aigroup-econ-mcp 0.1.2__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aigroup-econ-mcp might be problematic. Click here for more details.

@@ -1,226 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: aigroup-econ-mcp
3
- Version: 0.1.2
4
- Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析
5
- Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
- Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
7
- Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
8
- Author-email: AIGroup <jackdark425@gmail.com>
9
- License-File: LICENSE
10
- Keywords: data-analysis,economics,mcp,regression,statistics
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: Developers
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.8
16
- Classifier: Programming Language :: Python :: 3.9
17
- Classifier: Programming Language :: Python :: 3.10
18
- Classifier: Programming Language :: Python :: 3.11
19
- Classifier: Programming Language :: Python :: 3.12
20
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
21
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
22
- Requires-Python: >=3.10
23
- Requires-Dist: click>=8.0.0
24
- Requires-Dist: matplotlib>=3.5.0
25
- Requires-Dist: mcp>=1.0.0
26
- Requires-Dist: numpy>=1.21.0
27
- Requires-Dist: pandas>=1.5.0
28
- Requires-Dist: pydantic>=2.0.0
29
- Requires-Dist: scipy>=1.7.0
30
- Requires-Dist: statsmodels>=0.13.0
31
- Requires-Dist: uvicorn>=0.20.0
32
- Description-Content-Type: text/markdown
33
-
34
- # AIGroup 计量经济学 MCP 工具
35
-
36
- 专业计量经济学MCP工具 - 让大模型直接进行数据分析
37
-
38
- ![Python](https://img.shields.io/badge/Python-3.8+-blue.svg)
39
- ![MCP](https://img.shields.io/badge/MCP-1.0+-green.svg)
40
- ![License](https://img.shields.io/badge/License-MIT-yellow.svg)
41
-
42
- ## 功能特性
43
-
44
- - 📊 **描述性统计分析** - 自动计算均值、方差、偏度、峰度等统计量
45
- - 📈 **回归分析** - OLS回归、逐步回归、模型诊断
46
- - 🧪 **假设检验** - t检验、F检验、卡方检验、ADF检验
47
- - ⏰ **时间序列分析** - 平稳性检验、ARIMA模型、预测
48
- - 🔄 **结构化输出** - 完整的Pydantic模型支持
49
- - 🎯 **上下文管理** - 进度报告、日志记录、错误处理
50
-
51
- ## 快速开始
52
-
53
- ### 使用uvx安装运行(推荐)
54
-
55
- ```bash
56
- # 一键安装和运行
57
- uvx aigroup-econ-mcp
58
-
59
- # 指定端口运行
60
- uvx aigroup-econ-mcp --port 8080 --debug
61
-
62
- # 使用不同的传输协议
63
- uvx aigroup-econ-mcp --transport streamable-http --host 0.0.0.0 --port 8000
64
- ```
65
-
66
- ### 本地开发
67
-
68
- ```bash
69
- # 克隆项目
70
- git clone https://github.com/aigroup/aigroup-econ-mcp
71
- cd aigroup-econ-mcp
72
-
73
- # 开发模式运行
74
- uv run aigroup-econ-mcp --port 8000 --debug
75
-
76
- # 或使用uvx
77
- uvx -p . aigroup-econ-mcp
78
- ```
79
-
80
- ## 与Claude Desktop集成
81
-
82
- 在Claude Desktop的配置文件中添加:
83
-
84
- ```json
85
- {
86
- "mcpServers": {
87
- "aigroup-econ-mcp": {
88
- "command": "uvx",
89
- "args": ["aigroup-econ-mcp", "--transport", "stdio"]
90
- }
91
- }
92
- }
93
- ```
94
-
95
- ## 使用示例
96
-
97
- ### 描述性统计分析
98
-
99
- ```python
100
- # 计算基础统计量
101
- result = await descriptive_statistics({
102
- "GDP": [100, 110, 120, 115, 125],
103
- "Inflation": [2.1, 2.3, 1.9, 2.4, 2.0]
104
- })
105
- ```
106
-
107
- ### OLS回归分析
108
-
109
- ```python
110
- # 回归分析
111
- result = await ols_regression(
112
- y_data=[100, 110, 120, 115, 125],
113
- x_data=[[2.1, 4.5], [2.3, 4.2], [1.9, 4.0], [2.4, 4.3], [2.0, 4.1]],
114
- feature_names=["inflation", "unemployment"]
115
- )
116
- ```
117
-
118
- ### 假设检验
119
-
120
- ```python
121
- # 假设检验
122
- result = await hypothesis_testing(
123
- data1=[100, 110, 120, 115, 125],
124
- data2=[95, 105, 115, 120, 130],
125
- test_type="t_test"
126
- )
127
- ```
128
-
129
- ### 时间序列分析
130
-
131
- ```python
132
- # 时间序列分析
133
- result = await time_series_analysis([100, 110, 120, 115, 125, 130, 128, 135])
134
- ```
135
-
136
- ## 可用资源
137
-
138
- ### 示例数据集
139
-
140
- ```
141
- resource://dataset/sample/economic_growth
142
- resource://dataset/sample/stock_returns
143
- resource://dataset/sample/time_series
144
- ```
145
-
146
- ### 提示模板
147
-
148
- ```
149
- prompt://economic_analysis?data_description=...&analysis_type=descriptive
150
- ```
151
-
152
- ## 项目结构
153
-
154
- ```
155
- aigroup-econ-mcp/
156
- ├── src/aigroup_econ_mcp/
157
- │ ├── __init__.py # 包初始化
158
- │ ├── server.py # MCP服务器核心
159
- │ ├── cli.py # 命令行入口
160
- │ └── tools/
161
- │ ├── __init__.py
162
- │ ├── statistics.py # 统计分析工具
163
- │ ├── regression.py # 回归分析工具
164
- │ └── time_series.py # 时间序列工具
165
- ├── pyproject.toml # 项目配置
166
- ├── README.md
167
- └── examples/
168
- ```
169
-
170
- ## 依赖要求
171
-
172
- - Python 3.8+
173
- - pandas >= 1.5.0
174
- - numpy >= 1.21.0
175
- - statsmodels >= 0.13.0
176
- - scipy >= 1.7.0
177
- - matplotlib >= 3.5.0
178
- - mcp >= 1.0.0
179
-
180
- ## 开发
181
-
182
- ### 环境设置
183
-
184
- ```bash
185
- # 安装开发依赖
186
- uv add --dev pytest pytest-asyncio black isort mypy ruff
187
-
188
- # 运行测试
189
- uv run pytest
190
-
191
- # 代码格式化
192
- uv run black src/
193
- uv run isort src/
194
-
195
- # 类型检查
196
- uv run mypy src/
197
-
198
- # 代码检查
199
- uv run ruff check src/
200
- ```
201
-
202
- ### 构建和发布
203
-
204
- ```bash
205
- # 构建包
206
- uv build
207
-
208
- # 发布到PyPI
209
- uv publish
210
- ```
211
-
212
- ## 许可证
213
-
214
- MIT License
215
-
216
- ## 贡献
217
-
218
- 欢迎贡献代码!请查看[贡献指南](CONTRIBUTING.md)了解详情。
219
-
220
- ## 支持
221
-
222
- 如有问题或建议,请通过[GitHub Issues](https://github.com/aigroup/aigroup-econ-mcp/issues)联系我们。
223
-
224
- ## 致谢
225
-
226
- 感谢Model Context Protocol (MCP)社区提供的优秀工具和文档。
@@ -1,12 +0,0 @@
1
- aigroup_econ_mcp/__init__.py,sha256=9Qc3GznVMCekXwmAAmIWQvljYIY2uGFtYMjvgHXaREE,472
2
- aigroup_econ_mcp/cli.py,sha256=QEQjK6Y7TpgLHpdd8QqQhCjATkJ3-BjYjiXaB4HbJMk,2972
3
- aigroup_econ_mcp/server.py,sha256=FQf8ElP2WNn0BNBFvRqDkCi3Mtw-vziNUjBPvfl4ZnA,26922
4
- aigroup_econ_mcp/tools/__init__.py,sha256=o_mAyxeUVxh-xBrggUzS5Yg0uO9FjKvroLXQhFO6ezg,141
5
- aigroup_econ_mcp/tools/regression.py,sha256=d-WiOSRSPIw5p7nFE6JE34ktQrBBXmZp6eQPfHXTFvA,6230
6
- aigroup_econ_mcp/tools/statistics.py,sha256=arw5ahGBH4d4pS-wRHh_5z35Yf4LMpiUblR_TLZSbZ0,3415
7
- aigroup_econ_mcp/tools/time_series.py,sha256=YFGBsKKA1a1FIH3x6gphw4bhVjgw8c-72ibJ4wOeDEM,8122
8
- aigroup_econ_mcp-0.1.2.dist-info/METADATA,sha256=VoItN5CTf5jMDR6_2qrlk4iP1N3sxM7fuxS2HyGaUPA,5333
9
- aigroup_econ_mcp-0.1.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
10
- aigroup_econ_mcp-0.1.2.dist-info/entry_points.txt,sha256=j5ZJYOc4lAZV-X3XkAuGhzHtIRcJtZ6Gz8ZKPY_QTrM,62
11
- aigroup_econ_mcp-0.1.2.dist-info/licenses/LICENSE,sha256=x4onvmayh9xPtyeLWVwM9av5hlduofabbcq2z45BbPY,1063
12
- aigroup_econ_mcp-0.1.2.dist-info/RECORD,,