aigroup-econ-mcp 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aigroup-econ-mcp might be problematic. Click here for more details.
- aigroup_econ_mcp/tools/machine_learning.py +15 -15
- aigroup_econ_mcp/tools/panel_data.py +46 -24
- aigroup_econ_mcp/tools/statistics.py +153 -133
- aigroup_econ_mcp/tools/time_series.py +341 -487
- {aigroup_econ_mcp-0.3.0.dist-info → aigroup_econ_mcp-0.3.2.dist-info}/METADATA +2 -1
- {aigroup_econ_mcp-0.3.0.dist-info → aigroup_econ_mcp-0.3.2.dist-info}/RECORD +9 -9
- {aigroup_econ_mcp-0.3.0.dist-info → aigroup_econ_mcp-0.3.2.dist-info}/WHEEL +0 -0
- {aigroup_econ_mcp-0.3.0.dist-info → aigroup_econ_mcp-0.3.2.dist-info}/entry_points.txt +0 -0
- {aigroup_econ_mcp-0.3.0.dist-info → aigroup_econ_mcp-0.3.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -111,7 +111,7 @@ def random_forest_regression(
|
|
|
111
111
|
raise ValueError("因变量和自变量数据不能为空")
|
|
112
112
|
|
|
113
113
|
if len(y_data) != len(x_data):
|
|
114
|
-
raise ValueError(
|
|
114
|
+
raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
|
|
115
115
|
|
|
116
116
|
# 准备数据
|
|
117
117
|
X = np.array(x_data)
|
|
@@ -121,7 +121,7 @@ def random_forest_regression(
|
|
|
121
121
|
if feature_names is None:
|
|
122
122
|
feature_names = [f"x{i}" for i in range(X.shape[1])]
|
|
123
123
|
elif len(feature_names) != X.shape[1]:
|
|
124
|
-
raise ValueError(
|
|
124
|
+
raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
|
|
125
125
|
|
|
126
126
|
# 数据标准化
|
|
127
127
|
scaler = StandardScaler()
|
|
@@ -156,7 +156,7 @@ def random_forest_regression(
|
|
|
156
156
|
feature_names=feature_names,
|
|
157
157
|
feature_importance=feature_importance,
|
|
158
158
|
n_estimators=n_estimators,
|
|
159
|
-
max_depth=max_depth if max_depth else -1, # -1表示无限制
|
|
159
|
+
max_depth=max_depth if max_depth is not None else -1, # -1表示无限制
|
|
160
160
|
oob_score=rf_model.oob_score_ if hasattr(rf_model, 'oob_score_') else None
|
|
161
161
|
)
|
|
162
162
|
|
|
@@ -210,7 +210,7 @@ def gradient_boosting_regression(
|
|
|
210
210
|
raise ValueError("因变量和自变量数据不能为空")
|
|
211
211
|
|
|
212
212
|
if len(y_data) != len(x_data):
|
|
213
|
-
raise ValueError(
|
|
213
|
+
raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
|
|
214
214
|
|
|
215
215
|
# 准备数据
|
|
216
216
|
X = np.array(x_data)
|
|
@@ -220,7 +220,7 @@ def gradient_boosting_regression(
|
|
|
220
220
|
if feature_names is None:
|
|
221
221
|
feature_names = [f"x{i}" for i in range(X.shape[1])]
|
|
222
222
|
elif len(feature_names) != X.shape[1]:
|
|
223
|
-
raise ValueError(
|
|
223
|
+
raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
|
|
224
224
|
|
|
225
225
|
# 数据标准化
|
|
226
226
|
scaler = StandardScaler()
|
|
@@ -364,7 +364,7 @@ def _regularized_regression(
|
|
|
364
364
|
raise ValueError("因变量和自变量数据不能为空")
|
|
365
365
|
|
|
366
366
|
if len(y_data) != len(x_data):
|
|
367
|
-
raise ValueError(
|
|
367
|
+
raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
|
|
368
368
|
|
|
369
369
|
# 准备数据
|
|
370
370
|
X = np.array(x_data)
|
|
@@ -374,7 +374,7 @@ def _regularized_regression(
|
|
|
374
374
|
if feature_names is None:
|
|
375
375
|
feature_names = [f"x{i}" for i in range(X.shape[1])]
|
|
376
376
|
elif len(feature_names) != X.shape[1]:
|
|
377
|
-
raise ValueError(
|
|
377
|
+
raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
|
|
378
378
|
|
|
379
379
|
# 数据标准化
|
|
380
380
|
scaler = StandardScaler()
|
|
@@ -387,7 +387,7 @@ def _regularized_regression(
|
|
|
387
387
|
elif model_type == "ridge":
|
|
388
388
|
model = Ridge(alpha=alpha, random_state=random_state)
|
|
389
389
|
else:
|
|
390
|
-
raise ValueError(
|
|
390
|
+
raise ValueError("不支持的模型类型: {}".format(model_type))
|
|
391
391
|
|
|
392
392
|
# 训练模型
|
|
393
393
|
model.fit(X_scaled, y_scaled)
|
|
@@ -464,10 +464,10 @@ def cross_validation(
|
|
|
464
464
|
raise ValueError("因变量和自变量数据不能为空")
|
|
465
465
|
|
|
466
466
|
if len(y_data) != len(x_data):
|
|
467
|
-
raise ValueError(
|
|
467
|
+
raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
|
|
468
468
|
|
|
469
469
|
if cv_folds < 2 or cv_folds > len(y_data):
|
|
470
|
-
raise ValueError(
|
|
470
|
+
raise ValueError("交叉验证折数应在2到样本数量之间: cv_folds={}, n_obs={}".format(cv_folds, len(y_data)))
|
|
471
471
|
|
|
472
472
|
# 准备数据
|
|
473
473
|
X = np.array(x_data)
|
|
@@ -487,7 +487,7 @@ def cross_validation(
|
|
|
487
487
|
elif model_type == "ridge":
|
|
488
488
|
model = Ridge(**model_params)
|
|
489
489
|
else:
|
|
490
|
-
raise ValueError(
|
|
490
|
+
raise ValueError("不支持的模型类型: {}".format(model_type))
|
|
491
491
|
|
|
492
492
|
# 执行交叉验证
|
|
493
493
|
cv = KFold(n_splits=cv_folds, shuffle=True, random_state=42)
|
|
@@ -546,7 +546,7 @@ def feature_importance_analysis(
|
|
|
546
546
|
raise ValueError("因变量和自变量数据不能为空")
|
|
547
547
|
|
|
548
548
|
if len(y_data) != len(x_data):
|
|
549
|
-
raise ValueError(
|
|
549
|
+
raise ValueError("因变量和自变量的观测数量不一致: y_data={}, x_data={}".format(len(y_data), len(x_data)))
|
|
550
550
|
|
|
551
551
|
# 准备数据
|
|
552
552
|
X = np.array(x_data)
|
|
@@ -556,7 +556,7 @@ def feature_importance_analysis(
|
|
|
556
556
|
if feature_names is None:
|
|
557
557
|
feature_names = [f"x{i}" for i in range(X.shape[1])]
|
|
558
558
|
elif len(feature_names) != X.shape[1]:
|
|
559
|
-
raise ValueError(
|
|
559
|
+
raise ValueError("特征名称数量({})与自变量数量({})不匹配".format(len(feature_names), X.shape[1]))
|
|
560
560
|
|
|
561
561
|
# 数据标准化
|
|
562
562
|
scaler = StandardScaler()
|
|
@@ -568,7 +568,7 @@ def feature_importance_analysis(
|
|
|
568
568
|
elif method == "gradient_boosting":
|
|
569
569
|
model = GradientBoostingRegressor(n_estimators=100, random_state=42)
|
|
570
570
|
else:
|
|
571
|
-
raise ValueError(
|
|
571
|
+
raise ValueError("不支持的特征重要性分析方法: {}".format(method))
|
|
572
572
|
|
|
573
573
|
# 训练模型
|
|
574
574
|
model.fit(X_scaled, y)
|
|
@@ -649,7 +649,7 @@ def compare_ml_models(
|
|
|
649
649
|
results[model_name] = result.model_dump()
|
|
650
650
|
|
|
651
651
|
except Exception as e:
|
|
652
|
-
print(
|
|
652
|
+
print("模型 {} 运行失败: {}".format(model_name, e))
|
|
653
653
|
continue
|
|
654
654
|
|
|
655
655
|
# 找出最佳模型(基于R²得分)
|
|
@@ -82,10 +82,35 @@ def prepare_panel_data(
|
|
|
82
82
|
if len(y_data) != len(time_periods):
|
|
83
83
|
raise ValueError("因变量和时间标识符数量不一致")
|
|
84
84
|
|
|
85
|
+
# 处理时间标识符格式兼容性
|
|
86
|
+
processed_time_periods = []
|
|
87
|
+
for time_period in time_periods:
|
|
88
|
+
# 尝试将时间标识符转换为可排序的格式
|
|
89
|
+
if isinstance(time_period, str):
|
|
90
|
+
# 如果是字符串,尝试转换为数值或保持原样
|
|
91
|
+
try:
|
|
92
|
+
# 尝试转换为数值
|
|
93
|
+
processed_time_periods.append(float(time_period))
|
|
94
|
+
except ValueError:
|
|
95
|
+
# 如果无法转换为数值,尝试解析季度格式
|
|
96
|
+
if 'Q' in time_period:
|
|
97
|
+
try:
|
|
98
|
+
# 处理季度格式,如 "2020Q1"
|
|
99
|
+
year, quarter = time_period.split('Q')
|
|
100
|
+
processed_time_periods.append(float(year) + float(quarter) / 10)
|
|
101
|
+
except:
|
|
102
|
+
# 如果无法解析,保持原样
|
|
103
|
+
processed_time_periods.append(time_period)
|
|
104
|
+
else:
|
|
105
|
+
# 如果无法转换为数值,保持原样
|
|
106
|
+
processed_time_periods.append(time_period)
|
|
107
|
+
else:
|
|
108
|
+
processed_time_periods.append(time_period)
|
|
109
|
+
|
|
85
110
|
# 创建DataFrame
|
|
86
111
|
data_dict = {
|
|
87
112
|
'entity': entity_ids,
|
|
88
|
-
'time':
|
|
113
|
+
'time': processed_time_periods,
|
|
89
114
|
'y': y_data
|
|
90
115
|
}
|
|
91
116
|
|
|
@@ -156,11 +181,10 @@ def fixed_effects_model(
|
|
|
156
181
|
# 添加常数项
|
|
157
182
|
X = sm.add_constant(X)
|
|
158
183
|
|
|
159
|
-
#
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
fitted_model = model.fit(cov_type='clustered', cluster_entity=True)
|
|
184
|
+
# 简化实现:使用OLS作为基础
|
|
185
|
+
# 在实际应用中,应该使用专门的固定效应模型
|
|
186
|
+
model = sm.OLS(y, X)
|
|
187
|
+
fitted_model = model.fit()
|
|
164
188
|
|
|
165
189
|
# 构建系数详情
|
|
166
190
|
coefficients = {}
|
|
@@ -169,8 +193,8 @@ def fixed_effects_model(
|
|
|
169
193
|
for i, coef_name in enumerate(fitted_model.params.index):
|
|
170
194
|
coefficients[coef_name] = {
|
|
171
195
|
"coef": float(fitted_model.params.iloc[i]),
|
|
172
|
-
"std_err": float(fitted_model.
|
|
173
|
-
"t_value": float(fitted_model.
|
|
196
|
+
"std_err": float(fitted_model.bse.iloc[i]),
|
|
197
|
+
"t_value": float(fitted_model.tvalues.iloc[i]),
|
|
174
198
|
"p_value": float(fitted_model.pvalues.iloc[i]),
|
|
175
199
|
"ci_lower": float(conf_int.iloc[i, 0]),
|
|
176
200
|
"ci_upper": float(conf_int.iloc[i, 1])
|
|
@@ -180,21 +204,21 @@ def fixed_effects_model(
|
|
|
180
204
|
result = FixedEffectsResult(
|
|
181
205
|
rsquared=float(fitted_model.rsquared),
|
|
182
206
|
rsquared_adj=float(fitted_model.rsquared_adj),
|
|
183
|
-
f_statistic=float(fitted_model.
|
|
184
|
-
f_pvalue=float(fitted_model.
|
|
207
|
+
f_statistic=float(fitted_model.fvalue),
|
|
208
|
+
f_pvalue=float(fitted_model.f_pvalue),
|
|
185
209
|
aic=float(fitted_model.aic),
|
|
186
210
|
bic=float(fitted_model.bic),
|
|
187
211
|
n_obs=int(fitted_model.nobs),
|
|
188
212
|
coefficients=coefficients,
|
|
189
213
|
entity_effects=entity_effects,
|
|
190
214
|
time_effects=time_effects,
|
|
191
|
-
within_rsquared=float(fitted_model.
|
|
215
|
+
within_rsquared=float(fitted_model.rsquared) # 简化实现
|
|
192
216
|
)
|
|
193
217
|
|
|
194
218
|
return result
|
|
195
219
|
|
|
196
220
|
except Exception as e:
|
|
197
|
-
raise ValueError(
|
|
221
|
+
raise ValueError("固定效应模型拟合失败: {}".format(str(e)))
|
|
198
222
|
|
|
199
223
|
|
|
200
224
|
def random_effects_model(
|
|
@@ -249,11 +273,10 @@ def random_effects_model(
|
|
|
249
273
|
# 添加常数项
|
|
250
274
|
X = sm.add_constant(X)
|
|
251
275
|
|
|
252
|
-
#
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
fitted_model = model.fit(cov_type='clustered', cluster_entity=True)
|
|
276
|
+
# 简化实现:使用OLS作为基础
|
|
277
|
+
# 在实际应用中,应该使用专门的随机效应模型
|
|
278
|
+
model = sm.OLS(y, X)
|
|
279
|
+
fitted_model = model.fit()
|
|
257
280
|
|
|
258
281
|
# 构建系数详情
|
|
259
282
|
coefficients = {}
|
|
@@ -262,8 +285,8 @@ def random_effects_model(
|
|
|
262
285
|
for i, coef_name in enumerate(fitted_model.params.index):
|
|
263
286
|
coefficients[coef_name] = {
|
|
264
287
|
"coef": float(fitted_model.params.iloc[i]),
|
|
265
|
-
"std_err": float(fitted_model.
|
|
266
|
-
"t_value": float(fitted_model.
|
|
288
|
+
"std_err": float(fitted_model.bse.iloc[i]),
|
|
289
|
+
"t_value": float(fitted_model.tvalues.iloc[i]),
|
|
267
290
|
"p_value": float(fitted_model.pvalues.iloc[i]),
|
|
268
291
|
"ci_lower": float(conf_int.iloc[i, 0]),
|
|
269
292
|
"ci_upper": float(conf_int.iloc[i, 1])
|
|
@@ -273,21 +296,21 @@ def random_effects_model(
|
|
|
273
296
|
result = RandomEffectsResult(
|
|
274
297
|
rsquared=float(fitted_model.rsquared),
|
|
275
298
|
rsquared_adj=float(fitted_model.rsquared_adj),
|
|
276
|
-
f_statistic=float(fitted_model.
|
|
277
|
-
f_pvalue=float(fitted_model.
|
|
299
|
+
f_statistic=float(fitted_model.fvalue),
|
|
300
|
+
f_pvalue=float(fitted_model.f_pvalue),
|
|
278
301
|
aic=float(fitted_model.aic),
|
|
279
302
|
bic=float(fitted_model.bic),
|
|
280
303
|
n_obs=int(fitted_model.nobs),
|
|
281
304
|
coefficients=coefficients,
|
|
282
305
|
entity_effects=entity_effects,
|
|
283
306
|
time_effects=time_effects,
|
|
284
|
-
between_rsquared=float(fitted_model.
|
|
307
|
+
between_rsquared=float(fitted_model.rsquared) # 简化实现
|
|
285
308
|
)
|
|
286
309
|
|
|
287
310
|
return result
|
|
288
311
|
|
|
289
312
|
except Exception as e:
|
|
290
|
-
raise ValueError(
|
|
313
|
+
raise ValueError("随机效应模型拟合失败: {}".format(str(e)))
|
|
291
314
|
|
|
292
315
|
|
|
293
316
|
def hausman_test(
|
|
@@ -498,7 +521,6 @@ def compare_panel_models(
|
|
|
498
521
|
}
|
|
499
522
|
|
|
500
523
|
# 根据AIC和BIC选择最佳模型
|
|
501
|
-
|
|
502
524
|
if fe_result.aic < re_result.aic and fe_result.bic < re_result.bic:
|
|
503
525
|
comparison["aic_bic_recommendation"] = "根据AIC和BIC,固定效应模型更优"
|
|
504
526
|
elif re_result.aic < fe_result.aic and re_result.bic < fe_result.bic:
|
|
@@ -1,134 +1,154 @@
|
|
|
1
|
-
"""
|
|
2
|
-
统计分析工具
|
|
3
|
-
"""
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import pandas as pd
|
|
7
|
-
from scipy import stats
|
|
8
|
-
from typing import Dict, List, Any
|
|
9
|
-
from pydantic import BaseModel
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
"
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
"
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
"
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
"
|
|
126
|
-
"
|
|
127
|
-
"
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
1
|
+
"""
|
|
2
|
+
统计分析工具
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
from scipy import stats
|
|
8
|
+
from typing import Dict, List, Any
|
|
9
|
+
from pydantic import BaseModel
|
|
10
|
+
import statsmodels.api as sm
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class DescriptiveStats(BaseModel):
|
|
14
|
+
"""描述性统计结果"""
|
|
15
|
+
mean: float
|
|
16
|
+
median: float
|
|
17
|
+
std: float
|
|
18
|
+
min: float
|
|
19
|
+
max: float
|
|
20
|
+
skewness: float
|
|
21
|
+
kurtosis: float
|
|
22
|
+
count: int
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class CorrelationResult(BaseModel):
|
|
26
|
+
"""相关性分析结果"""
|
|
27
|
+
correlation_matrix: Dict[str, Dict[str, float]]
|
|
28
|
+
method: str
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def calculate_descriptive_stats(data: Dict[str, List[float]]) -> Dict[str, Dict[str, Any]]:
|
|
32
|
+
"""计算多变量描述性统计量"""
|
|
33
|
+
results = {}
|
|
34
|
+
for var_name, var_data in data.items():
|
|
35
|
+
# 使用numpy计算统计量,避免pandas问题
|
|
36
|
+
arr = np.array(var_data, dtype=float)
|
|
37
|
+
|
|
38
|
+
stats_result = DescriptiveStats(
|
|
39
|
+
mean=float(np.mean(arr)),
|
|
40
|
+
median=float(np.median(arr)),
|
|
41
|
+
std=float(np.std(arr)),
|
|
42
|
+
min=float(np.min(arr)),
|
|
43
|
+
max=float(np.max(arr)),
|
|
44
|
+
skewness=float(stats.skew(arr)),
|
|
45
|
+
kurtosis=float(stats.kurtosis(arr)),
|
|
46
|
+
count=len(arr)
|
|
47
|
+
)
|
|
48
|
+
# 转换为字典格式
|
|
49
|
+
results[var_name] = stats_result.dict()
|
|
50
|
+
return results
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def calculate_correlation_matrix(
|
|
54
|
+
data: Dict[str, List[float]],
|
|
55
|
+
method: str = "pearson"
|
|
56
|
+
) -> CorrelationResult:
|
|
57
|
+
"""计算相关系数矩阵"""
|
|
58
|
+
df = pd.DataFrame(data)
|
|
59
|
+
corr_matrix = df.corr(method=method)
|
|
60
|
+
|
|
61
|
+
return CorrelationResult(
|
|
62
|
+
correlation_matrix=corr_matrix.to_dict(),
|
|
63
|
+
method=method
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def perform_hypothesis_test(
|
|
68
|
+
data1: List[float],
|
|
69
|
+
data2: List[float] = None,
|
|
70
|
+
test_type: str = "t_test",
|
|
71
|
+
alpha: float = 0.05
|
|
72
|
+
) -> Dict[str, Any]:
|
|
73
|
+
"""执行假设检验"""
|
|
74
|
+
if test_type == "t_test":
|
|
75
|
+
if data2 is None:
|
|
76
|
+
# 单样本t检验
|
|
77
|
+
t_stat, p_value = stats.ttest_1samp(data1, 0)
|
|
78
|
+
test_name = "单样本t检验"
|
|
79
|
+
else:
|
|
80
|
+
# 双样本t检验
|
|
81
|
+
t_stat, p_value = stats.ttest_ind(data1, data2)
|
|
82
|
+
test_name = "双样本t检验"
|
|
83
|
+
|
|
84
|
+
return {
|
|
85
|
+
"test_type": test_name,
|
|
86
|
+
"statistic": t_stat,
|
|
87
|
+
"p_value": p_value,
|
|
88
|
+
"significant": p_value < alpha,
|
|
89
|
+
"alpha": alpha
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
elif test_type == "f_test":
|
|
93
|
+
# F检验(方差齐性检验)
|
|
94
|
+
if data2 is None:
|
|
95
|
+
raise ValueError("F检验需要两组数据")
|
|
96
|
+
|
|
97
|
+
f_stat, p_value = stats.f_oneway(data1, data2)
|
|
98
|
+
return {
|
|
99
|
+
"test_type": "F检验",
|
|
100
|
+
"statistic": f_stat,
|
|
101
|
+
"p_value": p_value,
|
|
102
|
+
"significant": p_value < alpha,
|
|
103
|
+
"alpha": alpha
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
elif test_type == "chi_square":
|
|
107
|
+
# 卡方检验
|
|
108
|
+
# 这里简化实现,实际需要频数数据
|
|
109
|
+
chi2_stat, p_value = stats.chisquare(data1)
|
|
110
|
+
return {
|
|
111
|
+
"test_type": "卡方检验",
|
|
112
|
+
"statistic": chi2_stat,
|
|
113
|
+
"p_value": p_value,
|
|
114
|
+
"significant": p_value < alpha,
|
|
115
|
+
"alpha": alpha
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
elif test_type == "adf":
|
|
119
|
+
# ADF单位根检验
|
|
120
|
+
from statsmodels.tsa.stattools import adfuller
|
|
121
|
+
adf_result = adfuller(data1)
|
|
122
|
+
return {
|
|
123
|
+
"test_type": "ADF单位根检验",
|
|
124
|
+
"statistic": adf_result[0],
|
|
125
|
+
"p_value": adf_result[1],
|
|
126
|
+
"critical_values": adf_result[4],
|
|
127
|
+
"significant": adf_result[1] < alpha,
|
|
128
|
+
"alpha": alpha
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
else:
|
|
132
|
+
raise ValueError(f"不支持的检验类型: {test_type}")
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def normality_test(data: List[float]) -> Dict[str, Any]:
|
|
136
|
+
"""正态性检验"""
|
|
137
|
+
# Shapiro-Wilk检验
|
|
138
|
+
shapiro_stat, shapiro_p = stats.shapiro(data)
|
|
139
|
+
|
|
140
|
+
# Kolmogorov-Smirnov检验
|
|
141
|
+
ks_stat, ks_p = stats.kstest(data, 'norm', args=(np.mean(data), np.std(data)))
|
|
142
|
+
|
|
143
|
+
return {
|
|
144
|
+
"shapiro_wilk": {
|
|
145
|
+
"statistic": shapiro_stat,
|
|
146
|
+
"p_value": shapiro_p,
|
|
147
|
+
"normal": shapiro_p > 0.05
|
|
148
|
+
},
|
|
149
|
+
"kolmogorov_smirnov": {
|
|
150
|
+
"statistic": ks_stat,
|
|
151
|
+
"p_value": ks_p,
|
|
152
|
+
"normal": ks_p > 0.05
|
|
153
|
+
}
|
|
134
154
|
}
|