aigroup-econ-mcp 0.4.2__py3-none-any.whl → 1.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- .gitignore +253 -0
- PKG-INFO +710 -0
- README.md +672 -0
- __init__.py +14 -0
- aigroup_econ_mcp-1.4.3.dist-info/METADATA +710 -0
- aigroup_econ_mcp-1.4.3.dist-info/RECORD +92 -0
- aigroup_econ_mcp-1.4.3.dist-info/entry_points.txt +2 -0
- aigroup_econ_mcp-1.4.3.dist-info/licenses/LICENSE +21 -0
- cli.py +28 -0
- econometrics/README.md +18 -0
- econometrics/__init__.py +191 -0
- econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +0 -0
- econometrics/basic_parametric_estimation/__init__.py +31 -0
- econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- econometrics/causal_inference/causal_identification_strategy/__init__.py +0 -0
- econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +0 -0
- econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- prompts/__init__.py +0 -0
- prompts/analysis_guides.py +43 -0
- pyproject.toml +78 -0
- resources/MCP_MASTER_GUIDE.md +422 -0
- resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- resources/__init__.py +0 -0
- server.py +83 -0
- tools/README.md +88 -0
- tools/__init__.py +45 -0
- tools/data_loader.py +213 -0
- tools/decorators.py +38 -0
- tools/econometrics_adapter.py +286 -0
- tools/mcp_tool_groups/__init__.py +1 -0
- tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- tools/mcp_tool_groups/model_specification_tools.py +402 -0
- tools/mcp_tool_groups/time_series_tools.py +494 -0
- tools/mcp_tools_registry.py +114 -0
- tools/model_specification_adapter.py +369 -0
- tools/output_formatter.py +563 -0
- tools/time_series_panel_data_adapter.py +858 -0
- tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp/tools/__init__.py +0 -18
- aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp/tools/data_loader.py +0 -171
- aigroup_econ_mcp/tools/file_parser.py +0 -829
- aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp/tools/ml_regularization.py +0 -172
- aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp/tools/panel_data.py +0 -553
- aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp/tools/statistics.py +0 -154
- aigroup_econ_mcp/tools/time_series.py +0 -667
- aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp/tools/tool_handlers.py +0 -378
- aigroup_econ_mcp/tools/tool_registry.py +0 -170
- aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-0.4.2.dist-info/METADATA +0 -360
- aigroup_econ_mcp-0.4.2.dist-info/RECORD +0 -29
- aigroup_econ_mcp-0.4.2.dist-info/entry_points.txt +0 -2
- /aigroup_econ_mcp-0.4.2.dist-info/licenses/LICENSE → /LICENSE +0 -0
- {aigroup_econ_mcp-0.4.2.dist-info → aigroup_econ_mcp-1.4.3.dist-info}/WHEEL +0 -0
|
@@ -1,229 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
优化示例模块
|
|
3
|
-
演示如何使用新的优化组件
|
|
4
|
-
"""
|
|
5
|
-
|
|
6
|
-
import numpy as np
|
|
7
|
-
from typing import List, Dict, Any, Optional
|
|
8
|
-
from pydantic import BaseModel
|
|
9
|
-
|
|
10
|
-
from .base import econometric_tool, validate_input, EconometricTool
|
|
11
|
-
from .validation import validate_econometric_data
|
|
12
|
-
from .cache import cache_result
|
|
13
|
-
from .monitoring import monitor_performance, track_progress
|
|
14
|
-
from ..config import get_config
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class OptimizedResult(BaseModel):
|
|
18
|
-
"""优化结果"""
|
|
19
|
-
mean: float
|
|
20
|
-
std: float
|
|
21
|
-
confidence_interval: Dict[str, float]
|
|
22
|
-
sample_size: int
|
|
23
|
-
performance_stats: Optional[Dict[str, Any]] = None
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
class OptimizedExampleTool(EconometricTool):
|
|
27
|
-
"""
|
|
28
|
-
优化示例工具
|
|
29
|
-
演示如何使用所有优化组件
|
|
30
|
-
"""
|
|
31
|
-
|
|
32
|
-
def __init__(self):
|
|
33
|
-
super().__init__("optimized_example")
|
|
34
|
-
|
|
35
|
-
@validate_input(data_type="econometric")
|
|
36
|
-
@econometric_tool("optimized_analysis")
|
|
37
|
-
def analyze_data(self, data: Dict[str, List[float]]) -> OptimizedResult:
|
|
38
|
-
"""
|
|
39
|
-
分析数据(使用所有优化组件)
|
|
40
|
-
|
|
41
|
-
Args:
|
|
42
|
-
data: 输入数据字典
|
|
43
|
-
|
|
44
|
-
Returns:
|
|
45
|
-
OptimizedResult: 分析结果
|
|
46
|
-
"""
|
|
47
|
-
# 使用进度跟踪
|
|
48
|
-
with self.execute_with_progress(3, "数据分析") as tracker:
|
|
49
|
-
tracker.start_step("数据预处理")
|
|
50
|
-
# 数据预处理
|
|
51
|
-
processed_data = self._preprocess_data(data)
|
|
52
|
-
tracker.complete_step()
|
|
53
|
-
|
|
54
|
-
tracker.start_step("统计分析")
|
|
55
|
-
# 统计分析
|
|
56
|
-
result = self._perform_analysis(processed_data)
|
|
57
|
-
tracker.complete_step()
|
|
58
|
-
|
|
59
|
-
tracker.start_step("结果整理")
|
|
60
|
-
# 添加性能统计
|
|
61
|
-
performance_stats = self.get_performance_stats()
|
|
62
|
-
result.performance_stats = performance_stats
|
|
63
|
-
tracker.complete_step()
|
|
64
|
-
|
|
65
|
-
return result
|
|
66
|
-
|
|
67
|
-
def _preprocess_data(self, data: Dict[str, List[float]]) -> Dict[str, np.ndarray]:
|
|
68
|
-
"""数据预处理"""
|
|
69
|
-
processed = {}
|
|
70
|
-
for key, values in data.items():
|
|
71
|
-
# 转换为numpy数组并处理缺失值
|
|
72
|
-
arr = np.array(values)
|
|
73
|
-
arr = np.nan_to_num(arr, nan=np.nanmean(arr))
|
|
74
|
-
processed[key] = arr
|
|
75
|
-
return processed
|
|
76
|
-
|
|
77
|
-
def _perform_analysis(self, data: Dict[str, np.ndarray]) -> OptimizedResult:
|
|
78
|
-
"""执行分析"""
|
|
79
|
-
results = {}
|
|
80
|
-
|
|
81
|
-
for key, values in data.items():
|
|
82
|
-
mean = np.mean(values)
|
|
83
|
-
std = np.std(values)
|
|
84
|
-
n = len(values)
|
|
85
|
-
|
|
86
|
-
# 计算置信区间
|
|
87
|
-
confidence_level = 0.95
|
|
88
|
-
z_score = 1.96 # 95%置信水平的z值
|
|
89
|
-
margin_of_error = z_score * (std / np.sqrt(n))
|
|
90
|
-
|
|
91
|
-
results[key] = {
|
|
92
|
-
"mean": mean,
|
|
93
|
-
"std": std,
|
|
94
|
-
"confidence_interval": {
|
|
95
|
-
"lower": mean - margin_of_error,
|
|
96
|
-
"upper": mean + margin_of_error
|
|
97
|
-
},
|
|
98
|
-
"sample_size": n
|
|
99
|
-
}
|
|
100
|
-
|
|
101
|
-
# 返回第一个变量的结果作为示例
|
|
102
|
-
first_key = list(results.keys())[0]
|
|
103
|
-
result_data = results[first_key]
|
|
104
|
-
|
|
105
|
-
return OptimizedResult(
|
|
106
|
-
mean=result_data["mean"],
|
|
107
|
-
std=result_data["std"],
|
|
108
|
-
confidence_interval=result_data["confidence_interval"],
|
|
109
|
-
sample_size=result_data["sample_size"]
|
|
110
|
-
)
|
|
111
|
-
def get_performance_stats(self) -> Dict[str, Any]:
|
|
112
|
-
"""获取性能统计信息"""
|
|
113
|
-
from .monitoring import global_performance_monitor
|
|
114
|
-
|
|
115
|
-
stats = global_performance_monitor.get_function_stats("optimized_analysis")
|
|
116
|
-
if stats:
|
|
117
|
-
return {
|
|
118
|
-
"execution_time": stats.execution_time,
|
|
119
|
-
"call_count": stats.call_count,
|
|
120
|
-
"average_time": stats.average_time,
|
|
121
|
-
"last_execution": stats.last_execution.isoformat() if stats.last_execution else None
|
|
122
|
-
}
|
|
123
|
-
return {}
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
# 使用便捷装饰器的独立函数示例
|
|
127
|
-
@validate_input(data_type="econometric")
|
|
128
|
-
@econometric_tool("quick_analysis")
|
|
129
|
-
def quick_data_analysis(data: Dict[str, List[float]]) -> Dict[str, Any]:
|
|
130
|
-
"""
|
|
131
|
-
快速数据分析(使用装饰器)
|
|
132
|
-
|
|
133
|
-
Args:
|
|
134
|
-
data: 输入数据
|
|
135
|
-
|
|
136
|
-
Returns:
|
|
137
|
-
Dict[str, Any]: 分析结果
|
|
138
|
-
"""
|
|
139
|
-
# 验证数据
|
|
140
|
-
validated_data = validate_econometric_data(data)
|
|
141
|
-
|
|
142
|
-
results = {}
|
|
143
|
-
for key, values in validated_data.items():
|
|
144
|
-
arr = np.array(values)
|
|
145
|
-
results[key] = {
|
|
146
|
-
"mean": float(np.mean(arr)),
|
|
147
|
-
"std": float(np.std(arr)),
|
|
148
|
-
"min": float(np.min(arr)),
|
|
149
|
-
"max": float(np.max(arr)),
|
|
150
|
-
"count": len(arr)
|
|
151
|
-
}
|
|
152
|
-
|
|
153
|
-
return results
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
@cache_result(ttl=3600) # 1小时缓存
|
|
157
|
-
@monitor_performance("cached_calculation")
|
|
158
|
-
def expensive_calculation(data: List[float], iterations: int = 1000) -> Dict[str, float]:
|
|
159
|
-
"""
|
|
160
|
-
昂贵的计算(使用缓存和性能监控)
|
|
161
|
-
|
|
162
|
-
Args:
|
|
163
|
-
data: 输入数据
|
|
164
|
-
iterations: 迭代次数
|
|
165
|
-
|
|
166
|
-
Returns:
|
|
167
|
-
Dict[str, float]: 计算结果
|
|
168
|
-
"""
|
|
169
|
-
arr = np.array(data)
|
|
170
|
-
result = 0.0
|
|
171
|
-
|
|
172
|
-
# 模拟昂贵计算
|
|
173
|
-
for i in range(iterations):
|
|
174
|
-
result += np.sum(arr * i) / (i + 1)
|
|
175
|
-
|
|
176
|
-
return {
|
|
177
|
-
"result": float(result),
|
|
178
|
-
"iterations": iterations,
|
|
179
|
-
"data_length": len(data)
|
|
180
|
-
}
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
# 使用配置的示例
|
|
184
|
-
def config_based_analysis(data: Dict[str, List[float]]) -> Dict[str, Any]:
|
|
185
|
-
"""
|
|
186
|
-
基于配置的分析
|
|
187
|
-
|
|
188
|
-
Args:
|
|
189
|
-
data: 输入数据
|
|
190
|
-
|
|
191
|
-
Returns:
|
|
192
|
-
Dict[str, Any]: 分析结果
|
|
193
|
-
"""
|
|
194
|
-
# 获取配置
|
|
195
|
-
cache_enabled = get_config("cache_enabled", True)
|
|
196
|
-
monitoring_enabled = get_config("monitoring_enabled", True)
|
|
197
|
-
min_sample_size = get_config("min_sample_size", 10)
|
|
198
|
-
|
|
199
|
-
results = {}
|
|
200
|
-
|
|
201
|
-
for key, values in data.items():
|
|
202
|
-
# 检查样本大小
|
|
203
|
-
if len(values) < min_sample_size:
|
|
204
|
-
raise ValueError(f"样本量不足: {key} (需要至少{min_sample_size}个观测点)")
|
|
205
|
-
|
|
206
|
-
# 执行分析
|
|
207
|
-
arr = np.array(values)
|
|
208
|
-
results[key] = {
|
|
209
|
-
"mean": float(np.mean(arr)),
|
|
210
|
-
"std": float(np.std(arr)),
|
|
211
|
-
"sample_size": len(arr),
|
|
212
|
-
"config_used": {
|
|
213
|
-
"cache_enabled": cache_enabled,
|
|
214
|
-
"monitoring_enabled": monitoring_enabled,
|
|
215
|
-
"min_sample_size": min_sample_size
|
|
216
|
-
}
|
|
217
|
-
}
|
|
218
|
-
|
|
219
|
-
return results
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
# 导出主要类和函数
|
|
223
|
-
__all__ = [
|
|
224
|
-
"OptimizedResult",
|
|
225
|
-
"OptimizedExampleTool",
|
|
226
|
-
"quick_data_analysis",
|
|
227
|
-
"expensive_calculation",
|
|
228
|
-
"config_based_analysis"
|
|
229
|
-
]
|