aigroup-econ-mcp 0.4.0__py3-none-any.whl → 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,7 +10,7 @@ AIGroup 计量经济学 MCP 服务
10
10
  - 模型诊断
11
11
  """
12
12
 
13
- __version__ = "0.4.0"
13
+ __version__ = "0.4.2"
14
14
  __author__ = "AIGroup"
15
15
  __description__ = "专业计量经济学MCP工具 - 让大模型直接进行数据分析"
16
16
 
aigroup_econ_mcp/cli.py CHANGED
@@ -1,87 +1,82 @@
1
- """
2
- AIGroup 计量经济学 MCP 服务命令行入口
3
- """
4
-
5
- import sys
6
- import click
7
- from .server import create_mcp_server
8
-
9
-
10
- @click.command()
11
- @click.option('--port', default=8000, help='服务器端口')
12
- @click.option('--host', default='127.0.0.1', help='服务器地址')
13
- @click.option('--transport', default='stdio',
14
- type=click.Choice(['stdio', 'streamable-http', 'sse']),
15
- help='传输协议 (默认: stdio)')
16
- @click.option('--debug', is_flag=True, help='启用调试模式')
17
- @click.option('--mount-path', default=None, help='挂载路径')
18
- @click.option('--version', is_flag=True, help='显示版本信息')
19
- def cli(port: int, host: str, transport: str, debug: bool, mount_path: str, version: bool):
20
- """AIGroup 计量经济学 MCP 工具
21
-
22
- 默认以stdio模式启动MCP服务器,适用于MCP客户端集成。
23
- """
24
-
25
- # 处理版本标志
26
- if version:
27
- from . import __version__
28
- click.echo(f"aigroup-econ-mcp v{__version__}", err=True)
29
- click.echo("Professional econometrics MCP tool", err=True)
30
- click.echo("Author: AIGroup", err=True)
31
- sys.exit(0)
32
-
33
- # 创建MCP服务器
34
- mcp_server = create_mcp_server()
35
-
36
- # 设置调试模式
37
- if debug:
38
- mcp_server.settings.debug = True
39
- click.echo(f"[DEBUG] 调试模式已启用", err=True)
40
-
41
- # 根据传输协议启动服务器
42
- if transport == 'stdio':
43
- # stdio模式直接运行,不输出任何日志到stdout(MCP协议通信)
44
- # 所有日志输出到stderr
45
- from . import __version__
46
- click.echo(f"[INFO] aigroup-econ-mcp v{__version__} starting...", err=True)
47
- click.echo(f"[INFO] Transport: stdio (MCP protocol)", err=True)
48
- if debug:
49
- click.echo(f"[DEBUG] Debug mode enabled", err=True)
50
- click.echo(f"[INFO] Server ready. Waiting for MCP client connection...", err=True)
51
- mcp_server.run(transport='stdio')
52
-
53
- elif transport == 'streamable-http':
54
- # Streamable HTTP模式
55
- click.echo(f"[INFO] Starting aigroup-econ-mcp server", err=True)
56
- click.echo(f"[INFO] Professional econometrics MCP tool for AI data analysis", err=True)
57
- click.echo(f"[INFO] Transport protocol: {transport}", err=True)
58
- click.echo(f"[INFO] Service address: http://{host}:{port}", err=True)
59
- if mount_path:
60
- click.echo(f"[INFO] Mount path: {mount_path}", err=True)
61
-
62
- mcp_server.run(
63
- transport='streamable-http',
64
- host=host,
65
- port=port,
66
- mount_path=mount_path or '/mcp'
67
- )
68
-
69
- elif transport == 'sse':
70
- # SSE模式
71
- click.echo(f"[INFO] Starting aigroup-econ-mcp server", err=True)
72
- click.echo(f"[INFO] Professional econometrics MCP tool for AI data analysis", err=True)
73
- click.echo(f"[INFO] Transport protocol: {transport}", err=True)
74
- click.echo(f"[INFO] Service address: http://{host}:{port}", err=True)
75
- if mount_path:
76
- click.echo(f"[INFO] Mount path: {mount_path}", err=True)
77
-
78
- mcp_server.run(
79
- transport='sse',
80
- host=host,
81
- port=port,
82
- mount_path=mount_path or '/sse'
83
- )
84
-
85
-
86
- if __name__ == "__main__":
1
+ """
2
+ AIGroup 计量经济学 MCP 服务命令行入口
3
+ """
4
+
5
+ import sys
6
+ import click
7
+ import uvicorn
8
+ from .server import create_mcp_server
9
+
10
+
11
+ @click.command()
12
+ @click.option('--port', default=8000, help='服务器端口')
13
+ @click.option('--host', default='127.0.0.1', help='服务器地址')
14
+ @click.option('--transport', default='stdio',
15
+ type=click.Choice(['stdio', 'streamable-http', 'sse']),
16
+ help='传输协议 (默认: stdio)')
17
+ @click.option('--debug', is_flag=True, help='启用调试模式')
18
+ @click.option('--mount-path', default=None, help='挂载路径')
19
+ @click.option('--version', is_flag=True, help='显示版本信息')
20
+ def cli(port: int, host: str, transport: str, debug: bool, mount_path: str, version: bool):
21
+ """AIGroup 计量经济学 MCP 工具
22
+
23
+ 默认以stdio模式启动MCP服务器,适用于MCP客户端集成。
24
+ """
25
+
26
+ # 处理版本标志
27
+ if version:
28
+ from . import __version__
29
+ click.echo(f"aigroup-econ-mcp v{__version__}", err=True)
30
+ click.echo("Professional econometrics MCP tool", err=True)
31
+ click.echo("Author: AIGroup", err=True)
32
+ sys.exit(0)
33
+
34
+ # 创建MCP服务器
35
+ mcp_server = create_mcp_server()
36
+
37
+ # 设置调试模式
38
+ if debug:
39
+ mcp_server.settings.debug = True
40
+ click.echo(f"[DEBUG] 调试模式已启用", err=True)
41
+
42
+ # 根据传输协议启动服务器
43
+ if transport == 'stdio':
44
+ # stdio模式直接运行,不输出任何日志到stdout(MCP协议通信)
45
+ # 所有日志输出到stderr
46
+ from . import __version__
47
+ click.echo(f"[INFO] aigroup-econ-mcp v{__version__} starting...", err=True)
48
+ click.echo(f"[INFO] Transport: stdio (MCP protocol)", err=True)
49
+ if debug:
50
+ click.echo(f"[DEBUG] Debug mode enabled", err=True)
51
+ click.echo(f"[INFO] Server ready. Waiting for MCP client connection...", err=True)
52
+ mcp_server.run(transport='stdio')
53
+
54
+ elif transport == 'streamable-http':
55
+ # Streamable HTTP模式 - 使用uvicorn手动启动
56
+ click.echo(f"[INFO] Starting aigroup-econ-mcp server", err=True)
57
+ click.echo(f"[INFO] Professional econometrics MCP tool for AI data analysis", err=True)
58
+ click.echo(f"[INFO] Transport protocol: {transport}", err=True)
59
+ click.echo(f"[INFO] Service address: http://{host}:{port}", err=True)
60
+ if mount_path:
61
+ click.echo(f"[INFO] Mount path: {mount_path}", err=True)
62
+
63
+ # 获取Starlette应用并启动uvicorn服务器
64
+ app = mcp_server.streamable_http_app()
65
+ uvicorn.run(app, host=host, port=port, log_level="info")
66
+
67
+ elif transport == 'sse':
68
+ # SSE模式 - 使用uvicorn手动启动
69
+ click.echo(f"[INFO] Starting aigroup-econ-mcp server", err=True)
70
+ click.echo(f"[INFO] Professional econometrics MCP tool for AI data analysis", err=True)
71
+ click.echo(f"[INFO] Transport protocol: {transport}", err=True)
72
+ click.echo(f"[INFO] Service address: http://{host}:{port}", err=True)
73
+ if mount_path:
74
+ click.echo(f"[INFO] Mount path: {mount_path}", err=True)
75
+
76
+ # 获取Starlette应用并启动uvicorn服务器
77
+ app = mcp_server.sse_app()
78
+ uvicorn.run(app, host=host, port=port, log_level="info")
79
+
80
+
81
+ if __name__ == "__main__":
87
82
  cli()
@@ -38,7 +38,7 @@ from .tools.tool_handlers import (
38
38
  )
39
39
 
40
40
  # 导入装饰器
41
- from .tools.decorators import econometric_tool
41
+ from .tools.base import with_file_support_decorator as econometric_tool
42
42
 
43
43
 
44
44
  # 应用上下文
@@ -1,16 +1,26 @@
1
1
  """
2
- 工具模块基类
3
- 提供统一的优化组件集成和错误处理
2
+ 工具模块基类和装饰器
3
+ 整合了工具基类、装饰器、错误处理和优化组件
4
4
  """
5
5
 
6
6
  import functools
7
7
  from typing import Any, Dict, List, Optional, Callable, Type
8
+ from functools import wraps
9
+ from mcp.server.session import ServerSession
10
+ from mcp.server.fastmcp import Context
11
+ from mcp.types import CallToolResult, TextContent
12
+
8
13
  from .validation import ValidationError, validate_econometric_data, validate_model_parameters
9
14
  from .cache import cache_result, cache_model, global_econometric_cache
10
15
  from .monitoring import monitor_performance, track_progress, global_performance_monitor
16
+ from .file_parser import FileParser
11
17
  from ..config import get_config, econometric_config
12
18
 
13
19
 
20
+ # ============================================================================
21
+ # 错误类定义
22
+ # ============================================================================
23
+
14
24
  class EconometricToolError(Exception):
15
25
  """计量经济学工具错误基类"""
16
26
 
@@ -45,6 +55,177 @@ class ConfigurationError(EconometricToolError):
45
55
  pass
46
56
 
47
57
 
58
+ # ============================================================================
59
+ # 装饰器函数
60
+ # ============================================================================
61
+
62
+ def with_file_input(tool_type: str):
63
+ """
64
+ 为工具函数添加文件输入支持的装饰器
65
+
66
+ 支持两种输入方式:
67
+ 1. file_path: CSV/JSON文件路径
68
+ 2. file_content: 文件内容字符串
69
+
70
+ Args:
71
+ tool_type: 工具类型 ('single_var', 'multi_var_dict', 'regression', 'panel', 'time_series')
72
+
73
+ 使用示例:
74
+ @with_file_input('regression')
75
+ async def my_tool(ctx, y_data=None, x_data=None, file_path=None, file_content=None, file_format='auto', **kwargs):
76
+ # 如果提供了file_path或file_content,数据会被自动填充
77
+ pass
78
+ """
79
+ def decorator(func: Callable) -> Callable:
80
+ @wraps(func)
81
+ async def wrapper(*args, **kwargs):
82
+ # 提取上下文和文件参数
83
+ ctx = args[0] if args else kwargs.get('ctx')
84
+ file_path = kwargs.get('file_path')
85
+ file_content = kwargs.get('file_content')
86
+ file_format = kwargs.get('file_format', 'auto')
87
+
88
+ # 优先处理file_path
89
+ if file_path:
90
+ try:
91
+ await ctx.info(f"检测到文件路径输入: {file_path}")
92
+
93
+ # 从文件路径解析
94
+ parsed = FileParser.parse_file_path(file_path, file_format)
95
+
96
+ await ctx.info(
97
+ f"文件解析成功:{parsed['n_variables']}个变量,"
98
+ f"{parsed['n_observations']}个观测"
99
+ )
100
+
101
+ # 转换为工具格式
102
+ converted = FileParser.convert_to_tool_format(parsed, tool_type)
103
+
104
+ # 更新kwargs
105
+ kwargs.update(converted)
106
+
107
+ await ctx.info(f"数据已转换为{tool_type}格式")
108
+
109
+ except Exception as e:
110
+ await ctx.error(f"文件解析失败: {str(e)}")
111
+ return CallToolResult(
112
+ content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
113
+ isError=True
114
+ )
115
+
116
+ # 如果没有file_path但有file_content,处理文件内容
117
+ elif file_content:
118
+ try:
119
+ await ctx.info("检测到文件内容输入,开始解析...")
120
+
121
+ # 解析文件内容
122
+ parsed = FileParser.parse_file_content(file_content, file_format)
123
+
124
+ await ctx.info(
125
+ f"文件解析成功:{parsed['n_variables']}个变量,"
126
+ f"{parsed['n_observations']}个观测"
127
+ )
128
+
129
+ # 转换为工具格式
130
+ converted = FileParser.convert_to_tool_format(parsed, tool_type)
131
+
132
+ # 更新kwargs
133
+ kwargs.update(converted)
134
+
135
+ await ctx.info(f"数据已转换为{tool_type}格式")
136
+
137
+ except Exception as e:
138
+ await ctx.error(f"文件解析失败: {str(e)}")
139
+ return CallToolResult(
140
+ content=[TextContent(type="text", text=f"文件解析错误: {str(e)}")],
141
+ isError=True
142
+ )
143
+
144
+ # 调用原函数
145
+ return await func(*args, **kwargs)
146
+
147
+ return wrapper
148
+ return decorator
149
+
150
+
151
+ def with_error_handling(func: Callable) -> Callable:
152
+ """
153
+ 为工具函数添加统一错误处理的装饰器
154
+ """
155
+ @wraps(func)
156
+ async def wrapper(*args, **kwargs):
157
+ ctx = args[0] if args else kwargs.get('ctx')
158
+ tool_name = func.__name__
159
+
160
+ try:
161
+ return await func(*args, **kwargs)
162
+ except Exception as e:
163
+ await ctx.error(f"{tool_name}执行出错: {str(e)}")
164
+ return CallToolResult(
165
+ content=[TextContent(type="text", text=f"错误: {str(e)}")],
166
+ isError=True
167
+ )
168
+
169
+ return wrapper
170
+
171
+
172
+ def with_logging(func: Callable) -> Callable:
173
+ """
174
+ 为工具函数添加日志记录的装饰器
175
+ """
176
+ @wraps(func)
177
+ async def wrapper(*args, **kwargs):
178
+ ctx = args[0] if args else kwargs.get('ctx')
179
+ tool_name = func.__name__
180
+
181
+ await ctx.info(f"开始执行 {tool_name}")
182
+ result = await func(*args, **kwargs)
183
+ await ctx.info(f"{tool_name} 执行完成")
184
+
185
+ return result
186
+
187
+ return wrapper
188
+
189
+
190
+ def with_file_support_decorator(
191
+ tool_type: str,
192
+ enable_error_handling: bool = True,
193
+ enable_logging: bool = True
194
+ ):
195
+ """
196
+ 组合装饰器:为计量经济学工具添加文件支持和其他标准功能
197
+
198
+ Args:
199
+ tool_type: 工具类型
200
+ enable_error_handling: 是否启用错误处理
201
+ enable_logging: 是否启用日志记录
202
+
203
+ 使用示例:
204
+ @with_file_support_decorator('regression')
205
+ async def ols_regression(ctx, y_data=None, x_data=None, **kwargs):
206
+ # 只需要编写核心业务逻辑
207
+ pass
208
+ """
209
+ def decorator(func: Callable) -> Callable:
210
+ wrapped = func
211
+
212
+ if enable_error_handling:
213
+ wrapped = with_error_handling(wrapped)
214
+
215
+ wrapped = with_file_input(tool_type)(wrapped)
216
+
217
+ if enable_logging:
218
+ wrapped = with_logging(wrapped)
219
+
220
+ return wrapped
221
+
222
+ return decorator
223
+
224
+
225
+ # ============================================================================
226
+ # 工具基类
227
+ # ============================================================================
228
+
48
229
  class EconometricTool:
49
230
  """
50
231
  计量经济学工具基类
@@ -206,16 +387,27 @@ class EconometricTool:
206
387
  return global_econometric_cache.result_cache.get_function_cache_stats(self.tool_name) or {}
207
388
 
208
389
 
390
+ # ============================================================================
209
391
  # 便捷装饰器函数
210
- def econometric_tool(tool_name: str = None):
392
+ # ============================================================================
393
+
394
+ def econometric_tool_with_optimization(tool_name: str = None):
211
395
  """
212
- 计量经济学工具装饰器
396
+ 计量经济学工具装饰器(带优化)
397
+
398
+ 应用缓存、性能监控和错误处理
213
399
 
214
400
  Args:
215
401
  tool_name: 工具名称
216
402
 
217
403
  Returns:
218
404
  Callable: 装饰器函数
405
+
406
+ 使用示例:
407
+ @econometric_tool_with_optimization('my_analysis')
408
+ def my_analysis(data):
409
+ # 自动获得缓存、监控和错误处理
410
+ pass
219
411
  """
220
412
  def decorator(func):
221
413
  name = tool_name or func.__name__
@@ -261,11 +453,18 @@ def validate_input(data_type: str = "generic"):
261
453
 
262
454
  # 导出主要类和函数
263
455
  __all__ = [
456
+ # 错误类
264
457
  "EconometricToolError",
265
458
  "DataValidationError",
266
459
  "ModelFittingError",
267
460
  "ConfigurationError",
461
+ # 基类
268
462
  "EconometricTool",
269
- "econometric_tool",
463
+ # 装饰器
464
+ "with_file_input",
465
+ "with_error_handling",
466
+ "with_logging",
467
+ "with_file_support_decorator",
468
+ "econometric_tool_with_optimization",
270
469
  "validate_input"
271
470
  ]