aigency 0.0.1rc238211992__py3-none-any.whl → 0.1.0rc67928564__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
aigency/agents/client.py CHANGED
@@ -1,10 +1,29 @@
1
+ """Remote agent client module.
2
+
3
+ This module provides client functionality for connecting to and communicating with
4
+ remote agents in the A2A (Agent-to-Agent) ecosystem. It encapsulates the HTTP
5
+ client setup and agent card management required for inter-agent communication.
6
+
7
+ The AgentClient class serves as a wrapper around the A2A client factory and
8
+ provides a simplified interface for sending messages to remote agents while
9
+ handling connection management and protocol details.
10
+
11
+ Example:
12
+ Creating and using an agent client:
13
+
14
+ >>> agent_card = AgentCard(name="remote_agent", url="http://localhost:8080")
15
+ >>> client = AgentClient(agent_card)
16
+ >>> response = await client.send_message(message_request)
17
+
18
+ Attributes:
19
+ None: This module contains only class definitions.
20
+ """
21
+
1
22
  import httpx
2
-
23
+
3
24
  from a2a.client.client import ClientConfig
4
25
  from a2a.client.client_factory import ClientFactory
5
26
  from a2a.types import AgentCard, Message, SendMessageResponse
6
- #TODO: Enable when auth is implemented
7
- #from a2a.client.auth.interceptor import AuthInterceptor
8
27
 
9
28
 
10
29
  class AgentClient:
@@ -1,5 +1,26 @@
1
+ """Agent-to-Agent communication module.
2
+
3
+ This module provides the core communication infrastructure for agents to interact
4
+ with each other using the A2A (Agent-to-Agent) protocol. It handles message
5
+ creation, payload formatting, and remote agent connection management.
6
+
7
+ The main component is the Communicator class which manages connections to remote
8
+ agents and provides methods for delegating tasks and sending messages between
9
+ agents in a distributed system.
10
+
11
+ Example:
12
+ Basic usage for agent communication:
13
+
14
+ >>> connections = {"agent1": client1, "agent2": client2}
15
+ >>> communicator = Communicator(connections)
16
+ >>> task_result = await communicator.send_message("agent1", "task description", context)
17
+
18
+ Attributes:
19
+ logger: Module-level logger instance for communication events.
20
+ """
21
+
1
22
  import uuid
2
- from typing import Any, Awaitable, List
23
+ from typing import Any, Awaitable
3
24
 
4
25
  from a2a.types import Message, Task
5
26
  from google.adk.tools.tool_context import ToolContext
@@ -8,70 +29,82 @@ from aigency.utils.logger import get_logger
8
29
 
9
30
  logger = get_logger()
10
31
 
32
+
11
33
  class Communicator:
12
- """Clase base para la comunicación entre agentes (Agent-to-Agent)."""
34
+ """Base class for agent-to-agent communication.
35
+
36
+ This class manages connections to remote agents and provides methods for
37
+ sending messages and delegating tasks to them.
38
+
39
+ Attributes:
40
+ remote_agent_connections (dict[str, Any]): Dictionary mapping agent names
41
+ to their client connection objects.
42
+ """
13
43
 
14
44
  def __init__(self, remote_agent_connections: dict[str, Any] | None = None):
15
- """Inicializa el comunicador con las conexiones a los agentes remotos.
45
+ """Initialize the communicator with remote agent connections.
16
46
 
17
47
  Args:
18
- remote_agent_connections: Un diccionario que mapea nombres de agentes
19
- a sus objetos de conexión de cliente.
48
+ remote_agent_connections (dict[str, Any] | None, optional): A dictionary
49
+ that maps agent names to their client connection objects.
50
+ Defaults to None.
20
51
  """
21
52
  self.remote_agent_connections: dict[str, Any] = remote_agent_connections or {}
22
53
 
23
54
  async def send_message(
24
55
  self, agent_name: str, task: str, tool_context: ToolContext
25
56
  ) -> Awaitable[Task | None]:
26
- """Delega una tarea a un agente remoto específico.
57
+ """Delegate a task to a specific remote agent.
27
58
 
28
- Este método envía un mensaje a un agente remoto, solicitando que realice una
29
- tarea. Gestiona la creación del payload del mensaje y la comunicación.
59
+ This method sends a message to a remote agent, requesting it to perform a
60
+ task. It handles message payload creation and communication.
30
61
 
31
62
  Args:
32
- agent_name: Nombre del agente remoto al que se envía la tarea.
33
- task: Descripción detallada de la tarea para el agente remoto.
34
- tool_context: Objeto de contexto que contiene el estado y otra información.
63
+ agent_name (str): Name of the remote agent to send the task to.
64
+ task (str): Detailed description of the task for the remote agent.
65
+ tool_context (ToolContext): Context object containing state and other
66
+ information.
35
67
 
36
68
  Returns:
37
- Un objeto Task si la comunicación es exitosa, o None en caso contrario.
69
+ Task | None: A Task object if communication is successful, or None
70
+ otherwise.
38
71
 
39
72
  Raises:
40
- ValueError: Si el agente especificado no se encuentra en las conexiones.
73
+ ValueError: If the specified agent is not found in connections.
41
74
  """
42
75
  logger.info(
43
- f"`send_message` iniciado para el agente: '{agent_name}' con la tarea: '{task}'"
76
+ f"`send_message` started for agent: '{agent_name}' with task: '{task}'"
44
77
  )
45
78
  client = self.remote_agent_connections.get(agent_name)
46
79
  if not client:
47
80
  available_agents = list(self.remote_agent_connections.keys())
48
81
  logger.error(
49
- f"El LLM intentó llamar a '{agent_name}', pero no se encontró. "
50
- f"Agentes disponibles: {available_agents}"
82
+ f"The LLM tried to call '{agent_name}', but it was not found. "
83
+ f"Available agents: {available_agents}"
84
+ )
85
+ raise ValueError(
86
+ f"Agent '{agent_name}' not found. Available agents: {available_agents}"
51
87
  )
52
- raise ValueError(f"Agente '{agent_name}' no encontrado. Agentes disponibles: {available_agents}")
53
88
 
54
89
  state = tool_context.state
55
90
 
56
- # Simplifica la creación y obtención de contextos de agente usando setdefault
57
91
  contexts = state.setdefault("remote_agent_contexts", {})
58
- agent_context = contexts.setdefault(agent_name, {"context_id": str(uuid.uuid4())})
92
+ agent_context = contexts.setdefault(
93
+ agent_name, {"context_id": str(uuid.uuid4())}
94
+ )
59
95
  context_id = agent_context["context_id"]
60
96
 
61
- # Obtiene IDs de forma más segura y clara
62
97
  task_id = state.get("task_id")
63
98
  input_metadata = state.get("input_message_metadata", {})
64
99
  message_id = input_metadata.get("message_id")
65
100
 
66
- # El message_id se pasa directamente al creador del payload
67
101
  payload = self.create_send_message_payload(
68
102
  text=task, task_id=task_id, context_id=context_id, message_id=message_id
69
103
  )
70
- logger.debug("`send_message` con el siguiente payload: %s", payload)
104
+ logger.debug("`send_message` with the following payload: %s", payload)
71
105
 
72
106
  send_response = None
73
- # Este bucle está diseñado para consumir un generador asíncrono y obtener
74
- # la última respuesta, que suele ser el resultado final.
107
+
75
108
  async for resp in client.send_message(
76
109
  message_request=Message(**payload["message"])
77
110
  ):
@@ -82,8 +115,8 @@ class Communicator:
82
115
 
83
116
  if not isinstance(send_response, Task):
84
117
  logger.warning(
85
- f"La respuesta recibida del agente '{agent_name}' no es un objeto Task. "
86
- f"Tipo recibido: {type(send_response)}"
118
+ f"The response received from agent '{agent_name}' is not a Task object. "
119
+ f"Received type: {type(send_response)}"
87
120
  )
88
121
  return None
89
122
 
@@ -96,16 +129,19 @@ class Communicator:
96
129
  context_id: str | None = None,
97
130
  message_id: str | None = None,
98
131
  ) -> dict[str, Any]:
99
- """Crea el payload de un mensaje para enviarlo a un agente remoto.
132
+ """Create a message payload to send to a remote agent.
100
133
 
101
134
  Args:
102
- text: El contenido de texto del mensaje.
103
- task_id: ID de tarea opcional para asociar con el mensaje.
104
- context_id: ID de contexto opcional para asociar con el mensaje.
105
- message_id: ID de mensaje opcional. Si es None, se generará uno nuevo.
135
+ text (str): The text content of the message.
136
+ task_id (str | None, optional): Task ID to associate with the message.
137
+ Defaults to None.
138
+ context_id (str | None, optional): Context ID to associate with the
139
+ message. Defaults to None.
140
+ message_id (str | None, optional): Message ID. If None, a new one will
141
+ be generated. Defaults to None.
106
142
 
107
143
  Returns:
108
- Un diccionario que contiene el payload del mensaje formateado.
144
+ dict[str, Any]: A dictionary containing the formatted message payload.
109
145
  """
110
146
  payload: dict[str, Any] = {
111
147
  "message": {
@@ -118,4 +154,4 @@ class Communicator:
118
154
  payload["message"]["task_id"] = task_id
119
155
  if context_id:
120
156
  payload["message"]["context_id"] = context_id
121
- return payload
157
+ return payload
@@ -1,4 +1,27 @@
1
- """Agent executor module for A2A integration."""
1
+ """Agent executor module for A2A integration.
2
+
3
+ This module provides the execution engine for agents within the A2A (Agent-to-Agent)
4
+ protocol framework. It handles the lifecycle of agent tasks, session management,
5
+ and integration with Google ADK runners for processing agent requests.
6
+
7
+ The AgentA2AExecutor class manages the execution flow from task submission through
8
+ completion, handling streaming responses, function calls, and error conditions
9
+ while maintaining compatibility with the A2A protocol specifications.
10
+
11
+ Example:
12
+ Creating and using an agent executor:
13
+
14
+ >>> runner = Runner(app_name="my_agent", agent=agent)
15
+ >>> executor = AgentA2AExecutor(runner, agent_card)
16
+ >>> await executor.execute(context, event_queue)
17
+
18
+ Attributes:
19
+ logger: Module-level logger instance for execution events.
20
+ DEFAULT_USER_ID (str): Default user identifier for session management.
21
+
22
+ Todo:
23
+ * Replace DEFAULT_USER_ID with proper user management system.
24
+ """
2
25
 
3
26
  from a2a.server.agent_execution import AgentExecutor
4
27
  from a2a.server.agent_execution.context import RequestContext
@@ -20,13 +43,24 @@ logger = get_logger()
20
43
  # TODO: This needs to be changed
21
44
  DEFAULT_USER_ID = "self"
22
45
 
46
+
23
47
  class AgentA2AExecutor(AgentExecutor):
24
- """Agent executor for A2A integration with Google ADK runners."""
48
+ """Agent executor for A2A integration with Google ADK runners.
49
+
50
+ This class handles the execution of agent tasks within the A2A protocol,
51
+ managing sessions, processing requests, and handling task lifecycle.
52
+
53
+ Attributes:
54
+ _card (AgentCard): The agent card containing metadata about the agent.
55
+ _active_sessions (set[str]): Set of active session IDs for tracking.
56
+ runner (Runner): The Google ADK runner instance for executing agent logic.
57
+ """
25
58
 
26
59
  def __init__(self, runner: Runner, card: AgentCard):
27
60
  """Initialize the BaseAgentA2AExecutor.
28
61
 
29
62
  Args:
63
+ runner (Runner): The Google ADK runner instance.
30
64
  card (AgentCard): The agent card containing metadata about the agent.
31
65
  """
32
66
  self._card = card
@@ -65,6 +99,13 @@ class AgentA2AExecutor(AgentExecutor):
65
99
  session_id: str,
66
100
  task_updater: TaskUpdater,
67
101
  ) -> None:
102
+ """Process a request through the agent runner.
103
+
104
+ Args:
105
+ new_message (types.Content): The message content to process.
106
+ session_id (str): The session ID for this request.
107
+ task_updater (TaskUpdater): Task updater for reporting progress.
108
+ """
68
109
  session_obj = await self._upsert_session(session_id)
69
110
  session_id = session_obj.id
70
111
 
@@ -112,6 +153,12 @@ class AgentA2AExecutor(AgentExecutor):
112
153
  context: RequestContext,
113
154
  event_queue: EventQueue,
114
155
  ):
156
+ """Execute an agent task.
157
+
158
+ Args:
159
+ context (RequestContext): The request context containing task information.
160
+ event_queue (EventQueue): Event queue for task updates.
161
+ """
115
162
  # Run the agent until either complete or the task is suspended.
116
163
  updater = TaskUpdater(event_queue, context.task_id, context.context_id)
117
164
  # Immediately notify that the task is submitted.
@@ -131,6 +178,15 @@ class AgentA2AExecutor(AgentExecutor):
131
178
  logger.debug("[ADKAgentA2AExecutor] execute exiting")
132
179
 
133
180
  async def cancel(self, context: RequestContext, event_queue: EventQueue):
181
+ """Cancel an active agent task.
182
+
183
+ Args:
184
+ context (RequestContext): The request context for the task to cancel.
185
+ event_queue (EventQueue): Event queue for task updates.
186
+
187
+ Raises:
188
+ ServerError: Always raised as cancellation is not currently supported.
189
+ """
134
190
  session_id = context.context_id
135
191
  if session_id in self._active_sessions:
136
192
  logger.info("Cancellation requested for active session: %s", session_id)
@@ -1,8 +1,27 @@
1
- import logging
2
- import httpx
3
- from typing import List
4
- import asyncio
1
+ """Agent generation and factory module.
2
+
3
+ This module provides factory methods for creating A2A-compatible agents and their
4
+ associated components. It handles the complete agent lifecycle from configuration
5
+ parsing to executable agent creation, including remote agent connection management.
6
+
7
+ The AgentA2AGenerator class uses static factory methods to create agents, agent cards,
8
+ executors, and establish connections to remote agents. It integrates with various
9
+ components like tools, models, and communication systems to produce fully functional
10
+ agents ready for deployment in the A2A ecosystem.
11
+
12
+ Example:
13
+ Creating a complete agent from configuration:
14
+
15
+ >>> config = AigencyConfig.from_yaml("agent_config.yaml")
16
+ >>> agent = AgentA2AGenerator.create_agent(config)
17
+ >>> agent_card = AgentA2AGenerator.build_agent_card(config)
18
+ >>> executor = AgentA2AGenerator.build_executor(agent, agent_card)
5
19
 
20
+ Attributes:
21
+ logger: Module-level logger instance for generation events.
22
+ """
23
+
24
+ import httpx
6
25
  from a2a.types import AgentCapabilities, AgentCard, AgentSkill
7
26
  from a2a.client import A2ACardResolver
8
27
  from google.adk.agents import Agent
@@ -14,7 +33,6 @@ from google.adk.sessions import InMemorySessionService
14
33
  from aigency.agents.executor import AgentA2AExecutor
15
34
  from aigency.agents.client import AgentClient
16
35
  from aigency.schemas.aigency_config import AigencyConfig
17
- from aigency.schemas.agent.remote_agent import RemoteAgent
18
36
  from aigency.tools.generator import ToolGenerator
19
37
  from aigency.utils.utils import generate_url, safe_async_run
20
38
  from aigency.agents.communicator import Communicator
@@ -22,10 +40,25 @@ from aigency.utils.logger import get_logger
22
40
 
23
41
  logger = get_logger()
24
42
 
43
+
25
44
  class AgentA2AGenerator:
45
+ """Generator for creating A2A-compatible agents and their components.
46
+
47
+ This class provides static methods to create agents, agent cards, executors,
48
+ and manage remote agent connections for the A2A (Agent-to-Agent) protocol.
49
+ """
26
50
 
27
51
  @staticmethod
28
52
  def create_agent(agent_config: AigencyConfig) -> Agent:
53
+ """Create an Agent instance from configuration.
54
+
55
+ Args:
56
+ agent_config (AigencyConfig): Complete agent configuration containing
57
+ metadata, service, agent, and observability settings.
58
+
59
+ Returns:
60
+ Agent: Configured Agent instance ready for execution.
61
+ """
29
62
 
30
63
  tools = [
31
64
  ToolGenerator.create_tool(tool_cfg) for tool_cfg in agent_config.agent.tools
@@ -51,6 +84,14 @@ class AgentA2AGenerator:
51
84
 
52
85
  @staticmethod
53
86
  def build_agent_card(agent_config: AigencyConfig) -> AgentCard:
87
+ """Build an AgentCard from configuration.
88
+
89
+ Args:
90
+ agent_config (AigencyConfig): Complete agent configuration.
91
+
92
+ Returns:
93
+ AgentCard: Agent card containing metadata and capabilities for A2A protocol.
94
+ """
54
95
 
55
96
  # TODO: Parse properly
56
97
  capabilities = AgentCapabilities(
@@ -81,6 +122,15 @@ class AgentA2AGenerator:
81
122
 
82
123
  @staticmethod
83
124
  def build_executor(agent: Agent, agent_card: AgentCard) -> AgentA2AExecutor:
125
+ """Build an AgentA2AExecutor for the given agent.
126
+
127
+ Args:
128
+ agent (Agent): The agent instance to create an executor for.
129
+ agent_card (AgentCard): The agent card containing metadata.
130
+
131
+ Returns:
132
+ AgentA2AExecutor: Configured executor ready to handle A2A requests.
133
+ """
84
134
 
85
135
  runner = Runner(
86
136
  app_name=agent.name,
@@ -100,8 +150,15 @@ class AgentA2AGenerator:
100
150
  any connection issues. It attempts to connect to each remote agent address,
101
151
  retrieve its agent card, and store the connection for later use.
102
152
 
153
+ Args:
154
+ agent_config (AigencyConfig): Configuration containing remote agent details.
155
+
156
+ Returns:
157
+ dict[str, AgentClient]: Dictionary mapping agent names to their client
158
+ connections.
159
+
103
160
  Raises:
104
- No exceptions are raised, but errors are logged.
161
+ Exception: If any critical failure occurs during connection establishment.
105
162
  """
106
163
 
107
164
  if not agent_config.agent.remote_agents:
@@ -135,4 +192,4 @@ class AgentA2AGenerator:
135
192
  return safe_async_run(_connect())
136
193
  except Exception as e:
137
194
  logger.error("--- CRITICAL FAILURE", exc_info=True)
138
- raise e
195
+ raise e
@@ -1,3 +1,28 @@
1
+ """Agent core logic and capabilities schema definition.
2
+
3
+ This module defines the Agent Pydantic model that represents the core logic,
4
+ AI model configuration, and capabilities of an Aigency agent. It serves as
5
+ the central configuration for an agent's behavior, skills, tools, and
6
+ communication capabilities with other agents.
7
+
8
+ The Agent class encapsulates all the essential components needed to define
9
+ an intelligent agent including its instruction set, model configuration,
10
+ available skills, tools, and connections to remote agents.
11
+
12
+ Example:
13
+ Creating an agent configuration:
14
+
15
+ >>> agent = Agent(
16
+ ... model=AgentModel(name="gpt-4", provider="openai"),
17
+ ... instruction="You are a helpful assistant",
18
+ ... skills=[Skill(name="math", description="Mathematical operations")],
19
+ ... tools=[Tool(name="calculator", type=ToolType.FUNCTION)]
20
+ ... )
21
+
22
+ Attributes:
23
+ None: This module contains only Pydantic model definitions.
24
+ """
25
+
1
26
  from pydantic import BaseModel
2
27
  from typing import List, Optional
3
28
  from aigency.schemas.agent.model import AgentModel
@@ -7,7 +32,16 @@ from aigency.schemas.agent.remote_agent import RemoteAgent
7
32
 
8
33
 
9
34
  class Agent(BaseModel):
10
- """El 'cerebro' del agente: su lógica, modelo y capacidades."""
35
+ """The agent's 'brain': its logic, model and capabilities.
36
+
37
+ Attributes:
38
+ model (AgentModel): Configuration for the AI model to use.
39
+ instruction (str): System instruction that defines the agent's behavior.
40
+ skills (List[Skill]): List of skills the agent possesses.
41
+ tools (List[Tool], optional): List of tools available to the agent.
42
+ remote_agents (List[RemoteAgent], optional): List of remote agents this
43
+ agent can communicate with.
44
+ """
11
45
 
12
46
  model: AgentModel
13
47
  instruction: str
@@ -1,12 +1,46 @@
1
+ """AI model configuration schemas for agent setup.
2
+
3
+ This module defines Pydantic models for configuring AI models and their providers
4
+ within the Aigency framework. It provides structured configuration for different
5
+ AI model providers and their specific parameters, enabling flexible model
6
+ selection and configuration for agents.
7
+
8
+ The models support various AI providers and allow for extensible configuration
9
+ of model-specific parameters, API keys, and other provider-specific settings.
10
+
11
+ Example:
12
+ Creating model configurations:
13
+
14
+ >>> provider_config = ProviderConfig(name="openai", endpoint="https://api.openai.com")
15
+ >>> model = AgentModel(name="gpt-4", provider=provider_config)
16
+
17
+ Attributes:
18
+ None: This module contains only Pydantic model definitions.
19
+ """
20
+
1
21
  from typing import Optional
2
22
  from pydantic import BaseModel
3
23
 
24
+
4
25
  class ProviderConfig(BaseModel):
5
- """Configuration for AI model provider."""
26
+ """Configuration for AI model provider.
27
+
28
+ Attributes:
29
+ name (str): Name of the AI provider.
30
+ endpoint (str, optional): Custom endpoint URL for the provider.
31
+ """
32
+
6
33
  name: str
7
34
  endpoint: Optional[str] = None
8
35
 
36
+
9
37
  class AgentModel(BaseModel):
10
- """Configuration for AI model."""
38
+ """Configuration for AI model.
39
+
40
+ Attributes:
41
+ name (str): Name of the AI model to use.
42
+ provider (ProviderConfig, optional): Provider configuration details.
43
+ """
44
+
11
45
  name: str
12
- provider: Optional[ProviderConfig] = None
46
+ provider: Optional[ProviderConfig] = None
@@ -1,8 +1,40 @@
1
+ """Remote agent connection configuration schema.
2
+
3
+ This module defines the RemoteAgent Pydantic model for configuring connections
4
+ to remote agents in the Aigency framework. It provides the necessary structure
5
+ for establishing communication with agents running on different services or
6
+ locations within the A2A ecosystem.
7
+
8
+ The RemoteAgent configuration enables agents to discover and communicate with
9
+ other agents, facilitating distributed agent architectures and collaborative
10
+ agent workflows.
11
+
12
+ Example:
13
+ Configuring a remote agent connection:
14
+
15
+ >>> remote_agent = RemoteAgent(
16
+ ... name="data_processor",
17
+ ... host="agent-data-processor",
18
+ ... port=8080
19
+ ... )
20
+
21
+ Attributes:
22
+ None: This module contains only Pydantic model definitions.
23
+ """
24
+
1
25
  from pydantic import BaseModel, Field
2
26
 
3
27
 
4
28
  class RemoteAgent(BaseModel):
5
- """Remote agent configuration."""
29
+ """Remote agent configuration.
30
+
31
+ Configuration for connecting to remote agents in the A2A protocol.
32
+
33
+ Attributes:
34
+ name (str): Name identifier for the remote agent.
35
+ host (str): Hostname or IP address of the remote agent.
36
+ port (int): Port number for the remote agent connection (1-65535).
37
+ """
6
38
 
7
39
  name: str
8
40
  host: str
@@ -1,10 +1,42 @@
1
+ """Agent skill definition and configuration schema.
2
+
3
+ This module defines the Skill Pydantic model for representing specific capabilities
4
+ or skills that an agent possesses within the Aigency framework. Skills define
5
+ what an agent can do and provide structured metadata about the agent's abilities.
6
+
7
+ Skills serve as descriptive components that help categorize and communicate an
8
+ agent's capabilities to other agents and systems in the A2A ecosystem.
9
+
10
+ Example:
11
+ Defining agent skills:
12
+
13
+ >>> skill = Skill(
14
+ ... name="data_analysis",
15
+ ... description="Analyze datasets and generate insights",
16
+ ... tags=["analytics"]
17
+ ... )
18
+
19
+ Attributes:
20
+ None: This module contains only Pydantic model definitions.
21
+ """
22
+
1
23
  from pydantic import BaseModel
2
24
  from typing import List
3
25
 
26
+
4
27
  class Skill(BaseModel):
5
- """Define una habilidad específica del agente."""
28
+ """Define a specific skill of the agent.
29
+
30
+ Attributes:
31
+ id (str): Unique identifier for the skill.
32
+ name (str): Human-readable name of the skill.
33
+ description (str): Detailed description of what the skill does.
34
+ tags (List[str]): List of tags for categorizing the skill.
35
+ examples (List[str]): List of usage examples for the skill.
36
+ """
37
+
6
38
  id: str
7
39
  name: str
8
40
  description: str
9
41
  tags: List[str]
10
- examples: List[str]
42
+ examples: List[str]