aigroup-econ-mcp 0.4.1__py3-none-any.whl → 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,7 +7,7 @@ from typing import Dict, Any, Optional, List, Callable
7
7
  from pydantic import Field
8
8
  from typing import Annotated
9
9
 
10
- from .decorators import econometric_tool
10
+ from .base import with_file_support_decorator as econometric_tool
11
11
 
12
12
 
13
13
  # 标准文件输入参数定义
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aigroup-econ-mcp
3
- Version: 0.4.1
3
+ Version: 0.4.2
4
4
  Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析
5
5
  Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
6
  Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
@@ -1,15 +1,17 @@
1
- aigroup_econ_mcp/__init__.py,sha256=2GgJrD8MTHFgaiXrWYsOou0034taAT1zTRyJx_NZKkg,472
1
+ aigroup_econ_mcp/__init__.py,sha256=bznXd7hp7aeuPG5tlwKM9thcA-NphSurjl0Uh4K2SR4,472
2
2
  aigroup_econ_mcp/cli.py,sha256=7yeNXWNwMdpUswAO4LsqAvb0EmCO3S6Bs6sl483uSXI,3363
3
3
  aigroup_econ_mcp/config.py,sha256=ab5X4-H8isIe2nma0c0AOqlyYgwhf5kfe9Zx5XRrzIo,18876
4
- aigroup_econ_mcp/server.py,sha256=-FIO4rnJrRQJpT1UESB4-hN5SYMQlTdj94veFOn8cxw,21690
4
+ aigroup_econ_mcp/server.py,sha256=cM3qRN756DblCjmxtKCueqFgjj3uYWm-wUgDKZYbRpI,21715
5
5
  aigroup_econ_mcp/tools/__init__.py,sha256=6C9seG5y9BKDl_cRpvMOT8WqSkBSGRPS_9P7-uRRTEc,357
6
- aigroup_econ_mcp/tools/base.py,sha256=CwZFtvagcv732OAyCecEfwj8vekrOHSKjPXwrWamW2g,8163
6
+ aigroup_econ_mcp/tools/base.py,sha256=Mv_mcKVTIg9A2dsqBBiU74_Ai2nb5sn2S3U4CNOxLKw,15218
7
7
  aigroup_econ_mcp/tools/cache.py,sha256=Urv2zuycp5dS7Qh-XQWEMrwszq9RZ-il8cz_-WniGgc,15311
8
8
  aigroup_econ_mcp/tools/data_loader.py,sha256=BVYvP04bQpsk3dZVFy-Y8EK3dnY4Pm0JSBYrthnHf74,5619
9
- aigroup_econ_mcp/tools/decorators.py,sha256=Xn0P6sNWkJay4UWM5iRqKrs55O1clfrhRM18MpQ36Ko,6142
10
- aigroup_econ_mcp/tools/file_input_handler.py,sha256=uRju239j3U4DvNPIXnXtAzZFO7v9M2ca9bTi4JezYyQ,7866
11
- aigroup_econ_mcp/tools/file_parser.py,sha256=pzzsnxUnJQfYIX8rjvb9or3pAWU8zV9wG7s78ePlbko,20137
12
- aigroup_econ_mcp/tools/machine_learning.py,sha256=09RJAdqOl7Xxiv2E8PyhztYAyzt-cWffpSMh7_9GRbk,21472
9
+ aigroup_econ_mcp/tools/file_parser.py,sha256=0isfNaUOz1SjlNLwy4T5J8OidWP2tEdm2KZEtyE-KRg,28203
10
+ aigroup_econ_mcp/tools/machine_learning.py,sha256=PpxrJVJw4eND95Wl0uGPEqUHXrIwTUSCd0QB1B4o4wY,1459
11
+ aigroup_econ_mcp/tools/ml_ensemble.py,sha256=XOL0PzCsx9LY_pFbKCAxjYdGny-HqEhlZyov2r1l3ww,6475
12
+ aigroup_econ_mcp/tools/ml_evaluation.py,sha256=hiwVW3-N0hnSAJfZW4luOCXt3sTh1W9Hj3CwZLRVaJk,8900
13
+ aigroup_econ_mcp/tools/ml_models.py,sha256=hJEUgARxkqYgJqu6_7eRc1WnD2HcTGxtXf8Jre_XO1U,2137
14
+ aigroup_econ_mcp/tools/ml_regularization.py,sha256=p81UXlb9ebyRuA_hSA4phmbFvORF-MaINMlYJkWKTbo,5070
13
15
  aigroup_econ_mcp/tools/monitoring.py,sha256=-hcw5nu5Q91FmDz39mRBsKavrTmEqXsKfGzlXr_5f0c,16708
14
16
  aigroup_econ_mcp/tools/optimized_example.py,sha256=tZVQ2jTzHY_zixTynm4Sq8gj5hz6eWg7MKqNwsxrPoQ,6784
15
17
  aigroup_econ_mcp/tools/panel_data.py,sha256=uzbgcDLXACfdi9KaMRmZdRTkhMtEyWb7p3vS3mUJ-co,19254
@@ -18,10 +20,10 @@ aigroup_econ_mcp/tools/statistics.py,sha256=2cHgNSUXwPYPLxntVOEOL8yF-x92mrgjK-R8
18
20
  aigroup_econ_mcp/tools/time_series.py,sha256=LNCO0bYXLPilQ2kSVXA3woNp8ERVq7n3jaoQhWgTCJQ,21763
19
21
  aigroup_econ_mcp/tools/timeout.py,sha256=vNnGsR0sXW1xvIbKCF-qPUU3QNDAn_MaQgSxbGxkfW4,8404
20
22
  aigroup_econ_mcp/tools/tool_handlers.py,sha256=cqv7FU95b_kjEJcZSAIGuGjUqbcCCKT0MXrmflnnelo,15028
21
- aigroup_econ_mcp/tools/tool_registry.py,sha256=yoA00XBiIQ0ly45huW4x9TNHSEJqu7veGOwSyZF-qko,4388
23
+ aigroup_econ_mcp/tools/tool_registry.py,sha256=4SFpMnReZyGfEHCCDnojwHIUEpuQICS9M2u_9xuoUck,4413
22
24
  aigroup_econ_mcp/tools/validation.py,sha256=F7LHwog5xtFIMjD9D48kd8jAF5MsZb7wjdrgaOg8EKo,16657
23
- aigroup_econ_mcp-0.4.1.dist-info/METADATA,sha256=ipzSXbSHPdZCgxmYgGvjDf7PLckgtAvpjbxYbQMUr-k,10800
24
- aigroup_econ_mcp-0.4.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
25
- aigroup_econ_mcp-0.4.1.dist-info/entry_points.txt,sha256=j5ZJYOc4lAZV-X3XkAuGhzHtIRcJtZ6Gz8ZKPY_QTrM,62
26
- aigroup_econ_mcp-0.4.1.dist-info/licenses/LICENSE,sha256=DoyCJUWlDzKbqc5KRbFpsGYLwLh-XJRHKQDoITjb1yc,1083
27
- aigroup_econ_mcp-0.4.1.dist-info/RECORD,,
25
+ aigroup_econ_mcp-0.4.2.dist-info/METADATA,sha256=JdtsBmJRggHsUTYvWdw3f27ZnAYmsXnZTuiskfqHqHk,10800
26
+ aigroup_econ_mcp-0.4.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
27
+ aigroup_econ_mcp-0.4.2.dist-info/entry_points.txt,sha256=j5ZJYOc4lAZV-X3XkAuGhzHtIRcJtZ6Gz8ZKPY_QTrM,62
28
+ aigroup_econ_mcp-0.4.2.dist-info/licenses/LICENSE,sha256=DoyCJUWlDzKbqc5KRbFpsGYLwLh-XJRHKQDoITjb1yc,1083
29
+ aigroup_econ_mcp-0.4.2.dist-info/RECORD,,
@@ -1,178 +0,0 @@
1
- """
2
- 工具装饰器模块
3
- 提供自动文件输入处理、错误处理等功能
4
- """
5
-
6
- from typing import Callable, Optional, Dict, Any, List
7
- from functools import wraps
8
- from mcp.server.session import ServerSession
9
- from mcp.server.fastmcp import Context
10
- from mcp.types import CallToolResult, TextContent
11
-
12
- from .file_parser import FileParser
13
-
14
-
15
- def with_file_input(tool_type: str):
16
- """
17
- 为工具函数添加文件输入支持的装饰器
18
-
19
- 支持两种输入方式:
20
- 1. file_path: CSV/JSON文件路径
21
- 2. file_content: 文件内容字符串
22
-
23
- Args:
24
- tool_type: 工具类型 ('single_var', 'multi_var_dict', 'regression', 'panel', 'time_series')
25
-
26
- 使用示例:
27
- @with_file_input('regression')
28
- async def my_tool(ctx, y_data=None, x_data=None, file_path=None, file_content=None, file_format='auto', **kwargs):
29
- # 如果提供了file_path或file_content,数据会被自动填充
30
- pass
31
- """
32
- def decorator(func: Callable) -> Callable:
33
- @wraps(func)
34
- async def wrapper(*args, **kwargs):
35
- # 提取上下文和文件参数
36
- ctx = args[0] if args else kwargs.get('ctx')
37
- file_path = kwargs.get('file_path')
38
- file_content = kwargs.get('file_content')
39
- file_format = kwargs.get('file_format', 'auto')
40
-
41
- # 优先处理file_path
42
- if file_path:
43
- try:
44
- await ctx.info(f"检测到文件路径输入: {file_path}")
45
-
46
- # 从文件路径解析
47
- parsed = FileParser.parse_file_path(file_path, file_format)
48
-
49
- await ctx.info(
50
- f"文件解析成功:{parsed['n_variables']}个变量,"
51
- f"{parsed['n_observations']}个观测"
52
- )
53
-
54
- # 转换为工具格式
55
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
56
-
57
- # 更新kwargs
58
- kwargs.update(converted)
59
-
60
- await ctx.info(f"数据已转换为{tool_type}格式")
61
-
62
- except Exception as e:
63
- await ctx.error(f"文件解析失败: {str(e)}")
64
- return CallToolResult(
65
- content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
66
- isError=True
67
- )
68
-
69
- # 如果没有file_path但有file_content,处理文件内容
70
- elif file_content:
71
- try:
72
- await ctx.info("检测到文件内容输入,开始解析...")
73
-
74
- # 解析文件内容
75
- parsed = FileParser.parse_file_content(file_content, file_format)
76
-
77
- await ctx.info(
78
- f"文件解析成功:{parsed['n_variables']}个变量,"
79
- f"{parsed['n_observations']}个观测"
80
- )
81
-
82
- # 转换为工具格式
83
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
84
-
85
- # 更新kwargs
86
- kwargs.update(converted)
87
-
88
- await ctx.info(f"数据已转换为{tool_type}格式")
89
-
90
- except Exception as e:
91
- await ctx.error(f"文件解析失败: {str(e)}")
92
- return CallToolResult(
93
- content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
94
- isError=True
95
- )
96
-
97
- # 调用原函数
98
- return await func(*args, **kwargs)
99
-
100
- return wrapper
101
- return decorator
102
-
103
-
104
- def with_error_handling(func: Callable) -> Callable:
105
- """
106
- 为工具函数添加统一错误处理的装饰器
107
- """
108
- @wraps(func)
109
- async def wrapper(*args, **kwargs):
110
- ctx = args[0] if args else kwargs.get('ctx')
111
- tool_name = func.__name__
112
-
113
- try:
114
- return await func(*args, **kwargs)
115
- except Exception as e:
116
- await ctx.error(f"{tool_name}执行出错: {str(e)}")
117
- return CallToolResult(
118
- content=[TextContent(type="text", text=f"错误: {str(e)}")],
119
- isError=True
120
- )
121
-
122
- return wrapper
123
-
124
-
125
- def with_logging(func: Callable) -> Callable:
126
- """
127
- 为工具函数添加日志记录的装饰器
128
- """
129
- @wraps(func)
130
- async def wrapper(*args, **kwargs):
131
- ctx = args[0] if args else kwargs.get('ctx')
132
- tool_name = func.__name__
133
-
134
- await ctx.info(f"开始执行 {tool_name}")
135
- result = await func(*args, **kwargs)
136
- await ctx.info(f"{tool_name} 执行完成")
137
-
138
- return result
139
-
140
- return wrapper
141
-
142
-
143
- def econometric_tool(
144
- tool_type: str,
145
- with_file_support: bool = True,
146
- with_error_handling: bool = True,
147
- with_logging: bool = True
148
- ):
149
- """
150
- 组合装饰器:为计量经济学工具添加所有标准功能
151
-
152
- Args:
153
- tool_type: 工具类型
154
- with_file_support: 是否启用文件输入支持
155
- with_error_handling: 是否启用错误处理
156
- with_logging: 是否启用日志记录
157
-
158
- 使用示例:
159
- @econometric_tool('regression')
160
- async def ols_regression(ctx, y_data=None, x_data=None, **kwargs):
161
- # 只需要编写核心业务逻辑
162
- pass
163
- """
164
- def decorator(func: Callable) -> Callable:
165
- wrapped = func
166
-
167
- if with_error_handling:
168
- wrapped = globals()['with_error_handling'](wrapped)
169
-
170
- if with_file_support:
171
- wrapped = with_file_input(tool_type)(wrapped)
172
-
173
- if with_logging:
174
- wrapped = globals()['with_logging'](wrapped)
175
-
176
- return wrapped
177
-
178
- return decorator
@@ -1,268 +0,0 @@
1
- """
2
- 文件输入处理组件
3
- 提供统一的文件输入处理接口,支持所有工具
4
- """
5
-
6
- from typing import Dict, List, Any, Optional, Callable
7
- from functools import wraps
8
- from .file_parser import FileParser
9
-
10
-
11
- class FileInputHandler:
12
- """
13
- 文件输入处理组件
14
-
15
- 使用组件模式,为任何工具函数添加文件输入支持
16
- """
17
-
18
- @staticmethod
19
- def process_input(
20
- file_content: Optional[str],
21
- file_format: str,
22
- tool_type: str,
23
- data_params: Dict[str, Any]
24
- ) -> Dict[str, Any]:
25
- """
26
- 处理文件输入并转换为工具参数
27
-
28
- Args:
29
- file_content: 文件内容
30
- file_format: 文件格式
31
- tool_type: 工具类型
32
- data_params: 当前数据参数
33
-
34
- Returns:
35
- 更新后的参数字典
36
- """
37
- # 如果没有文件输入,直接返回原参数
38
- if file_content is None:
39
- return data_params
40
-
41
- # 解析文件
42
- parsed = FileParser.parse_file_content(file_content, file_format)
43
-
44
- # 转换为工具格式
45
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
46
-
47
- # 合并参数(文件数据优先)
48
- result = {**data_params, **converted}
49
-
50
- return result
51
-
52
- @staticmethod
53
- def with_file_support(tool_type: str):
54
- """
55
- 装饰器:为工具函数添加文件输入支持
56
-
57
- Args:
58
- tool_type: 工具类型(single_var, multi_var_dict, regression, panel等)
59
-
60
- Returns:
61
- 装饰后的函数
62
-
63
- 使用示例:
64
- @FileInputHandler.with_file_support('regression')
65
- async def my_regression_tool(y_data, x_data, file_content=None, file_format='auto'):
66
- # 函数会自动处理file_content并填充y_data和x_data
67
- pass
68
- """
69
- def decorator(func: Callable) -> Callable:
70
- @wraps(func)
71
- async def wrapper(*args, **kwargs):
72
- # 提取文件相关参数
73
- file_content = kwargs.get('file_content')
74
- file_format = kwargs.get('file_format', 'auto')
75
-
76
- if file_content is not None:
77
- # 处理文件输入
78
- processed = FileInputHandler.process_input(
79
- file_content=file_content,
80
- file_format=file_format,
81
- tool_type=tool_type,
82
- data_params=kwargs
83
- )
84
-
85
- # 更新kwargs
86
- kwargs.update(processed)
87
-
88
- # 调用原函数
89
- return await func(*args, **kwargs)
90
-
91
- return wrapper
92
- return decorator
93
-
94
-
95
- class FileInputMixin:
96
- """
97
- 文件输入混入类
98
-
99
- 为类提供文件输入处理能力
100
- """
101
-
102
- def parse_file_input(
103
- self,
104
- file_content: Optional[str],
105
- file_format: str = "auto"
106
- ) -> Optional[Dict[str, Any]]:
107
- """解析文件输入"""
108
- if file_content is None:
109
- return None
110
- return FileParser.parse_file_content(file_content, file_format)
111
-
112
- def convert_for_tool(
113
- self,
114
- parsed_data: Dict[str, Any],
115
- tool_type: str
116
- ) -> Dict[str, Any]:
117
- """转换为工具格式"""
118
- return FileParser.convert_to_tool_format(parsed_data, tool_type)
119
-
120
- def get_recommendations(
121
- self,
122
- parsed_data: Dict[str, Any]
123
- ) -> Dict[str, Any]:
124
- """获取工具推荐"""
125
- return FileParser.auto_detect_tool_params(parsed_data)
126
-
127
-
128
- def create_file_params(
129
- description: str = "CSV或JSON文件内容"
130
- ) -> Dict[str, Any]:
131
- """
132
- 创建标准的文件输入参数定义
133
-
134
- Args:
135
- description: 参数描述
136
-
137
- Returns:
138
- 参数定义字典,可直接用于Field()
139
- """
140
- return {
141
- "file_content": {
142
- "default": None,
143
- "description": f"""{description}
144
-
145
- 📁 支持格式:
146
- - CSV: 带表头的列数据,自动检测分隔符
147
- - JSON: {{"变量名": [数据], ...}} 或 [{{"变量1": 值, ...}}, ...]
148
-
149
- 💡 使用方式:
150
- - 提供文件内容字符串(可以是base64编码)
151
- - 系统会自动解析并识别变量
152
- - 优先使用file_content,如果提供则忽略其他数据参数"""
153
- },
154
- "file_format": {
155
- "default": "auto",
156
- "description": """文件格式
157
-
158
- 可选值:
159
- - "auto": 自动检测(默认)
160
- - "csv": CSV格式
161
- - "json": JSON格式"""
162
- }
163
- }
164
-
165
-
166
- class UnifiedFileInput:
167
- """
168
- 统一文件输入接口
169
-
170
- 所有工具通过此类统一处理文件输入
171
- """
172
-
173
- @staticmethod
174
- async def handle(
175
- ctx: Any,
176
- file_content: Optional[str],
177
- file_format: str,
178
- tool_type: str,
179
- original_params: Dict[str, Any]
180
- ) -> Dict[str, Any]:
181
- """
182
- 统一处理文件输入
183
-
184
- Args:
185
- ctx: MCP上下文
186
- file_content: 文件内容
187
- file_format: 文件格式
188
- tool_type: 工具类型
189
- original_params: 原始参数
190
-
191
- Returns:
192
- 处理后的参数
193
- """
194
- if file_content is None:
195
- return original_params
196
-
197
- try:
198
- # 记录日志
199
- await ctx.info("检测到文件输入,开始解析...")
200
-
201
- # 解析文件
202
- parsed = FileParser.parse_file_content(file_content, file_format)
203
-
204
- # 记录解析结果
205
- await ctx.info(
206
- f"文件解析成功:{parsed['n_variables']}个变量,"
207
- f"{parsed['n_observations']}个观测,"
208
- f"数据类型={parsed['data_type']}"
209
- )
210
-
211
- # 转换为工具格式
212
- converted = FileParser.convert_to_tool_format(parsed, tool_type)
213
-
214
- # 合并参数
215
- result = {**original_params}
216
- result.update(converted)
217
-
218
- # 记录转换结果
219
- if tool_type == 'regression':
220
- await ctx.info(
221
- f"数据已转换:因变量={converted.get('y_variable')},"
222
- f"自变量={converted.get('feature_names')}"
223
- )
224
- elif tool_type == 'panel':
225
- await ctx.info(
226
- f"面板数据已识别:{len(set(converted.get('entity_ids', [])))}个实体,"
227
- f"{len(set(converted.get('time_periods', [])))}个时间点"
228
- )
229
- else:
230
- await ctx.info(f"数据已转换为{tool_type}格式")
231
-
232
- return result
233
-
234
- except Exception as e:
235
- await ctx.error(f"文件解析失败: {str(e)}")
236
- raise ValueError(f"文件解析失败: {str(e)}")
237
-
238
-
239
- # 便捷函数
240
- async def process_file_for_tool(
241
- ctx: Any,
242
- file_content: Optional[str],
243
- file_format: str,
244
- tool_type: str,
245
- **kwargs
246
- ) -> Dict[str, Any]:
247
- """
248
- 为工具处理文件输入的便捷函数
249
-
250
- 使用示例:
251
- params = await process_file_for_tool(
252
- ctx=ctx,
253
- file_content=file_content,
254
- file_format=file_format,
255
- tool_type='regression',
256
- y_data=y_data,
257
- x_data=x_data,
258
- feature_names=feature_names
259
- )
260
- # params 现在包含处理后的所有参数
261
- """
262
- return await UnifiedFileInput.handle(
263
- ctx=ctx,
264
- file_content=file_content,
265
- file_format=file_format,
266
- tool_type=tool_type,
267
- original_params=kwargs
268
- )