|
+
input_data,
|
|
319
|
+
merged_ignore_input,
|
|
320
|
+
recursive=client.ignore_recursive
|
|
321
|
+
)
|
|
322
|
+
# Handle case where we removed self and there are no remaining args/kwargs
|
|
323
|
+
if should_ignore_self and not input_data:
|
|
324
|
+
return None
|
|
325
|
+
elif merged_ignore_input:
|
|
326
|
+
# Warn if ignore patterns are set but input_data is not a dict
|
|
327
|
+
logger.warning(f"_prepare_and_filter_input: skip: ignore patterns are set but input_data is not a dict: {type(input_data)}")
|
|
328
|
+
|
|
206
329
|
return input_data
|
|
207
330
|
|
|
208
331
|
|
|
@@ -211,17 +334,30 @@ def _filter_and_serialize_output(
|
|
|
211
334
|
filter_output: Optional[Callable[[Any], Any]],
|
|
212
335
|
ignore_output: Optional[List[str]],
|
|
213
336
|
) -> Any:
|
|
214
|
-
"""
|
|
337
|
+
"""
|
|
338
|
+
Filter and serialize output for span attributes.
|
|
339
|
+
Client's default ignore patterns are automatically merged with ignore_output.
|
|
340
|
+
"""
|
|
215
341
|
output_data = result
|
|
216
342
|
if filter_output:
|
|
217
343
|
if isinstance(output_data, dict):
|
|
218
344
|
output_data = output_data.copy() # copy to provide shallow protection against the user accidentally mutating the output with filter_output
|
|
219
345
|
output_data = filter_output(output_data)
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
346
|
+
|
|
347
|
+
# Apply ignore_output patterns (supports key, wildcard, and list patterns)
|
|
348
|
+
# Merge with client's default ignore patterns
|
|
349
|
+
client = get_aiqa_client()
|
|
350
|
+
merged_ignore_output = _merge_with_default_ignore_patterns(ignore_output, client)
|
|
351
|
+
|
|
352
|
+
if isinstance(output_data, dict):
|
|
353
|
+
output_data = _apply_ignore_patterns(
|
|
354
|
+
output_data,
|
|
355
|
+
merged_ignore_output,
|
|
356
|
+
recursive=client.ignore_recursive
|
|
357
|
+
)
|
|
358
|
+
elif merged_ignore_output:
|
|
359
|
+
# Warn if ignore patterns are set but output_data is not a dict
|
|
360
|
+
logger.warning(f"_filter_and_serialize_output: skip: ignore patterns are set but output_data is not a dict: {type(output_data)}")
|
|
225
361
|
|
|
226
362
|
# Serialize immediately to create immutable result (removes mutable structures)
|
|
227
363
|
return serialize_for_span(output_data)
|
|
@@ -438,13 +574,24 @@ def WithTracing(
|
|
|
438
574
|
func: The function to trace (when used as @WithTracing)
|
|
439
575
|
name: Optional custom name for the span (defaults to function name)
|
|
440
576
|
ignore_input: List of keys to exclude from input data when recording span attributes.
|
|
441
|
-
|
|
442
|
-
|
|
577
|
+
self is handled as "self"
|
|
578
|
+
Supports simple wildcards (e.g., "_*"
|
|
579
|
+
matches "_apple", "_fruit"). The pattern "_*" is applied by default
|
|
580
|
+
to filter properties starting with '_' in nested objects. For example, use
|
|
581
|
+
["password", "api_key"] to exclude additional sensitive fields from being traced.
|
|
443
582
|
ignore_output: List of keys to exclude from output data when recording span attributes.
|
|
444
|
-
Only applies when output is a dictionary.
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
583
|
+
Only applies when output is a dictionary. Supports simple wildcards (e.g., "_*"
|
|
584
|
+
matches "_apple", "_fruit"). The pattern "_*" is applied by default
|
|
585
|
+
to filter properties starting with '_' in nested objects. Useful for excluding
|
|
586
|
+
large or sensitive fields from traces.
|
|
587
|
+
filter_input: Function to filter/transform input before recording.
|
|
588
|
+
Receives the same arguments as the decorated function (*args, **kwargs),
|
|
589
|
+
including `self` for bound methods. This allows you to extract specific
|
|
590
|
+
properties from any kind of object. For example, to extract `dataset_id`
|
|
591
|
+
from `self` in a method: `filter_input=lambda self, x: {"dataset": self.dataset_id, "x": x}`.
|
|
592
|
+
Returns a dict or any value (will be converted to dict). Applied before ignore_input.
|
|
593
|
+
filter_output: Function to filter/transform output before recording.
|
|
594
|
+
Receives the output value and returns a filtered/transformed version.
|
|
448
595
|
|
|
449
596
|
Example:
|
|
450
597
|
@WithTracing
|
|
@@ -454,6 +601,17 @@ def WithTracing(
|
|
|
454
601
|
@WithTracing(name="custom_name")
|
|
455
602
|
def another_function():
|
|
456
603
|
pass
|
|
604
|
+
|
|
605
|
+
# Extract properties from self in a method
|
|
606
|
+
class MyClass:
|
|
607
|
+
def __init__(self, dataset_id):
|
|
608
|
+
self.dataset_id = dataset_id
|
|
609
|
+
|
|
610
|
+
@WithTracing(
|
|
611
|
+
filter_input=lambda self, x: {"dataset": self.dataset_id, "x": x}
|
|
612
|
+
)
|
|
613
|
+
def process(self, x):
|
|
614
|
+
return x * 2
|
|
457
615
|
"""
|
|
458
616
|
def decorator(fn: Callable) -> Callable:
|
|
459
617
|
fn_name = name or fn.__name__ or "_"
|
|
@@ -598,7 +756,8 @@ def WithTracing(
|
|
|
598
756
|
# This is called lazily when the function runs, not at decorator definition time
|
|
599
757
|
client = get_aiqa_client()
|
|
600
758
|
if not client.enabled:
|
|
601
|
-
|
|
759
|
+
# executor() returns an async generator object, not a coroutine, so don't await it
|
|
760
|
+
return executor()
|
|
602
761
|
|
|
603
762
|
# Get tracer after initialization (lazy)
|
|
604
763
|
tracer = get_aiqa_tracer()
|
|
@@ -677,476 +836,4 @@ def WithTracing(
|
|
|
677
836
|
return decorator(func)
|
|
678
837
|
|
|
679
838
|
|
|
680
|
-
def set_span_attribute(attribute_name: str, attribute_value: Any) -> bool:
|
|
681
|
-
"""
|
|
682
|
-
Set an attribute on the active span.
|
|
683
|
-
|
|
684
|
-
Returns:
|
|
685
|
-
True if attribute was set, False if no active span found
|
|
686
|
-
"""
|
|
687
|
-
span = trace.get_current_span()
|
|
688
|
-
if span and span.is_recording():
|
|
689
|
-
span.set_attribute(attribute_name, serialize_for_span(attribute_value))
|
|
690
|
-
return True
|
|
691
|
-
return False
|
|
692
|
-
|
|
693
|
-
def set_span_name(span_name: str) -> bool:
|
|
694
|
-
"""
|
|
695
|
-
Set the name of the active span.
|
|
696
|
-
"""
|
|
697
|
-
span = trace.get_current_span()
|
|
698
|
-
if span and span.is_recording():
|
|
699
|
-
span.update_name(span_name)
|
|
700
|
-
return True
|
|
701
|
-
return False
|
|
702
|
-
|
|
703
|
-
def get_active_span() -> Optional[trace.Span]:
|
|
704
|
-
"""Get the currently active span."""
|
|
705
|
-
return trace.get_current_span()
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
def set_conversation_id(conversation_id: str) -> bool:
|
|
709
|
-
"""
|
|
710
|
-
Naturally a conversation might span several traces.
|
|
711
|
-
Set the gen_ai.conversation.id attribute on the active span.
|
|
712
|
-
This allows you to group multiple traces together that are part of the same conversation.
|
|
713
|
-
See https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-events/ for more details.
|
|
714
|
-
|
|
715
|
-
Args:
|
|
716
|
-
conversation_id: A unique identifier for the conversation (e.g., user session ID, chat ID, etc.)
|
|
717
|
-
|
|
718
|
-
Returns:
|
|
719
|
-
True if gen_ai.conversation.id was set, False if no active span found
|
|
720
|
-
|
|
721
|
-
Example:
|
|
722
|
-
from aiqa import WithTracing, set_conversation_id
|
|
723
|
-
|
|
724
|
-
@WithTracing
|
|
725
|
-
def handle_user_request(user_id: str, request: dict):
|
|
726
|
-
# Set conversation ID to group all traces for this user session
|
|
727
|
-
set_conversation_id(f"user_{user_id}_session_{request.get('session_id')}")
|
|
728
|
-
# ... rest of function
|
|
729
|
-
"""
|
|
730
|
-
return set_span_attribute("gen_ai.conversation.id", conversation_id)
|
|
731
|
-
|
|
732
|
-
|
|
733
|
-
def set_token_usage(
|
|
734
|
-
input_tokens: Optional[int] = None,
|
|
735
|
-
output_tokens: Optional[int] = None,
|
|
736
|
-
total_tokens: Optional[int] = None,
|
|
737
|
-
) -> bool:
|
|
738
|
-
"""
|
|
739
|
-
Set token usage attributes on the active span using OpenTelemetry semantic conventions for gen_ai.
|
|
740
|
-
This allows you to explicitly record token usage information.
|
|
741
|
-
AIQA tracing will automatically detect and set token usage from standard OpenAI-like API responses.
|
|
742
|
-
See https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/ for more details.
|
|
743
|
-
|
|
744
|
-
Args:
|
|
745
|
-
input_tokens: Number of input tokens used (maps to gen_ai.usage.input_tokens)
|
|
746
|
-
output_tokens: Number of output tokens generated (maps to gen_ai.usage.output_tokens)
|
|
747
|
-
total_tokens: Total number of tokens used (maps to gen_ai.usage.total_tokens)
|
|
748
|
-
|
|
749
|
-
Returns:
|
|
750
|
-
True if at least one token usage attribute was set, False if no active span found
|
|
751
|
-
|
|
752
|
-
Example:
|
|
753
|
-
from aiqa import WithTracing, set_token_usage
|
|
754
|
-
|
|
755
|
-
@WithTracing
|
|
756
|
-
def call_llm(prompt: str):
|
|
757
|
-
response = openai_client.chat.completions.create(...)
|
|
758
|
-
# Explicitly set token usage
|
|
759
|
-
set_token_usage(
|
|
760
|
-
input_tokens=response.usage.prompt_tokens,
|
|
761
|
-
output_tokens=response.usage.completion_tokens,
|
|
762
|
-
total_tokens=response.usage.total_tokens
|
|
763
|
-
)
|
|
764
|
-
return response
|
|
765
|
-
"""
|
|
766
|
-
span = trace.get_current_span()
|
|
767
|
-
if not span or not span.is_recording():
|
|
768
|
-
return False
|
|
769
|
-
|
|
770
|
-
set_count = 0
|
|
771
|
-
try:
|
|
772
|
-
if input_tokens is not None:
|
|
773
|
-
span.set_attribute("gen_ai.usage.input_tokens", input_tokens)
|
|
774
|
-
set_count += 1
|
|
775
|
-
if output_tokens is not None:
|
|
776
|
-
span.set_attribute("gen_ai.usage.output_tokens", output_tokens)
|
|
777
|
-
set_count += 1
|
|
778
|
-
if total_tokens is not None:
|
|
779
|
-
span.set_attribute("gen_ai.usage.total_tokens", total_tokens)
|
|
780
|
-
set_count += 1
|
|
781
|
-
except Exception as e:
|
|
782
|
-
logger.warning(f"Failed to set token usage attributes: {e}")
|
|
783
|
-
return False
|
|
784
|
-
|
|
785
|
-
return set_count > 0
|
|
786
|
-
|
|
787
|
-
|
|
788
|
-
def set_provider_and_model(
|
|
789
|
-
provider: Optional[str] = None,
|
|
790
|
-
model: Optional[str] = None,
|
|
791
|
-
) -> bool:
|
|
792
|
-
"""
|
|
793
|
-
Set provider and model attributes on the active span using OpenTelemetry semantic conventions for gen_ai.
|
|
794
|
-
This allows you to explicitly record provider and model information.
|
|
795
|
-
AIQA tracing will automatically detect and set provider/model from standard API responses.
|
|
796
|
-
See https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/ for more details.
|
|
797
|
-
|
|
798
|
-
Args:
|
|
799
|
-
provider: Name of the AI provider (e.g., "openai", "anthropic", "google") (maps to gen_ai.provider.name)
|
|
800
|
-
model: Name of the model used (e.g., "gpt-4", "claude-3-5-sonnet") (maps to gen_ai.request.model)
|
|
801
|
-
|
|
802
|
-
Returns:
|
|
803
|
-
True if at least one attribute was set, False if no active span found
|
|
804
|
-
|
|
805
|
-
Example:
|
|
806
|
-
from aiqa import WithTracing, set_provider_and_model
|
|
807
|
-
|
|
808
|
-
@WithTracing
|
|
809
|
-
def call_llm(prompt: str):
|
|
810
|
-
response = openai_client.chat.completions.create(...)
|
|
811
|
-
# Explicitly set provider and model
|
|
812
|
-
set_provider_and_model(
|
|
813
|
-
provider="openai",
|
|
814
|
-
model=response.model
|
|
815
|
-
)
|
|
816
|
-
return response
|
|
817
|
-
"""
|
|
818
|
-
span = trace.get_current_span()
|
|
819
|
-
if not span or not span.is_recording():
|
|
820
|
-
return False
|
|
821
|
-
|
|
822
|
-
set_count = 0
|
|
823
|
-
try:
|
|
824
|
-
if provider is not None:
|
|
825
|
-
span.set_attribute("gen_ai.provider.name", str(provider))
|
|
826
|
-
set_count += 1
|
|
827
|
-
if model is not None:
|
|
828
|
-
span.set_attribute("gen_ai.request.model", str(model))
|
|
829
|
-
set_count += 1
|
|
830
|
-
except Exception as e:
|
|
831
|
-
logger.warning(f"Failed to set provider/model attributes: {e}")
|
|
832
|
-
return False
|
|
833
|
-
|
|
834
|
-
return set_count > 0
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
def set_component_tag(tag: str) -> None:
|
|
838
|
-
"""
|
|
839
|
-
Set the component tag that will be added to all spans created by AIQA.
|
|
840
|
-
This can also be set via the AIQA_COMPONENT_TAG environment variable.
|
|
841
|
-
The component tag allows you to identify which component/system generated the spans.
|
|
842
|
-
|
|
843
|
-
Note: Initialization is automatic when WithTracing is first used. You can also call
|
|
844
|
-
get_aiqa_client() explicitly if needed.
|
|
845
|
-
the client and load environment variables.
|
|
846
|
-
|
|
847
|
-
Args:
|
|
848
|
-
tag: A component identifier (e.g., "mynamespace.mysystem", "backend.api", etc.)
|
|
849
|
-
|
|
850
|
-
Example:
|
|
851
|
-
from aiqa import get_aiqa_client, set_component_tag, WithTracing
|
|
852
|
-
|
|
853
|
-
# Initialize client (loads env vars including AIQA_COMPONENT_TAG)
|
|
854
|
-
get_aiqa_client()
|
|
855
|
-
|
|
856
|
-
# Or set component tag programmatically (overrides env var)
|
|
857
|
-
set_component_tag("mynamespace.mysystem")
|
|
858
|
-
|
|
859
|
-
@WithTracing
|
|
860
|
-
def my_function():
|
|
861
|
-
pass
|
|
862
|
-
"""
|
|
863
|
-
_set_component_tag(tag)
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
def get_active_trace_id() -> Optional[str]:
|
|
867
|
-
"""
|
|
868
|
-
Get the current trace ID as a hexadecimal string (32 characters).
|
|
869
|
-
|
|
870
|
-
Returns:
|
|
871
|
-
The trace ID as a hex string, or None if no active span exists.
|
|
872
|
-
|
|
873
|
-
Example:
|
|
874
|
-
trace_id = get_active_trace_id()
|
|
875
|
-
# Pass trace_id to another service/agent
|
|
876
|
-
# e.g., include in HTTP headers, message queue metadata, etc.
|
|
877
|
-
# Within a single thread, OpenTelemetry normally does this for you.
|
|
878
|
-
"""
|
|
879
|
-
span = trace.get_current_span()
|
|
880
|
-
if span and span.get_span_context().is_valid:
|
|
881
|
-
return format(span.get_span_context().trace_id, "032x")
|
|
882
|
-
return None
|
|
883
|
-
|
|
884
|
-
|
|
885
|
-
def get_span_id() -> Optional[str]:
|
|
886
|
-
"""
|
|
887
|
-
Get the current span ID as a hexadecimal string (16 characters).
|
|
888
|
-
|
|
889
|
-
Returns:
|
|
890
|
-
The span ID as a hex string, or None if no active span exists.
|
|
891
|
-
|
|
892
|
-
Example:
|
|
893
|
-
span_id = get_span_id()
|
|
894
|
-
# Can be used to create child spans in other services
|
|
895
|
-
"""
|
|
896
|
-
span = trace.get_current_span()
|
|
897
|
-
if span and span.get_span_context().is_valid:
|
|
898
|
-
return format(span.get_span_context().span_id, "016x")
|
|
899
|
-
return None
|
|
900
|
-
|
|
901
|
-
|
|
902
|
-
def create_span_from_trace_id(
|
|
903
|
-
trace_id: str,
|
|
904
|
-
parent_span_id: Optional[str] = None,
|
|
905
|
-
span_name: str = "continued_span",
|
|
906
|
-
) -> trace.Span:
|
|
907
|
-
"""
|
|
908
|
-
Create a new span that continues from an existing trace ID.
|
|
909
|
-
This is useful for linking traces across different services or agents.
|
|
910
|
-
|
|
911
|
-
Args:
|
|
912
|
-
trace_id: The trace ID as a hexadecimal string (32 characters)
|
|
913
|
-
parent_span_id: Optional parent span ID as a hexadecimal string (16 characters).
|
|
914
|
-
If provided, the new span will be a child of this span.
|
|
915
|
-
span_name: Name for the new span (default: "continued_span")
|
|
916
|
-
|
|
917
|
-
Returns:
|
|
918
|
-
A new span that continues the trace. Use it in a context manager or call end() manually.
|
|
919
|
-
|
|
920
|
-
Example:
|
|
921
|
-
# In service A: get trace ID
|
|
922
|
-
trace_id = get_active_trace_id()
|
|
923
|
-
span_id = get_span_id()
|
|
924
|
-
|
|
925
|
-
# Send to service B (e.g., via HTTP, message queue, etc.)
|
|
926
|
-
# ...
|
|
927
|
-
|
|
928
|
-
# In service B: continue the trace
|
|
929
|
-
with create_span_from_trace_id(trace_id, parent_span_id=span_id, span_name="service_b_operation"):
|
|
930
|
-
# Your code here
|
|
931
|
-
pass
|
|
932
|
-
"""
|
|
933
|
-
try:
|
|
934
|
-
# Parse trace ID from hex string
|
|
935
|
-
trace_id_int = int(trace_id, 16)
|
|
936
|
-
|
|
937
|
-
# Parse parent span ID if provided
|
|
938
|
-
parent_span_id_int = None
|
|
939
|
-
if parent_span_id:
|
|
940
|
-
parent_span_id_int = int(parent_span_id, 16)
|
|
941
|
-
|
|
942
|
-
# Create a parent span context
|
|
943
|
-
parent_span_context = SpanContext(
|
|
944
|
-
trace_id=trace_id_int,
|
|
945
|
-
span_id=parent_span_id_int if parent_span_id_int else 0,
|
|
946
|
-
is_remote=True,
|
|
947
|
-
trace_flags=TraceFlags(0x01), # SAMPLED flag
|
|
948
|
-
)
|
|
949
|
-
|
|
950
|
-
# Create a context with this span context as the parent
|
|
951
|
-
from opentelemetry.trace import set_span_in_context
|
|
952
|
-
parent_context = set_span_in_context(trace.NonRecordingSpan(parent_span_context))
|
|
953
|
-
|
|
954
|
-
# Ensure initialization before creating span
|
|
955
|
-
get_aiqa_client()
|
|
956
|
-
# Start a new span in this context (it will be a child of the parent span)
|
|
957
|
-
tracer = get_aiqa_tracer()
|
|
958
|
-
span = tracer.start_span(span_name, context=parent_context)
|
|
959
|
-
|
|
960
|
-
# Set component tag if configured
|
|
961
|
-
component_tag = get_component_tag()
|
|
962
|
-
if component_tag:
|
|
963
|
-
span.set_attribute("gen_ai.component.id", component_tag)
|
|
964
|
-
|
|
965
|
-
return span
|
|
966
|
-
except (ValueError, AttributeError) as e:
|
|
967
|
-
logger.error(f"Error creating span from trace_id: {e}")
|
|
968
|
-
# Ensure initialization before creating span
|
|
969
|
-
get_aiqa_client()
|
|
970
|
-
# Fallback: create a new span
|
|
971
|
-
tracer = get_aiqa_tracer()
|
|
972
|
-
span = tracer.start_span(span_name)
|
|
973
|
-
component_tag = get_component_tag()
|
|
974
|
-
if component_tag:
|
|
975
|
-
span.set_attribute("gen_ai.component.id", component_tag)
|
|
976
|
-
return span
|
|
977
|
-
|
|
978
|
-
|
|
979
|
-
def inject_trace_context(carrier: dict) -> None:
|
|
980
|
-
"""
|
|
981
|
-
Inject the current trace context into a carrier (e.g., HTTP headers).
|
|
982
|
-
This allows you to pass trace context to another service.
|
|
983
|
-
|
|
984
|
-
Args:
|
|
985
|
-
carrier: Dictionary to inject trace context into (e.g., HTTP headers dict)
|
|
986
|
-
|
|
987
|
-
Example:
|
|
988
|
-
import requests
|
|
989
|
-
|
|
990
|
-
headers = {}
|
|
991
|
-
inject_trace_context(headers)
|
|
992
|
-
response = requests.get("http://other-service/api", headers=headers)
|
|
993
|
-
"""
|
|
994
|
-
try:
|
|
995
|
-
inject(carrier)
|
|
996
|
-
except Exception as e:
|
|
997
|
-
logger.warning(f"Error injecting trace context: {e}")
|
|
998
|
-
|
|
999
|
-
|
|
1000
|
-
def extract_trace_context(carrier: dict) -> Any:
|
|
1001
|
-
"""
|
|
1002
|
-
Extract trace context from a carrier (e.g., HTTP headers).
|
|
1003
|
-
Use this to continue a trace that was started in another service.
|
|
1004
|
-
|
|
1005
|
-
Args:
|
|
1006
|
-
carrier: Dictionary containing trace context (e.g., HTTP headers dict)
|
|
1007
|
-
|
|
1008
|
-
Returns:
|
|
1009
|
-
A context object that can be used with trace.use_span() or tracer.start_span()
|
|
1010
|
-
|
|
1011
|
-
Example:
|
|
1012
|
-
from opentelemetry.trace import use_span
|
|
1013
|
-
|
|
1014
|
-
# Extract context from incoming request headers
|
|
1015
|
-
ctx = extract_trace_context(request.headers)
|
|
1016
|
-
|
|
1017
|
-
# Use the context to create a span
|
|
1018
|
-
with use_span(ctx):
|
|
1019
|
-
# Your code here
|
|
1020
|
-
pass
|
|
1021
|
-
|
|
1022
|
-
# Or create a span with the context
|
|
1023
|
-
tracer = get_aiqa_tracer()
|
|
1024
|
-
with tracer.start_as_current_span("operation", context=ctx):
|
|
1025
|
-
# Your code here
|
|
1026
|
-
pass
|
|
1027
|
-
"""
|
|
1028
|
-
try:
|
|
1029
|
-
return extract(carrier)
|
|
1030
|
-
except Exception as e:
|
|
1031
|
-
logger.warning(f"Error extracting trace context: {e}")
|
|
1032
|
-
return None
|
|
1033
|
-
|
|
1034
|
-
|
|
1035
|
-
def get_span(span_id: str, organisation_id: Optional[str] = None, exclude: Optional[List[str]] = None) -> Optional[dict]:
|
|
1036
|
-
"""
|
|
1037
|
-
Get a span by its ID from the AIQA server.
|
|
1038
|
-
|
|
1039
|
-
Expected usage is: re-playing a specific function call in a unit test (either a developer debugging an issue, or as part of a test suite).
|
|
1040
|
-
|
|
1041
|
-
Args:
|
|
1042
|
-
span_id: The span ID as a hexadecimal string (16 characters) or client span ID
|
|
1043
|
-
organisation_id: Optional organisation ID. If not provided, will try to get from
|
|
1044
|
-
AIQA_ORGANISATION_ID environment variable. The organisation is typically
|
|
1045
|
-
extracted from the API key during authentication, but the API requires it
|
|
1046
|
-
as a query parameter.
|
|
1047
|
-
exclude: Optional list of fields to exclude from the span data. By default this function WILL return 'attributes' (often large).
|
|
1048
|
-
|
|
1049
|
-
Returns:
|
|
1050
|
-
The span data as a dictionary, or None if not found
|
|
1051
|
-
|
|
1052
|
-
Example:
|
|
1053
|
-
from aiqa import get_span
|
|
1054
|
-
|
|
1055
|
-
span = get_span('abc123...')
|
|
1056
|
-
if span:
|
|
1057
|
-
print(f"Found span: {span['name']}")
|
|
1058
|
-
my_function(**span['input'])
|
|
1059
|
-
"""
|
|
1060
|
-
server_url = get_server_url()
|
|
1061
|
-
api_key = get_api_key()
|
|
1062
|
-
org_id = organisation_id or os.getenv("AIQA_ORGANISATION_ID", "")
|
|
1063
|
-
|
|
1064
|
-
# Check if server_url is the default (meaning AIQA_SERVER_URL was not set)
|
|
1065
|
-
if not os.getenv("AIQA_SERVER_URL"):
|
|
1066
|
-
raise ValueError("AIQA_SERVER_URL is not set. Cannot retrieve span.")
|
|
1067
|
-
if not org_id:
|
|
1068
|
-
raise ValueError("Organisation ID is required. Provide it as parameter or set AIQA_ORGANISATION_ID environment variable.")
|
|
1069
|
-
if not api_key:
|
|
1070
|
-
raise ValueError("API key is required. Set AIQA_API_KEY environment variable.")
|
|
1071
|
-
|
|
1072
|
-
# Try both spanId and clientSpanId queries
|
|
1073
|
-
for query_field in ["spanId", "clientSpanId"]:
|
|
1074
|
-
url = f"{server_url}/span"
|
|
1075
|
-
params = {
|
|
1076
|
-
"q": f"{query_field}:{span_id}",
|
|
1077
|
-
"organisation": org_id,
|
|
1078
|
-
"limit": "1",
|
|
1079
|
-
"exclude": ",".join(exclude) if exclude else None,
|
|
1080
|
-
"fields": "*" if not exclude else None,
|
|
1081
|
-
}
|
|
1082
|
-
|
|
1083
|
-
headers = build_headers(api_key)
|
|
1084
|
-
|
|
1085
|
-
response = requests.get(url, params=params, headers=headers)
|
|
1086
|
-
if response.status_code == 200:
|
|
1087
|
-
result = response.json()
|
|
1088
|
-
hits = result.get("hits", [])
|
|
1089
|
-
if hits and len(hits) > 0:
|
|
1090
|
-
return hits[0]
|
|
1091
|
-
elif response.status_code == 404:
|
|
1092
|
-
# Try next query field
|
|
1093
|
-
continue
|
|
1094
|
-
else:
|
|
1095
|
-
error_text = response.text
|
|
1096
|
-
raise ValueError(f"Failed to get span: {response.status_code} - {error_text[:500]}")
|
|
1097
|
-
# not found
|
|
1098
|
-
return None
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
async def submit_feedback(
|
|
1102
|
-
trace_id: str,
|
|
1103
|
-
thumbs_up: Optional[bool] = None,
|
|
1104
|
-
comment: Optional[str] = None,
|
|
1105
|
-
) -> None:
|
|
1106
|
-
"""
|
|
1107
|
-
Submit feedback for a trace by creating a new span with the same trace ID.
|
|
1108
|
-
This allows you to add feedback (thumbs-up, thumbs-down, comment) to a trace after it has completed.
|
|
1109
|
-
|
|
1110
|
-
Args:
|
|
1111
|
-
trace_id: The trace ID as a hexadecimal string (32 characters)
|
|
1112
|
-
thumbs_up: True for positive feedback, False for negative feedback, None for neutral
|
|
1113
|
-
comment: Optional text comment
|
|
1114
|
-
|
|
1115
|
-
Example:
|
|
1116
|
-
from aiqa import submit_feedback
|
|
1117
|
-
|
|
1118
|
-
# Submit positive feedback
|
|
1119
|
-
await submit_feedback('abc123...', thumbs_up=True, comment='Great response!')
|
|
1120
|
-
|
|
1121
|
-
# Submit negative feedback
|
|
1122
|
-
await submit_feedback('abc123...', thumbs_up=False, comment='Incorrect answer')
|
|
1123
|
-
"""
|
|
1124
|
-
if not trace_id or len(trace_id) != 32:
|
|
1125
|
-
raise ValueError('Invalid trace ID: must be 32 hexadecimal characters')
|
|
1126
|
-
|
|
1127
|
-
# Create a span for feedback with the same trace ID
|
|
1128
|
-
span = create_span_from_trace_id(trace_id, span_name='feedback')
|
|
1129
|
-
|
|
1130
|
-
try:
|
|
1131
|
-
# Set feedback attributes
|
|
1132
|
-
if thumbs_up is not None:
|
|
1133
|
-
span.set_attribute('feedback.thumbs_up', thumbs_up)
|
|
1134
|
-
span.set_attribute('feedback.type', 'positive' if thumbs_up else 'negative')
|
|
1135
|
-
else:
|
|
1136
|
-
span.set_attribute('feedback.type', 'neutral')
|
|
1137
|
-
|
|
1138
|
-
if comment:
|
|
1139
|
-
span.set_attribute('feedback.comment', comment)
|
|
1140
|
-
|
|
1141
|
-
# Mark as feedback span
|
|
1142
|
-
span.set_attribute('aiqa.span_type', 'feedback')
|
|
1143
|
-
|
|
1144
|
-
# End the span
|
|
1145
|
-
span.end()
|
|
1146
|
-
|
|
1147
|
-
# Flush to ensure it's sent immediately
|
|
1148
|
-
await flush_tracing()
|
|
1149
|
-
except Exception as e:
|
|
1150
|
-
span.end()
|
|
1151
|
-
raise e
|
|
1152
839
|
|