aimodelshare 0.1.55__py3-none-any.whl → 0.1.59__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aimodelshare might be problematic. Click here for more details.
- aimodelshare/__init__.py +94 -14
- aimodelshare/aimsonnx.py +263 -82
- aimodelshare/api.py +13 -12
- aimodelshare/auth.py +163 -0
- aimodelshare/base_image.py +1 -1
- aimodelshare/containerisation.py +1 -1
- aimodelshare/data_sharing/download_data.py +133 -83
- aimodelshare/generatemodelapi.py +7 -6
- aimodelshare/main/authorization.txt +275 -275
- aimodelshare/main/eval_lambda.txt +81 -13
- aimodelshare/model.py +492 -196
- aimodelshare/modeluser.py +22 -0
- aimodelshare/moral_compass/README.md +367 -0
- aimodelshare/moral_compass/__init__.py +58 -0
- aimodelshare/moral_compass/_version.py +3 -0
- aimodelshare/moral_compass/api_client.py +553 -0
- aimodelshare/moral_compass/challenge.py +365 -0
- aimodelshare/moral_compass/config.py +187 -0
- aimodelshare/playground.py +26 -14
- aimodelshare/preprocessormodules.py +60 -6
- aimodelshare/pyspark/authorization.txt +258 -258
- aimodelshare/pyspark/eval_lambda.txt +1 -1
- aimodelshare/reproducibility.py +20 -5
- aimodelshare/utils/__init__.py +78 -0
- aimodelshare/utils/optional_deps.py +38 -0
- aimodelshare-0.1.59.dist-info/METADATA +258 -0
- {aimodelshare-0.1.55.dist-info → aimodelshare-0.1.59.dist-info}/RECORD +30 -24
- aimodelshare-0.1.59.dist-info/licenses/LICENSE +5 -0
- {aimodelshare-0.1.55.dist-info → aimodelshare-0.1.59.dist-info}/top_level.txt +0 -1
- aimodelshare-0.1.55.dist-info/METADATA +0 -63
- aimodelshare-0.1.55.dist-info/licenses/LICENSE +0 -2
- tests/__init__.py +0 -0
- tests/test_aimsonnx.py +0 -135
- tests/test_playground.py +0 -721
- {aimodelshare-0.1.55.dist-info → aimodelshare-0.1.59.dist-info}/WHEEL +0 -0
aimodelshare/reproducibility.py
CHANGED
|
@@ -3,11 +3,22 @@ import sys
|
|
|
3
3
|
import json
|
|
4
4
|
import random
|
|
5
5
|
import tempfile
|
|
6
|
-
import pkg_resources
|
|
7
6
|
import requests
|
|
8
7
|
|
|
9
8
|
import numpy as np
|
|
10
|
-
|
|
9
|
+
|
|
10
|
+
# TensorFlow is optional - only needed for reproducibility setup with TF models
|
|
11
|
+
try:
|
|
12
|
+
import tensorflow as tf
|
|
13
|
+
_TF_AVAILABLE = True
|
|
14
|
+
except ImportError:
|
|
15
|
+
_TF_AVAILABLE = False
|
|
16
|
+
tf = None
|
|
17
|
+
|
|
18
|
+
try:
|
|
19
|
+
import importlib.metadata as md
|
|
20
|
+
except ImportError: # pragma: no cover
|
|
21
|
+
import importlib_metadata as md
|
|
11
22
|
|
|
12
23
|
from aimodelshare.aws import get_s3_iam_client, run_function_on_lambda, get_aws_client
|
|
13
24
|
|
|
@@ -44,9 +55,13 @@ def export_reproducibility_env(seed, directory, mode="gpu"):
|
|
|
44
55
|
else:
|
|
45
56
|
raise Exception("Error: unknown 'mode' value, expected 'gpu' or 'cpu'")
|
|
46
57
|
|
|
47
|
-
|
|
48
|
-
installed_packages_list =
|
|
49
|
-
|
|
58
|
+
# Get installed packages using importlib.metadata
|
|
59
|
+
installed_packages_list = []
|
|
60
|
+
for dist in md.distributions():
|
|
61
|
+
name = dist.metadata.get("Name") or "unknown"
|
|
62
|
+
version = dist.version
|
|
63
|
+
installed_packages_list.append(f"{name}=={version}")
|
|
64
|
+
installed_packages_list = sorted(installed_packages_list)
|
|
50
65
|
|
|
51
66
|
data["session_runtime_info"] = {
|
|
52
67
|
"installed_packages": installed_packages_list,
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
"""Utility modules for aimodelshare."""
|
|
2
|
+
import os
|
|
3
|
+
import sys
|
|
4
|
+
import shutil
|
|
5
|
+
import tempfile
|
|
6
|
+
import functools
|
|
7
|
+
import warnings
|
|
8
|
+
from typing import Type
|
|
9
|
+
|
|
10
|
+
from .optional_deps import check_optional
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def delete_files_from_temp_dir(temp_dir_file_deletion_list):
|
|
14
|
+
temp_dir = tempfile.gettempdir()
|
|
15
|
+
for file_name in temp_dir_file_deletion_list:
|
|
16
|
+
file_path = os.path.join(temp_dir, file_name)
|
|
17
|
+
if os.path.exists(file_path):
|
|
18
|
+
os.remove(file_path)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def delete_folder(folder_path):
|
|
22
|
+
if os.path.exists(folder_path):
|
|
23
|
+
shutil.rmtree(folder_path)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def make_folder(folder_path):
|
|
27
|
+
os.makedirs(folder_path, exist_ok=True)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class HiddenPrints:
|
|
31
|
+
"""Context manager that suppresses stdout and stderr (used for silencing noisy outputs)."""
|
|
32
|
+
def __enter__(self):
|
|
33
|
+
self._original_stdout = sys.stdout
|
|
34
|
+
self._original_stderr = sys.stderr
|
|
35
|
+
self._devnull_stdout = open(os.devnull, 'w')
|
|
36
|
+
self._devnull_stderr = open(os.devnull, 'w')
|
|
37
|
+
sys.stdout = self._devnull_stdout
|
|
38
|
+
sys.stderr = self._devnull_stderr
|
|
39
|
+
return self
|
|
40
|
+
|
|
41
|
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
42
|
+
sys.stdout = self._original_stdout
|
|
43
|
+
sys.stderr = self._original_stderr
|
|
44
|
+
self._devnull_stdout.close()
|
|
45
|
+
self._devnull_stderr.close()
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def ignore_warning(warning: Type[Warning]):
|
|
49
|
+
"""
|
|
50
|
+
Ignore a given warning occurring during method execution.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
warning (Warning): warning type to ignore.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
the inner function
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
def inner(func):
|
|
60
|
+
@functools.wraps(func)
|
|
61
|
+
def wrapper(*args, **kwargs):
|
|
62
|
+
with warnings.catch_warnings():
|
|
63
|
+
warnings.filterwarnings("ignore", category=warning)
|
|
64
|
+
return func(*args, **kwargs)
|
|
65
|
+
|
|
66
|
+
return wrapper
|
|
67
|
+
|
|
68
|
+
return inner
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
__all__ = [
|
|
72
|
+
"check_optional",
|
|
73
|
+
"HiddenPrints",
|
|
74
|
+
"ignore_warning",
|
|
75
|
+
"delete_files_from_temp_dir",
|
|
76
|
+
"delete_folder",
|
|
77
|
+
"make_folder",
|
|
78
|
+
]
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
"""Optional dependency checking utilities."""
|
|
2
|
+
import os
|
|
3
|
+
import importlib.util
|
|
4
|
+
import warnings
|
|
5
|
+
|
|
6
|
+
_DEF_SUPPRESS_ENV = "AIMODELSHARE_SUPPRESS_OPTIONAL_WARNINGS"
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def check_optional(name: str, feature_label: str, suppress_env: str = _DEF_SUPPRESS_ENV) -> bool:
|
|
10
|
+
"""Check if an optional dependency is available.
|
|
11
|
+
|
|
12
|
+
Print a single warning (via warnings) if missing and suppression env var is not set.
|
|
13
|
+
Returns True if available, False otherwise.
|
|
14
|
+
|
|
15
|
+
Parameters
|
|
16
|
+
----------
|
|
17
|
+
name : str
|
|
18
|
+
The name of the module to check (e.g., 'xgboost', 'pyspark')
|
|
19
|
+
feature_label : str
|
|
20
|
+
A human-readable label for the feature that requires this dependency
|
|
21
|
+
suppress_env : str, optional
|
|
22
|
+
Environment variable name to check for suppression (default: AIMODELSHARE_SUPPRESS_OPTIONAL_WARNINGS)
|
|
23
|
+
|
|
24
|
+
Returns
|
|
25
|
+
-------
|
|
26
|
+
bool
|
|
27
|
+
True if the module is available, False otherwise
|
|
28
|
+
"""
|
|
29
|
+
spec = importlib.util.find_spec(name)
|
|
30
|
+
if spec is None:
|
|
31
|
+
if not os.environ.get(suppress_env):
|
|
32
|
+
warnings.warn(
|
|
33
|
+
f"{feature_label} support unavailable. Install `{name}` to enable.",
|
|
34
|
+
category=UserWarning,
|
|
35
|
+
stacklevel=2,
|
|
36
|
+
)
|
|
37
|
+
return False
|
|
38
|
+
return True
|
|
@@ -0,0 +1,258 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: aimodelshare
|
|
3
|
+
Version: 0.1.59
|
|
4
|
+
Summary: Deploy locally saved machine learning models to a live REST API and integrated dashboard.
|
|
5
|
+
Author-email: Michael Parrott <mikedparrott@modelshare.ai>
|
|
6
|
+
License:
|
|
7
|
+
Proprietary License
|
|
8
|
+
|
|
9
|
+
Copyright (c) 2025 Model Share Labs,Inc. (And all affiliated organizations and individuals)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
Keywords: machine-learning,deployment,api,onnx,tensorflow,pytorch
|
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
|
14
|
+
Classifier: License :: Other/Proprietary License
|
|
15
|
+
Classifier: Operating System :: OS Independent
|
|
16
|
+
Requires-Python: >=3.10
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
License-File: LICENSE
|
|
19
|
+
Requires-Dist: numpy>=1.22.0
|
|
20
|
+
Requires-Dist: pandas
|
|
21
|
+
Requires-Dist: requests
|
|
22
|
+
Requires-Dist: urllib3
|
|
23
|
+
Requires-Dist: boto3
|
|
24
|
+
Requires-Dist: onnx
|
|
25
|
+
Requires-Dist: onnxmltools
|
|
26
|
+
Requires-Dist: onnxruntime
|
|
27
|
+
Requires-Dist: skl2onnx
|
|
28
|
+
Requires-Dist: tf2onnx
|
|
29
|
+
Requires-Dist: scikit-learn
|
|
30
|
+
Requires-Dist: scikeras
|
|
31
|
+
Requires-Dist: shortuuid
|
|
32
|
+
Requires-Dist: Pympler
|
|
33
|
+
Requires-Dist: wget
|
|
34
|
+
Requires-Dist: PyJWT<2.0
|
|
35
|
+
Requires-Dist: pydot
|
|
36
|
+
Requires-Dist: regex
|
|
37
|
+
Requires-Dist: psutil
|
|
38
|
+
Requires-Dist: dill
|
|
39
|
+
Requires-Dist: IPython
|
|
40
|
+
Provides-Extra: visual
|
|
41
|
+
Requires-Dist: graphviz; extra == "visual"
|
|
42
|
+
Provides-Extra: tensorflow
|
|
43
|
+
Requires-Dist: tensorflow==2.18.0; extra == "tensorflow"
|
|
44
|
+
Requires-Dist: keras2onnx; extra == "tensorflow"
|
|
45
|
+
Provides-Extra: pytorch
|
|
46
|
+
Requires-Dist: torch; extra == "pytorch"
|
|
47
|
+
Provides-Extra: full
|
|
48
|
+
Requires-Dist: tensorflow==2.18.0; extra == "full"
|
|
49
|
+
Requires-Dist: keras2onnx; extra == "full"
|
|
50
|
+
Requires-Dist: torch; extra == "full"
|
|
51
|
+
Requires-Dist: graphviz; extra == "full"
|
|
52
|
+
Provides-Extra: test
|
|
53
|
+
Requires-Dist: pytest; extra == "test"
|
|
54
|
+
Requires-Dist: pytest-cov; extra == "test"
|
|
55
|
+
Dynamic: license-file
|
|
56
|
+
|
|
57
|
+
<p align="center"><img width="40%" src="docs/aimodshare_banner.jpg" /></p>
|
|
58
|
+
|
|
59
|
+
### The mission of the AI Model Share Platform is to provide a trusted non profit repository for machine learning model prediction APIs (python library + integrated website at modelshare.org). A beta version of the platform is currently being used by Columbia University students, faculty, and staff to test and improve platform functionality.
|
|
60
|
+
|
|
61
|
+
### In a matter of seconds, data scientists can launch a model into this infrastructure and end-users the world over will be able to engage their machine learning models.
|
|
62
|
+
|
|
63
|
+
* ***Launch machine learning models into scalable production ready prediction REST APIs using a single Python function.***
|
|
64
|
+
|
|
65
|
+
* ***Details about each model, how to use the model's API, and the model's author(s) are deployed simultaneously into a searchable website at modelshare.org.***
|
|
66
|
+
|
|
67
|
+
* ***Deployed models receive an individual Model Playground listing information about all deployed models. Each of these pages includes a fully functional prediction dashboard that allows end-users to input text, tabular, or image data and receive live predictions.***
|
|
68
|
+
|
|
69
|
+
* ***Moreover, users can build on model playgrounds by 1) creating ML model competitions, 2) uploading Jupyter notebooks to share code, 3) sharing model architectures and 4) sharing data... with all shared artifacts automatically creating a data science user portfolio.***
|
|
70
|
+
|
|
71
|
+
# Use aimodelshare Python library to deploy your model, create a new ML competition, and more.
|
|
72
|
+
* [Tutorials for deploying models](https://www.modelshare.org/search/deploy?search=ALL&problemdomain=ALL&gettingstartedguide=TRUE&pythonlibrariesused=ALL&tags=ALL&pageNum=1).
|
|
73
|
+
|
|
74
|
+
# Find model playground web-dashboards to generate predictions now.
|
|
75
|
+
* [View deployed models and generate predictions at modelshare.org](https://www.modelshare.org)
|
|
76
|
+
|
|
77
|
+
# Installation
|
|
78
|
+
|
|
79
|
+
## Install using PyPi
|
|
80
|
+
|
|
81
|
+
```
|
|
82
|
+
pip install aimodelshare
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
## Install on Anaconda
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
#### Conda/Mamba Install ( For Mac and Linux Users Only , Windows Users should use pip method ) :
|
|
89
|
+
|
|
90
|
+
Make sure you have conda version >=4.9
|
|
91
|
+
|
|
92
|
+
You can check your conda version with:
|
|
93
|
+
|
|
94
|
+
```
|
|
95
|
+
conda --version
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
To update conda use:
|
|
99
|
+
|
|
100
|
+
```
|
|
101
|
+
conda update conda
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
Installing `aimodelshare` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:
|
|
105
|
+
|
|
106
|
+
```
|
|
107
|
+
conda config --add channels conda-forge
|
|
108
|
+
conda config --set channel_priority strict
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
Once the `conda-forge` channel has been enabled, `aimodelshare` can be installed with `conda`:
|
|
112
|
+
|
|
113
|
+
```
|
|
114
|
+
conda install aimodelshare
|
|
115
|
+
```
|
|
116
|
+
|
|
117
|
+
or with `mamba`:
|
|
118
|
+
|
|
119
|
+
```
|
|
120
|
+
mamba install aimodelshare
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
# Moral Compass: Dynamic Metric Support for AI Ethics Challenges
|
|
124
|
+
|
|
125
|
+
The Moral Compass system now supports tracking multiple performance metrics for fairness-focused AI challenges. Track accuracy, demographic parity, equal opportunity, and other fairness metrics simultaneously.
|
|
126
|
+
|
|
127
|
+
## Quick Start with Multi-Metric Tracking
|
|
128
|
+
|
|
129
|
+
```python
|
|
130
|
+
from aimodelshare.moral_compass import ChallengeManager
|
|
131
|
+
|
|
132
|
+
# Create a challenge manager
|
|
133
|
+
manager = ChallengeManager(
|
|
134
|
+
table_id="fairness-challenge-2024",
|
|
135
|
+
username="your_username"
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
# Track multiple metrics
|
|
139
|
+
manager.set_metric("accuracy", 0.85, primary=True)
|
|
140
|
+
manager.set_metric("demographic_parity", 0.92)
|
|
141
|
+
manager.set_metric("equal_opportunity", 0.88)
|
|
142
|
+
|
|
143
|
+
# Track progress
|
|
144
|
+
manager.set_progress(tasks_completed=3, total_tasks=5)
|
|
145
|
+
|
|
146
|
+
# Sync to leaderboard
|
|
147
|
+
result = manager.sync()
|
|
148
|
+
print(f"Moral compass score: {result['moralCompassScore']:.4f}")
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
## Moral Compass Score Formula
|
|
152
|
+
|
|
153
|
+
```
|
|
154
|
+
moralCompassScore = primaryMetricValue × ((tasksCompleted + questionsCorrect) / (totalTasks + totalQuestions))
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
This combines:
|
|
158
|
+
- **Performance**: Your primary metric value (e.g., fairness score)
|
|
159
|
+
- **Progress**: Your completion rate across tasks and questions
|
|
160
|
+
|
|
161
|
+
## Features
|
|
162
|
+
|
|
163
|
+
- **Multiple Metrics**: Track accuracy, fairness, robustness, and custom metrics
|
|
164
|
+
- **Primary Metric Selection**: Choose which metric drives leaderboard ranking
|
|
165
|
+
- **Progress Tracking**: Monitor task and question completion
|
|
166
|
+
- **Automatic Scoring**: Server-side computation of moral compass scores
|
|
167
|
+
- **Leaderboard Sorting**: Automatic ranking by moral compass score
|
|
168
|
+
- **Backward Compatible**: Existing users without metrics continue to work
|
|
169
|
+
|
|
170
|
+
## Example: Justice & Equity Challenge
|
|
171
|
+
|
|
172
|
+
See [Justice & Equity Challenge Example](docs/justice_equity_challenge_example.md) for detailed examples including:
|
|
173
|
+
- Multi-metric fairness tracking
|
|
174
|
+
- Progressive challenge completion
|
|
175
|
+
- Leaderboard queries
|
|
176
|
+
- Custom fairness criteria
|
|
177
|
+
|
|
178
|
+
## API Methods
|
|
179
|
+
|
|
180
|
+
### ChallengeManager
|
|
181
|
+
|
|
182
|
+
```python
|
|
183
|
+
from aimodelshare.moral_compass import ChallengeManager
|
|
184
|
+
|
|
185
|
+
manager = ChallengeManager(table_id="my-table", username="user1")
|
|
186
|
+
|
|
187
|
+
# Set metrics
|
|
188
|
+
manager.set_metric("accuracy", 0.90, primary=True)
|
|
189
|
+
manager.set_metric("fairness", 0.95)
|
|
190
|
+
|
|
191
|
+
# Set progress
|
|
192
|
+
manager.set_progress(tasks_completed=4, total_tasks=5)
|
|
193
|
+
|
|
194
|
+
# Preview score locally
|
|
195
|
+
score = manager.get_local_score()
|
|
196
|
+
|
|
197
|
+
# Sync to server
|
|
198
|
+
result = manager.sync()
|
|
199
|
+
```
|
|
200
|
+
|
|
201
|
+
### API Client
|
|
202
|
+
|
|
203
|
+
```python
|
|
204
|
+
from aimodelshare.moral_compass import MoralcompassApiClient
|
|
205
|
+
|
|
206
|
+
client = MoralcompassApiClient()
|
|
207
|
+
|
|
208
|
+
# Update moral compass with metrics
|
|
209
|
+
result = client.update_moral_compass(
|
|
210
|
+
table_id="my-table",
|
|
211
|
+
username="user1",
|
|
212
|
+
metrics={"accuracy": 0.90, "fairness": 0.95},
|
|
213
|
+
primary_metric="fairness",
|
|
214
|
+
tasks_completed=4,
|
|
215
|
+
total_tasks=5
|
|
216
|
+
)
|
|
217
|
+
```
|
|
218
|
+
|
|
219
|
+
## Documentation
|
|
220
|
+
|
|
221
|
+
- [Full API Documentation](aimodelshare/moral_compass/README.md)
|
|
222
|
+
- [Justice & Equity Challenge Examples](docs/justice_equity_challenge_example.md)
|
|
223
|
+
- [Integration Tests](tests/test_moral_compass_client_minimal.py)
|
|
224
|
+
|
|
225
|
+
## Moral Compass API URL Configuration
|
|
226
|
+
|
|
227
|
+
The Moral Compass API client requires a base URL to connect to the REST API. The URL is resolved in the following order:
|
|
228
|
+
|
|
229
|
+
### For CI/CD Environments
|
|
230
|
+
|
|
231
|
+
In GitHub Actions workflows, the `MORAL_COMPASS_API_BASE_URL` environment variable is automatically exported from Terraform outputs:
|
|
232
|
+
|
|
233
|
+
```yaml
|
|
234
|
+
- name: Initialize Terraform and get API URL
|
|
235
|
+
working-directory: infra
|
|
236
|
+
run: |
|
|
237
|
+
terraform init
|
|
238
|
+
terraform workspace select dev || terraform workspace new dev
|
|
239
|
+
API_URL=$(terraform output -raw api_base_url)
|
|
240
|
+
echo "MORAL_COMPASS_API_BASE_URL=$API_URL" >> $GITHUB_ENV
|
|
241
|
+
```
|
|
242
|
+
|
|
243
|
+
### For Local Development
|
|
244
|
+
|
|
245
|
+
When developing locally, the API client attempts to resolve the URL in this order:
|
|
246
|
+
|
|
247
|
+
1. **Environment variable** - Set `MORAL_COMPASS_API_BASE_URL` or `AIMODELSHARE_API_BASE_URL`:
|
|
248
|
+
```bash
|
|
249
|
+
export MORAL_COMPASS_API_BASE_URL="https://api.example.com/v1"
|
|
250
|
+
```
|
|
251
|
+
|
|
252
|
+
2. **Cached Terraform outputs** - The client looks for `infra/terraform_outputs.json`
|
|
253
|
+
|
|
254
|
+
3. **Terraform command** - As a fallback, executes `terraform output -raw api_base_url` in the `infra/` directory
|
|
255
|
+
|
|
256
|
+
### Graceful Test Skipping
|
|
257
|
+
|
|
258
|
+
Integration tests that require the Moral Compass API will skip gracefully if the URL cannot be resolved, rather than failing. This allows the test suite to run in environments where the infrastructure is not available (e.g., forks without access to AWS resources).
|
|
@@ -1,25 +1,26 @@
|
|
|
1
1
|
aimodelshare/README.md,sha256=_OMdUIeIYZnpFlKdafM1KNWaANO2nWdx0QpLE_ZC-Qs,2014
|
|
2
|
-
aimodelshare/__init__.py,sha256=
|
|
3
|
-
aimodelshare/aimsonnx.py,sha256=
|
|
4
|
-
aimodelshare/api.py,sha256=
|
|
2
|
+
aimodelshare/__init__.py,sha256=csP3KFDIvloTtRqqGh7Jg1eo0Q6-V63VQbgYR2zzWZs,3228
|
|
3
|
+
aimodelshare/aimsonnx.py,sha256=NCjRd535kTfJ6zSEa2o9QpC-TqHPIiDNuS0yHcAQzx8,77178
|
|
4
|
+
aimodelshare/api.py,sha256=3AuTS88M-6zXye3eCjjaAnHpdvLjHHdYMyPZJm9O0Cc,35107
|
|
5
|
+
aimodelshare/auth.py,sha256=7FatqYMDF3x2u9GRuNm-2lvMMLKO1AHtWRxzu36ZVqE,4774
|
|
5
6
|
aimodelshare/aws.py,sha256=jn99R9-N77Qac-_eYm-LaCQUPd-RnE7oVULm9rh-3RY,15232
|
|
6
7
|
aimodelshare/aws_client.py,sha256=Ce19iwf69BwpuyyJlVN8z1da3c5jf93svsTgx1OWhaA,6784
|
|
7
|
-
aimodelshare/base_image.py,sha256=
|
|
8
|
+
aimodelshare/base_image.py,sha256=itaQmX_q5GmgQrL3VNCBJpDGhl4PGA-nLTCbuyNDCCc,4825
|
|
8
9
|
aimodelshare/bucketpolicy.py,sha256=KLyl-BLBiFdTYzCK7tJV8NBJHBKWRlF3_msSTGwgaQQ,3055
|
|
9
|
-
aimodelshare/containerisation.py,sha256=
|
|
10
|
+
aimodelshare/containerisation.py,sha256=SaiO92wcdCwi8_C31AXNvaCdmZLnOB-7KTyP68-TQpM,8758
|
|
10
11
|
aimodelshare/containerization.py,sha256=Sa9GWxmz1qoDZ3lUQjFa1ctQUSs666I7-Yf0YU3We1U,29609
|
|
11
12
|
aimodelshare/custom_eval_metrics.py,sha256=NghFslmLDyvIkZ27yZhFIItLbzHnNb0bJ2ZO7cqkucw,3170
|
|
12
13
|
aimodelshare/deploy_custom_lambda.py,sha256=HFxxIYI2JrZwPrjqKgFkj6KaCeRBOn6tf9e2fqBUl2U,11045
|
|
13
14
|
aimodelshare/exceptions.py,sha256=gfrwQ7LHNyjgUNHM4X_LNZ7JhKwZv9qWN3DhBaB-f-k,318
|
|
14
|
-
aimodelshare/generatemodelapi.py,sha256=
|
|
15
|
+
aimodelshare/generatemodelapi.py,sha256=fxQ90Fpcz6jCG0vFJ1GweIYjxFT_u92C3qe5ZW-D8A8,59732
|
|
15
16
|
aimodelshare/leaderboard.py,sha256=xtKJcNCsZjy2IoK1fUTAFyM_I-eLCMS1WJRfwgsT5AA,5216
|
|
16
|
-
aimodelshare/model.py,sha256=
|
|
17
|
-
aimodelshare/modeluser.py,sha256=
|
|
18
|
-
aimodelshare/playground.py,sha256=
|
|
17
|
+
aimodelshare/model.py,sha256=HjiETn_IppZ_6x63QSFNViBSDJN_hU44UsSQRzGE4Ow,62342
|
|
18
|
+
aimodelshare/modeluser.py,sha256=jyZVRs-31URmKJJMvbM9NBXykiOEsznnYK25LzDo-GU,5006
|
|
19
|
+
aimodelshare/playground.py,sha256=jOMls-mv_A8W8AOM8ZCpSci63UauciMxPH5VwHclLN0,89273
|
|
19
20
|
aimodelshare/postprocessormodules.py,sha256=L87fM2mywlInOrgaMETi-7zdHBGbIMRcrXKttQthyQ4,4992
|
|
20
|
-
aimodelshare/preprocessormodules.py,sha256=
|
|
21
|
+
aimodelshare/preprocessormodules.py,sha256=48HIur55nytD0FdhW1u1wWSAiaIW4uof0cJP1Yoq0T4,13183
|
|
21
22
|
aimodelshare/readme.md,sha256=_OMdUIeIYZnpFlKdafM1KNWaANO2nWdx0QpLE_ZC-Qs,2014
|
|
22
|
-
aimodelshare/reproducibility.py,sha256=
|
|
23
|
+
aimodelshare/reproducibility.py,sha256=5uN_2deZeFWyupR5uXnhu2RUQefXTSt9W0bsLJ86VPc,6227
|
|
23
24
|
aimodelshare/tools.py,sha256=e9nRv_1H06nIum6BW2gyI0EF3GGkQ7-gPrppEPiq5C0,3109
|
|
24
25
|
aimodelshare/utils.py,sha256=8vZ6hx-CGliVxXe_ed_viV_ZPGQVi4SSMRFfD71N1vs,1336
|
|
25
26
|
aimodelshare/color_mappings/color_mapping_keras.csv,sha256=dOJjZ9TGE7EbCPg6rW_r4Ysv45bskH77fXakfDmGKuM,2728
|
|
@@ -31,7 +32,7 @@ aimodelshare/containerization_templates/lambda_function.txt,sha256=nEFoPDXemNcQZ
|
|
|
31
32
|
aimodelshare/custom_approach/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
32
33
|
aimodelshare/custom_approach/lambda_function.py,sha256=d1HZlgviHZq4mNBKx4q-RCunDK8P8i9DKZcfv6Nmgzc,479
|
|
33
34
|
aimodelshare/data_sharing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
|
-
aimodelshare/data_sharing/download_data.py,sha256=
|
|
35
|
+
aimodelshare/data_sharing/download_data.py,sha256=xJ6ylVO_oAiS72ue5iy2eOFol5Bnc7ZI8-OW0TC9sIw,25317
|
|
35
36
|
aimodelshare/data_sharing/share_data.py,sha256=dMOP0-PTSpviOeHi3Nvj-uiq5PlIfk_SN5nN92j4PnI,13964
|
|
36
37
|
aimodelshare/data_sharing/utils.py,sha256=865lN8-oGFi_U_zRaNnGB8Bd0sC8dN_iI5krZOSt_Ts,236
|
|
37
38
|
aimodelshare/data_sharing/data_sharing_templates/Dockerfile.txt,sha256=27wmp7b0rXqJQsumhPxCvGHmUcDiiVgrC6i7DmY7KQA,77
|
|
@@ -105,12 +106,18 @@ aimodelshare/main/6.txt,sha256=DqSveJ3d5FhQ4HZQ7hzEcVLURO5dK1uBtgWIfEPaxj4,3518
|
|
|
105
106
|
aimodelshare/main/7.txt,sha256=a8D5As2ZffV5kkwR0wUJ8V_YidYkyesWEtES12o57Qo,4377
|
|
106
107
|
aimodelshare/main/8.txt,sha256=MfcEQe9Gv6RSmWL3kd7oYkRkdDdkN4bPxEG43QVs7ms,4513
|
|
107
108
|
aimodelshare/main/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
108
|
-
aimodelshare/main/authorization.txt,sha256=
|
|
109
|
+
aimodelshare/main/authorization.txt,sha256=lBWFZ1pyNuYFSEEWQbfEAZFDspcVE1guzlfpES7HNxk,10942
|
|
109
110
|
aimodelshare/main/eval_classification.txt,sha256=gCBU71rbXRlkBwefVN3WhwVJX9fXh6bwOCa7ofLMdnA,3081
|
|
110
|
-
aimodelshare/main/eval_lambda.txt,sha256=
|
|
111
|
+
aimodelshare/main/eval_lambda.txt,sha256=r3GqJodO5QG6jeK4xWUzLrXM9K7XLXeUJouhz6efQbA,62831
|
|
111
112
|
aimodelshare/main/eval_regression.txt,sha256=iQeE9mbOkg-BDF9TnoQmglo86jBJitJQCvaf1eELzrs,3111
|
|
112
113
|
aimodelshare/main/lambda_function.txt,sha256=-XkuD2YUOWNryNT7rBPjlts588UAeE949TUqeVGCRlQ,150
|
|
113
114
|
aimodelshare/main/nst.txt,sha256=8kTsR18kDEcaQbv6091XDq1tRiqqFxdqfCteslR_udk,4941
|
|
115
|
+
aimodelshare/moral_compass/README.md,sha256=J3D1W1x7KVHLJn5D_Rwhqeaa6CVsywBpU4JmKEtHuAY,10303
|
|
116
|
+
aimodelshare/moral_compass/__init__.py,sha256=CRUuQLeccumeFDl4RZDxFNFZlUw73W0wA5n7adYhgew,1708
|
|
117
|
+
aimodelshare/moral_compass/_version.py,sha256=nGjn9uzc3g2iY_fCxtBI1a6xkZ8xPxgk7PJTt5zKElE,80
|
|
118
|
+
aimodelshare/moral_compass/api_client.py,sha256=Z3kXjH7Ryi6QrXbe8I_IL2KqzgWt4EiGIu_YKwa3kFg,19893
|
|
119
|
+
aimodelshare/moral_compass/challenge.py,sha256=p--uqP30tPQnVcOPs4LEJFaXlqTRL9Zb7SVkEvggl2U,12971
|
|
120
|
+
aimodelshare/moral_compass/config.py,sha256=8HsoTreAAdXaWOdg30B1IJXwIGMBNEz7hqgNZpAFUhI,6119
|
|
114
121
|
aimodelshare/placeholders/model.onnx,sha256=i04ndsRw5VBTOpIH-LHqTjAPHcJZNzyWSSz1zSmukBw,3464
|
|
115
122
|
aimodelshare/placeholders/preprocessor.zip,sha256=463dahdrgzYzFY338r_be7xptPm_Z1kNgu52SMsFVAU,2930
|
|
116
123
|
aimodelshare/pyspark/1.txt,sha256=FQYyw5s8bnrDFIl6kzqXZ6qGuh-N68SN4mRL561vjto,6529
|
|
@@ -123,9 +130,9 @@ aimodelshare/pyspark/6.txt,sha256=j8t-akOZeEL6DX6xChvMU25V5_1z7OwXYlb50XtO2m0,59
|
|
|
123
130
|
aimodelshare/pyspark/7.txt,sha256=88ZJq-b31Zczv6dl0wbbSuEraBq5TJe2SFaxIu16-L0,6819
|
|
124
131
|
aimodelshare/pyspark/8.txt,sha256=es6rcjUvBNUuSQOw1DZT6fDn3C0oHMGuQgXaC-cB5FA,6906
|
|
125
132
|
aimodelshare/pyspark/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
126
|
-
aimodelshare/pyspark/authorization.txt,sha256=
|
|
133
|
+
aimodelshare/pyspark/authorization.txt,sha256=fBKP16TvJ3wEoex2qNz9OuTAaTIKGfVE1QdhFdEtEPM,10589
|
|
127
134
|
aimodelshare/pyspark/eval_classification.txt,sha256=gCBU71rbXRlkBwefVN3WhwVJX9fXh6bwOCa7ofLMdnA,3081
|
|
128
|
-
aimodelshare/pyspark/eval_lambda.txt,sha256=
|
|
135
|
+
aimodelshare/pyspark/eval_lambda.txt,sha256=zAkjP6tvTBLsPF3xBK8nwvV1UNVD7iWytK_owVnQg5Q,51474
|
|
129
136
|
aimodelshare/pyspark/eval_regression.txt,sha256=iQeE9mbOkg-BDF9TnoQmglo86jBJitJQCvaf1eELzrs,3111
|
|
130
137
|
aimodelshare/pyspark/lambda_function.txt,sha256=-XkuD2YUOWNryNT7rBPjlts588UAeE949TUqeVGCRlQ,150
|
|
131
138
|
aimodelshare/pyspark/nst.txt,sha256=ZJ8xM80xisQf2hGMUWliKcbeE7HH214Kzd_Ie1wu-q0,7110
|
|
@@ -140,11 +147,10 @@ aimodelshare/sam/codepipeline_policies.txt,sha256=267HMXMnbP7qRASkmFZYSx-2HmKf5o
|
|
|
140
147
|
aimodelshare/sam/codepipeline_trust_relationship.txt,sha256=yfPYvZlN3fnaIHs7I3ENMMveigIE89mufV9pvR8EQH8,245
|
|
141
148
|
aimodelshare/sam/spark-class.txt,sha256=chyJBxDzCzlUKXzVQYTzuJ2PXCTwg8_gd1yfnI-xbRw,217
|
|
142
149
|
aimodelshare/sam/template.txt,sha256=JKSvEOZNaaLalHSx7r9psJg_6LLCb0XLAYi1-jYPu3M,1195
|
|
143
|
-
aimodelshare
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
aimodelshare-0.1.
|
|
148
|
-
aimodelshare-0.1.
|
|
149
|
-
aimodelshare-0.1.
|
|
150
|
-
aimodelshare-0.1.55.dist-info/RECORD,,
|
|
150
|
+
aimodelshare/utils/__init__.py,sha256=6ieChHjYDsn_gSyeOiLeWW5hWkUfZUucEzSFyBN7xck,1973
|
|
151
|
+
aimodelshare/utils/optional_deps.py,sha256=t0ZcPlaAKEQqBpD-GDbFGg9a-qp2fsqonTVM0dLWNV4,1257
|
|
152
|
+
aimodelshare-0.1.59.dist-info/licenses/LICENSE,sha256=XdPthYienQee9LH1duXNGtsj6GUTXPvtf_1MpC8WhL4,115
|
|
153
|
+
aimodelshare-0.1.59.dist-info/METADATA,sha256=mckigVSwxqMq0P-6QOtcATqvCQ1IU8CztsPLkwx8va8,8731
|
|
154
|
+
aimodelshare-0.1.59.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
155
|
+
aimodelshare-0.1.59.dist-info/top_level.txt,sha256=d-0DAtZDZsvfauQzUjXHJRKVYfaqMWZXz3WGmmIzE5w,13
|
|
156
|
+
aimodelshare-0.1.59.dist-info/RECORD,,
|
|
@@ -1,63 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: aimodelshare
|
|
3
|
-
Version: 0.1.55
|
|
4
|
-
Summary: Deploy locally saved machine learning models to a live rest API and web-dashboard. Share it with the world via modelshare.org
|
|
5
|
-
Home-page: https://www.modelshare.org
|
|
6
|
-
Author: Michael Parrott
|
|
7
|
-
Author-email: mikedparrott@modelshare.org
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: License :: Other/Proprietary License
|
|
10
|
-
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: >=3.7
|
|
12
|
-
Description-Content-Type: text/markdown
|
|
13
|
-
License-File: LICENSE
|
|
14
|
-
Requires-Dist: boto3
|
|
15
|
-
Requires-Dist: onnx
|
|
16
|
-
Requires-Dist: scikeras
|
|
17
|
-
Requires-Dist: shortuuid
|
|
18
|
-
Requires-Dist: tf2onnx
|
|
19
|
-
Requires-Dist: skl2onnx
|
|
20
|
-
Requires-Dist: onnxruntime
|
|
21
|
-
Requires-Dist: Pympler
|
|
22
|
-
Requires-Dist: scikeras
|
|
23
|
-
Requires-Dist: shortuuid
|
|
24
|
-
Requires-Dist: wget
|
|
25
|
-
Requires-Dist: onnxmltools
|
|
26
|
-
Dynamic: author
|
|
27
|
-
Dynamic: author-email
|
|
28
|
-
Dynamic: classifier
|
|
29
|
-
Dynamic: description
|
|
30
|
-
Dynamic: description-content-type
|
|
31
|
-
Dynamic: home-page
|
|
32
|
-
Dynamic: license-file
|
|
33
|
-
Dynamic: requires-dist
|
|
34
|
-
Dynamic: requires-python
|
|
35
|
-
Dynamic: summary
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
# aimodelshare
|
|
39
|
-
### The mission of the AI Model Share Platform (website w/ integrated Python library) is to provide a trusted non profit repository for machine learning model prediction APIs (python library + integrated website at modelshare.org. A beta version of the platform is currently being used by Columbia University students, faculty, and staff to test and improve platform functionality.
|
|
40
|
-
|
|
41
|
-
### In a matter of seconds, data scientists can launch a model into this infrastructure and end-users the world over will be able to engage their machine learning models.
|
|
42
|
-
|
|
43
|
-
* ***Launch machine learning models into scalable production ready prediction REST APIs using a single Python function.***
|
|
44
|
-
|
|
45
|
-
* ***Details about each model, how to use the model's API, and the model's author(s) are deployed simultaneously into a searchable website at modelshare.org.***
|
|
46
|
-
|
|
47
|
-
* ***Deployed models receive an individual Model Playground listing information about all deployed models. Each of these pages includes a fully functional prediction dashboard that allows end-users to input text, tabular, or image data and receive live predictions.***
|
|
48
|
-
|
|
49
|
-
* ***Moreover, users can build on model playgrounds by 1) creating ML model competitions, 2) uploading Jupyter notebooks to share code, 3) sharing model architectures and 4) sharing data... with all shared artifacts automatically creating a data science user portfolio.***
|
|
50
|
-
|
|
51
|
-
# Use the aimodelshare Python library to deploy your model, create a new ML competition, and more.
|
|
52
|
-
* [Tutorials for deploying models](https://www.modelshare.org/search/deploy?search=ALL&problemdomain=ALL&gettingstartedguide=TRUE&pythonlibrariesused=ALL&tags=ALL&pageNum=1).
|
|
53
|
-
|
|
54
|
-
# Find model playground web-dashboards to generate predictions now.
|
|
55
|
-
* [View deployed models and generate predictions at modelshare.org](https://www.modelshare.org)
|
|
56
|
-
|
|
57
|
-
# Installation
|
|
58
|
-
|
|
59
|
-
You can then install aimodelshare from PyPi
|
|
60
|
-
```
|
|
61
|
-
pip install aimodelshare
|
|
62
|
-
```
|
|
63
|
-
|
tests/__init__.py
DELETED
|
File without changes
|