aigroup-econ-mcp 0.3.7__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,560 @@
1
+ """
2
+ 文件解析模块
3
+ 支持CSV和JSON格式文件的智能解析和数据转换
4
+ """
5
+
6
+ import json
7
+ import csv
8
+ from typing import Dict, List, Any, Union, Tuple, Optional
9
+ from pathlib import Path
10
+ import io
11
+ import base64
12
+
13
+
14
+ class FileParser:
15
+ """文件解析器,支持CSV和JSON格式"""
16
+
17
+ @staticmethod
18
+ def parse_file_path(
19
+ file_path: str,
20
+ file_format: str = "auto"
21
+ ) -> Dict[str, Any]:
22
+ """
23
+ 从文件路径解析文件
24
+
25
+ Args:
26
+ file_path: 文件路径(相对或绝对路径)
27
+ file_format: 文件格式 ("csv", "json", "auto")
28
+
29
+ Returns:
30
+ 解析后的数据字典
31
+ """
32
+ path = Path(file_path)
33
+
34
+ if not path.exists():
35
+ raise FileNotFoundError(f"文件不存在: {file_path}")
36
+
37
+ if not path.is_file():
38
+ raise ValueError(f"路径不是文件: {file_path}")
39
+
40
+ # 自动检测格式(基于文件扩展名)
41
+ if file_format == "auto":
42
+ ext = path.suffix.lower()
43
+ if ext == '.csv':
44
+ file_format = "csv"
45
+ elif ext in ['.json', '.jsonl']:
46
+ file_format = "json"
47
+ else:
48
+ # 尝试从内容检测
49
+ with open(path, 'r', encoding='utf-8') as f:
50
+ content = f.read()
51
+ return FileParser.parse_file_content(content, "auto")
52
+
53
+ # 读取文件内容
54
+ with open(path, 'r', encoding='utf-8') as f:
55
+ content = f.read()
56
+
57
+ return FileParser.parse_file_content(content, file_format)
58
+
59
+ @staticmethod
60
+ def parse_file_content(
61
+ content: str,
62
+ file_format: str = "auto"
63
+ ) -> Dict[str, Any]:
64
+ """
65
+ 解析文件内容
66
+
67
+ Args:
68
+ content: 文件内容(base64编码的字符串或直接文本)
69
+ file_format: 文件格式 ("csv", "json", "auto")
70
+
71
+ Returns:
72
+ 解析后的数据字典,包含:
73
+ - data: 数据内容
74
+ - variables: 变量名列表
75
+ - format: 检测到的格式
76
+ - data_type: 数据类型('univariate', 'multivariate', 'time_series', 'panel')
77
+ """
78
+ # 尝试检测是否为base64编码
79
+ try:
80
+ decoded_content = base64.b64decode(content).decode('utf-8')
81
+ except:
82
+ decoded_content = content
83
+
84
+ # 自动检测格式
85
+ if file_format == "auto":
86
+ file_format = FileParser._detect_format(decoded_content)
87
+
88
+ if file_format == "csv":
89
+ return FileParser._parse_csv(decoded_content)
90
+ elif file_format == "json":
91
+ return FileParser._parse_json(decoded_content)
92
+ else:
93
+ raise ValueError(f"不支持的文件格式: {file_format}")
94
+
95
+ @staticmethod
96
+ def _detect_format(content: str) -> str:
97
+ """自动检测文件格式"""
98
+ # 尝试解析JSON
99
+ try:
100
+ json.loads(content.strip())
101
+ return "json"
102
+ except:
103
+ pass
104
+
105
+ # 检测CSV特征
106
+ if ',' in content or '\t' in content:
107
+ return "csv"
108
+
109
+ raise ValueError("无法自动检测文件格式,请明确指定")
110
+
111
+ @staticmethod
112
+ def _parse_csv(content: str) -> Dict[str, Any]:
113
+ """
114
+ 解析CSV文件
115
+
116
+ 支持的格式:
117
+ 1. 带表头的列数据
118
+ 2. 无表头的纯数值数据
119
+ """
120
+ lines = content.strip().split('\n')
121
+ if not lines:
122
+ raise ValueError("CSV文件为空")
123
+
124
+ # 检测分隔符
125
+ delimiter = FileParser._detect_delimiter(lines[0])
126
+
127
+ # 使用csv.reader解析
128
+ reader = csv.reader(io.StringIO(content), delimiter=delimiter)
129
+ rows = list(reader)
130
+
131
+ if not rows:
132
+ raise ValueError("CSV文件没有数据")
133
+
134
+ # 检测是否有表头
135
+ has_header = FileParser._has_header(rows)
136
+
137
+ if has_header:
138
+ headers = rows[0]
139
+ data_rows = rows[1:]
140
+ else:
141
+ # 自动生成列名
142
+ headers = [f"var{i+1}" for i in range(len(rows[0]))]
143
+ data_rows = rows
144
+
145
+ # 转换为数值数据
146
+ parsed_data = {}
147
+ for i, header in enumerate(headers):
148
+ column_data = []
149
+ for row in data_rows:
150
+ if i < len(row):
151
+ try:
152
+ # 尝试转换为浮点数
153
+ value = float(row[i].strip())
154
+ column_data.append(value)
155
+ except ValueError:
156
+ # 如果无法转换,保留原字符串(用于ID列)
157
+ column_data.append(row[i].strip())
158
+
159
+ if column_data: # 只保留有数据的列
160
+ parsed_data[header.strip()] = column_data
161
+
162
+ if not parsed_data:
163
+ raise ValueError("CSV文件中没有有效的数据")
164
+
165
+ # 检测数据类型
166
+ data_type = FileParser._detect_data_type(parsed_data)
167
+
168
+ return {
169
+ "data": parsed_data,
170
+ "variables": list(parsed_data.keys()),
171
+ "format": "csv",
172
+ "data_type": data_type,
173
+ "n_variables": len(parsed_data),
174
+ "n_observations": len(next(iter(parsed_data.values())))
175
+ }
176
+
177
+ @staticmethod
178
+ def _parse_json(content: str) -> Dict[str, Any]:
179
+ """
180
+ 解析JSON文件
181
+
182
+ 支持的格式:
183
+ 1. {"变量名": [数据列表], ...}
184
+ 2. [{"变量1": 值, "变量2": 值, ...}, ...]
185
+ 3. {"data": {...}, "metadata": {...}}
186
+ """
187
+ try:
188
+ json_data = json.loads(content)
189
+ except json.JSONDecodeError as e:
190
+ raise ValueError(f"JSON格式错误: {str(e)}")
191
+
192
+ # 格式1: 直接的变量-数据字典
193
+ if isinstance(json_data, dict) and all(
194
+ isinstance(v, list) for v in json_data.values()
195
+ ):
196
+ # 保留所有列(包括字符串类型的ID和时间列)
197
+ parsed_data = {}
198
+ for key, values in json_data.items():
199
+ if key.lower() in ['metadata', 'info', 'description']:
200
+ continue # 跳过元数据字段
201
+
202
+ # 智能转换:尝试转数值,失败则保留原始类型
203
+ converted_values = []
204
+ for v in values:
205
+ try:
206
+ # 尝试转换为浮点数
207
+ converted_values.append(float(v))
208
+ except (ValueError, TypeError):
209
+ # 无法转换则保留原始值(字符串等)
210
+ converted_values.append(v)
211
+
212
+ parsed_data[key] = converted_values
213
+
214
+ if parsed_data:
215
+ data_type = FileParser._detect_data_type(parsed_data)
216
+ return {
217
+ "data": parsed_data,
218
+ "variables": list(parsed_data.keys()),
219
+ "format": "json",
220
+ "data_type": data_type,
221
+ "n_variables": len(parsed_data),
222
+ "n_observations": len(next(iter(parsed_data.values())))
223
+ }
224
+
225
+ # 格式2: 记录数组格式
226
+ elif isinstance(json_data, list) and json_data and isinstance(json_data[0], dict):
227
+ # 转换为变量-数据字典,保留字符串类型
228
+ parsed_data = {}
229
+ for record in json_data:
230
+ for key, value in record.items():
231
+ if key not in parsed_data:
232
+ parsed_data[key] = []
233
+ # 智能转换:尝试转数值,失败则保留原始类型
234
+ try:
235
+ parsed_data[key].append(float(value))
236
+ except (ValueError, TypeError):
237
+ # 保留原始值(字符串等)
238
+ parsed_data[key].append(value)
239
+
240
+ if parsed_data:
241
+ data_type = FileParser._detect_data_type(parsed_data)
242
+ return {
243
+ "data": parsed_data,
244
+ "variables": list(parsed_data.keys()),
245
+ "format": "json",
246
+ "data_type": data_type,
247
+ "n_variables": len(parsed_data),
248
+ "n_observations": len(next(iter(parsed_data.values())))
249
+ }
250
+
251
+ # 格式3: 包含data字段的结构
252
+ elif isinstance(json_data, dict) and "data" in json_data:
253
+ return FileParser._parse_json(json.dumps(json_data["data"]))
254
+
255
+ raise ValueError("不支持的JSON数据格式")
256
+
257
+ @staticmethod
258
+ def _detect_delimiter(line: str) -> str:
259
+ """检测CSV分隔符"""
260
+ # 常见分隔符
261
+ delimiters = [',', '\t', ';', '|']
262
+ counts = {d: line.count(d) for d in delimiters}
263
+ # 返回出现次数最多的分隔符
264
+ return max(counts.items(), key=lambda x: x[1])[0]
265
+
266
+ @staticmethod
267
+ def _has_header(rows: List[List[str]]) -> bool:
268
+ """检测CSV是否有表头"""
269
+ if len(rows) < 2:
270
+ return False
271
+
272
+ # 检查第一行是否包含非数值字符串
273
+ first_row = rows[0]
274
+
275
+ # 如果第一行有任何元素无法转换为数字,认为有表头
276
+ for cell in first_row:
277
+ try:
278
+ float(cell.strip())
279
+ except ValueError:
280
+ return True
281
+
282
+ return False
283
+
284
+ @staticmethod
285
+ def _detect_data_type(data: Dict[str, List]) -> str:
286
+ """
287
+ 检测数据类型
288
+
289
+ Returns:
290
+ - 'univariate': 单变量
291
+ - 'multivariate': 多变量
292
+ - 'time_series': 时间序列(通过变量名推断)
293
+ - 'panel': 面板数据(通过变量名推断)
294
+ """
295
+ n_vars = len(data)
296
+ var_names = [v.lower() for v in data.keys()]
297
+
298
+ # 检查是否包含时间/日期相关的变量名
299
+ time_keywords = ['time', 'date', 'year', 'month', 'day', 'period', 'quarter']
300
+ has_time_var = any(any(kw in var for kw in time_keywords) for var in var_names)
301
+
302
+ # 检查是否包含实体/ID相关的变量名
303
+ entity_keywords = ['id', 'entity', 'firm', 'company', 'country', 'region']
304
+ has_entity_var = any(any(kw in var for kw in entity_keywords) for var in var_names)
305
+
306
+ if n_vars == 1:
307
+ return 'univariate'
308
+ elif has_entity_var and has_time_var:
309
+ return 'panel'
310
+ elif has_time_var or n_vars >= 2:
311
+ return 'time_series'
312
+ else:
313
+ return 'multivariate'
314
+
315
+ @staticmethod
316
+ def convert_to_tool_format(
317
+ parsed_data: Dict[str, Any],
318
+ tool_type: str
319
+ ) -> Dict[str, Any]:
320
+ """
321
+ 将解析后的数据转换为工具所需的格式
322
+
323
+ Args:
324
+ parsed_data: parse_file_content返回的数据
325
+ tool_type: 工具类型
326
+ - 'single_var': 单变量 (List[float])
327
+ - 'multi_var_dict': 多变量字典 (Dict[str, List[float]])
328
+ - 'multi_var_matrix': 多变量矩阵 (List[List[float]])
329
+ - 'regression': 回归分析 (y_data, x_data)
330
+ - 'panel': 面板数据 (y_data, x_data, entity_ids, time_periods)
331
+
332
+ Returns:
333
+ 转换后的数据字典
334
+ """
335
+ data = parsed_data["data"]
336
+ variables = parsed_data["variables"]
337
+
338
+ if tool_type == 'single_var':
339
+ # 返回第一个变量的数据
340
+ var_data = data[variables[0]]
341
+ return {
342
+ "data": var_data
343
+ }
344
+
345
+ elif tool_type == 'multi_var_dict':
346
+ # 直接返回字典格式
347
+ return {"data": data}
348
+
349
+ elif tool_type == 'time_series':
350
+ # 时间序列类型,与multi_var_dict相同,返回字典格式
351
+ return {"data": data}
352
+
353
+ elif tool_type == 'multi_var_matrix':
354
+ # 转换为矩阵格式 (List[List[float]])
355
+ n_obs = len(data[variables[0]])
356
+ matrix = []
357
+ for i in range(n_obs):
358
+ row = [data[var][i] for var in variables]
359
+ matrix.append(row)
360
+
361
+ return {
362
+ "data": matrix,
363
+ "feature_names": variables
364
+ }
365
+
366
+ elif tool_type == 'regression':
367
+ # 假设最后一个变量是因变量,其余是自变量
368
+ if len(variables) < 2:
369
+ raise ValueError("回归分析至少需要2个变量(1个因变量和至少1个自变量)")
370
+
371
+ y_var = variables[-1]
372
+ x_vars = variables[:-1]
373
+
374
+ y_data = data[y_var]
375
+ n_obs = len(y_data)
376
+
377
+ # 构建x_data矩阵
378
+ x_data = []
379
+ for i in range(n_obs):
380
+ row = [data[var][i] for var in x_vars]
381
+ x_data.append(row)
382
+
383
+ return {
384
+ "y_data": y_data,
385
+ "x_data": x_data,
386
+ "feature_names": x_vars
387
+ }
388
+
389
+ elif tool_type == 'panel':
390
+ # 识别实体ID、时间标识和数据变量
391
+ entity_var = None
392
+ time_var = None
393
+ data_vars = []
394
+
395
+ entity_keywords = ['id', 'entity', 'firm', 'company', 'country', 'region']
396
+ time_keywords = ['time', 'date', 'year', 'month', 'day', 'period', 'quarter']
397
+
398
+ # 更详细的检测逻辑
399
+ print(f"Debug: 开始检测面板数据列...")
400
+ for var in variables:
401
+ var_lower = var.lower()
402
+ print(f"Debug: 检查变量 '{var}' (小写: '{var_lower}')")
403
+
404
+ # 检查是否是实体ID列
405
+ is_entity = any(kw in var_lower for kw in entity_keywords)
406
+ is_time = any(kw in var_lower for kw in time_keywords)
407
+
408
+ if is_entity and entity_var is None:
409
+ entity_var = var
410
+ print(f"Debug: 识别为实体ID列: {var}")
411
+ elif is_time and time_var is None:
412
+ time_var = var
413
+ print(f"Debug: 识别为时间列: {var}")
414
+ else:
415
+ data_vars.append(var)
416
+ print(f"Debug: 识别为数据列: {var}")
417
+
418
+ print(f"Debug: entity_var={entity_var}, time_var={time_var}, data_vars={data_vars}")
419
+
420
+ if not entity_var or not time_var:
421
+ # 提供更详细的错误信息
422
+ available_vars = ', '.join(variables)
423
+ error_msg = f"面板数据需要包含实体ID和时间标识变量。\n"
424
+ error_msg += f"可用列: {available_vars}\n"
425
+ error_msg += f"检测到的实体ID列: {entity_var if entity_var else '未检测到'}\n"
426
+ error_msg += f"检测到的时间列: {time_var if time_var else '未检测到'}\n"
427
+ error_msg += f"实体ID关键词: {entity_keywords}\n"
428
+ error_msg += f"时间关键词: {time_keywords}"
429
+ raise ValueError(error_msg)
430
+
431
+ if len(data_vars) < 1:
432
+ raise ValueError(f"面板数据至少需要1个数据变量。当前数据列: {data_vars}")
433
+
434
+ # 转换ID和时间(保持原类型,可能是字符串或数字)
435
+ entity_ids = [str(x) for x in data[entity_var]]
436
+ time_periods = [str(int(x)) if isinstance(x, float) and x == int(x) else str(x) for x in data[time_var]]
437
+
438
+ print(f"Debug: entity_ids样本: {entity_ids[:5]}")
439
+ print(f"Debug: time_periods样本: {time_periods[:5]}")
440
+
441
+ # 如果只有一个数据变量,将其作为因变量
442
+ if len(data_vars) == 1:
443
+ y_var = data_vars[0]
444
+ y_data = data[y_var]
445
+ # 创建一个虚拟自变量(常数项)
446
+ n_obs = len(y_data)
447
+ x_data = [[1.0] for _ in range(n_obs)]
448
+ x_vars = ['const']
449
+ else:
450
+ # 假设最后一个数据变量是因变量
451
+ y_var = data_vars[-1]
452
+ x_vars = data_vars[:-1]
453
+
454
+ y_data = data[y_var]
455
+ n_obs = len(y_data)
456
+
457
+ # 构建x_data矩阵
458
+ x_data = []
459
+ for i in range(n_obs):
460
+ row = [data[var][i] for var in x_vars]
461
+ x_data.append(row)
462
+
463
+ return {
464
+ "y_data": y_data,
465
+ "x_data": x_data,
466
+ "entity_ids": entity_ids,
467
+ "time_periods": time_periods,
468
+ "feature_names": x_vars
469
+ }
470
+
471
+ else:
472
+ raise ValueError(f"不支持的工具类型: {tool_type}")
473
+
474
+ @staticmethod
475
+ def auto_detect_tool_params(parsed_data: Dict[str, Any]) -> Dict[str, Any]:
476
+ """
477
+ 自动检测并推荐适合的工具参数
478
+
479
+ Args:
480
+ parsed_data: parse_file_content返回的数据
481
+
482
+ Returns:
483
+ 推荐的工具和参数
484
+ """
485
+ data_type = parsed_data["data_type"]
486
+ n_vars = parsed_data["n_variables"]
487
+ n_obs = parsed_data["n_observations"]
488
+
489
+ recommendations = {
490
+ "data_type": data_type,
491
+ "suggested_tools": [],
492
+ "warnings": []
493
+ }
494
+
495
+ # 根据数据类型推荐工具
496
+ if data_type == 'univariate':
497
+ recommendations["suggested_tools"] = [
498
+ "descriptive_statistics",
499
+ "hypothesis_testing",
500
+ "time_series_analysis"
501
+ ]
502
+ elif data_type == 'multivariate':
503
+ recommendations["suggested_tools"] = [
504
+ "descriptive_statistics",
505
+ "correlation_analysis",
506
+ "ols_regression",
507
+ "random_forest_regression_analysis",
508
+ "lasso_regression_analysis"
509
+ ]
510
+ elif data_type == 'time_series':
511
+ recommendations["suggested_tools"] = [
512
+ "time_series_analysis",
513
+ "var_model_analysis",
514
+ "garch_model_analysis"
515
+ ]
516
+ elif data_type == 'panel':
517
+ recommendations["suggested_tools"] = [
518
+ "panel_fixed_effects",
519
+ "panel_random_effects",
520
+ "panel_hausman_test",
521
+ "panel_unit_root_test"
522
+ ]
523
+
524
+ # 添加警告
525
+ if n_obs < 30:
526
+ recommendations["warnings"].append(
527
+ f"样本量较小({n_obs}个观测),统计推断可能不可靠"
528
+ )
529
+
530
+ if n_vars > 10:
531
+ recommendations["warnings"].append(
532
+ f"变量数量较多({n_vars}个变量),可能需要特征选择"
533
+ )
534
+
535
+ if n_vars > n_obs / 10:
536
+ recommendations["warnings"].append(
537
+ "变量数量接近样本量的1/10,可能存在过拟合风险"
538
+ )
539
+
540
+ return recommendations
541
+
542
+
543
+ def parse_file_input(
544
+ file_content: Optional[str] = None,
545
+ file_format: str = "auto"
546
+ ) -> Optional[Dict[str, Any]]:
547
+ """
548
+ 便捷函数:解析文件输入
549
+
550
+ Args:
551
+ file_content: 文件内容(可选)
552
+ file_format: 文件格式
553
+
554
+ Returns:
555
+ 解析后的数据,如果file_content为None则返回None
556
+ """
557
+ if file_content is None:
558
+ return None
559
+
560
+ return FileParser.parse_file_content(file_content, file_format)
@@ -111,7 +111,7 @@ def random_forest_regression(
111
111
  raise ValueError("因变量和自变量数据不能为空")
112
112
 
113
113
  if len(y_data) != len(x_data):
114
- raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
114
+ raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
115
115
 
116
116
  # 准备数据
117
117
  X = np.array(x_data)
@@ -121,7 +121,7 @@ def random_forest_regression(
121
121
  if feature_names is None:
122
122
  feature_names = [f"x{i}" for i in range(X.shape[1])]
123
123
  elif len(feature_names) != X.shape[1]:
124
- raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
124
+ raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
125
125
 
126
126
  # 数据标准化
127
127
  scaler = StandardScaler()
@@ -210,7 +210,7 @@ def gradient_boosting_regression(
210
210
  raise ValueError("因变量和自变量数据不能为空")
211
211
 
212
212
  if len(y_data) != len(x_data):
213
- raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
213
+ raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
214
214
 
215
215
  # 准备数据
216
216
  X = np.array(x_data)
@@ -220,7 +220,7 @@ def gradient_boosting_regression(
220
220
  if feature_names is None:
221
221
  feature_names = [f"x{i}" for i in range(X.shape[1])]
222
222
  elif len(feature_names) != X.shape[1]:
223
- raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
223
+ raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
224
224
 
225
225
  # 数据标准化
226
226
  scaler = StandardScaler()
@@ -364,7 +364,7 @@ def _regularized_regression(
364
364
  raise ValueError("因变量和自变量数据不能为空")
365
365
 
366
366
  if len(y_data) != len(x_data):
367
- raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
367
+ raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
368
368
 
369
369
  # 准备数据
370
370
  X = np.array(x_data)
@@ -374,7 +374,7 @@ def _regularized_regression(
374
374
  if feature_names is None:
375
375
  feature_names = [f"x{i}" for i in range(X.shape[1])]
376
376
  elif len(feature_names) != X.shape[1]:
377
- raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
377
+ raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
378
378
 
379
379
  # 数据标准化
380
380
  scaler = StandardScaler()
@@ -387,7 +387,7 @@ def _regularized_regression(
387
387
  elif model_type == "ridge":
388
388
  model = Ridge(alpha=alpha, random_state=random_state)
389
389
  else:
390
- raise ValueError("不支持的模型类型: {}".format(model_type))
390
+ raise ValueError(f"不支持的模型类型: {model_type}")
391
391
 
392
392
  # 训练模型
393
393
  model.fit(X_scaled, y_scaled)
@@ -464,10 +464,10 @@ def cross_validation(
464
464
  raise ValueError("因变量和自变量数据不能为空")
465
465
 
466
466
  if len(y_data) != len(x_data):
467
- raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
467
+ raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
468
468
 
469
469
  if cv_folds < 2 or cv_folds > len(y_data):
470
- raise ValueError("交叉验证折数应在2到样本数量之间: cv_folds={}, n_obs={}".format(cv_folds, len(y_data)))
470
+ raise ValueError(f"交叉验证折数应在2到样本数量之间: cv_folds={cv_folds}, n_obs={len(y_data)}")
471
471
 
472
472
  # 准备数据
473
473
  X = np.array(x_data)
@@ -487,7 +487,7 @@ def cross_validation(
487
487
  elif model_type == "ridge":
488
488
  model = Ridge(**model_params)
489
489
  else:
490
- raise ValueError("不支持的模型类型: {}".format(model_type))
490
+ raise ValueError(f"不支持的模型类型: {model_type}")
491
491
 
492
492
  # 执行交叉验证
493
493
  cv = KFold(n_splits=cv_folds, shuffle=True, random_state=42)
@@ -546,7 +546,7 @@ def feature_importance_analysis(
546
546
  raise ValueError("因变量和自变量数据不能为空")
547
547
 
548
548
  if len(y_data) != len(x_data):
549
- raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
549
+ raise ValueError(f"因变量和自变量的观测数量不一致: y_data={len(y_data)}, x_data={len(x_data)}")
550
550
 
551
551
  # 准备数据
552
552
  X = np.array(x_data)
@@ -556,7 +556,7 @@ def feature_importance_analysis(
556
556
  if feature_names is None:
557
557
  feature_names = [f"x{i}" for i in range(X.shape[1])]
558
558
  elif len(feature_names) != X.shape[1]:
559
- raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
559
+ raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
560
560
 
561
561
  # 数据标准化
562
562
  scaler = StandardScaler()
@@ -568,7 +568,7 @@ def feature_importance_analysis(
568
568
  elif method == "gradient_boosting":
569
569
  model = GradientBoostingRegressor(n_estimators=100, random_state=42)
570
570
  else:
571
- raise ValueError("不支持的特征重要性分析方法: {}".format(method))
571
+ raise ValueError(f"不支持的特征重要性分析方法: {method}")
572
572
 
573
573
  # 训练模型
574
574
  model.fit(X_scaled, y)
@@ -649,7 +649,7 @@ def compare_ml_models(
649
649
  results[model_name] = result.model_dump()
650
650
 
651
651
  except Exception as e:
652
- print("模型 {} 运行失败: {}".format(model_name, e))
652
+ print(f"模型 {model_name} 运行失败: {e}")
653
653
  continue
654
654
 
655
655
  # 找出最佳模型(基于R²得分)