aiauto-client 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
aiauto/_config.py CHANGED
@@ -1,3 +1,2 @@
1
1
  # For Connect RPC over HTTP
2
- # This will be converted to https://api.aiauto.pangyo.ainode.ai in production
3
- AIAUTO_API_TARGET = "api.aiauto.pangyo.ainode.ai:443"
2
+ AIAUTO_API_TARGET = "api.common.aiauto.pangyo.ainode.ai:443"
aiauto/core.py CHANGED
@@ -41,7 +41,7 @@ class AIAutoController:
41
41
  except Exception as e:
42
42
  raise RuntimeError(
43
43
  f"Failed to initialize workspace: {e}\n"
44
- "Please delete and reissue your token from the web dashboard at https://dashboard.aiauto.pangyo.ainode.ai"
44
+ "Please delete and reissue your token from the web dashboard at https://dashboard.common.aiauto.pangyo.ainode.ai"
45
45
  ) from e
46
46
 
47
47
  # artifact storage
@@ -172,12 +172,12 @@ class StudyWrapper:
172
172
  self._study = optuna.create_study(
173
173
  study_name=self.study_name,
174
174
  storage=self._storage,
175
- load_if_exists=True
175
+ load_if_exists=True,
176
176
  )
177
177
  except Exception as e:
178
178
  raise RuntimeError(
179
179
  "Failed to get study. If this persists, please delete and reissue your token "
180
- "from the web dashboard at https://dashboard.aiauto.pangyo.ainode.ai"
180
+ "from the web dashboard at https://dashboard.common.aiauto.pangyo.ainode.ai"
181
181
  ) from e
182
182
  return self._study
183
183
 
aiauto/http_client.py CHANGED
@@ -13,8 +13,8 @@ class ConnectRPCClient:
13
13
  if base_url:
14
14
  self.base_url = base_url
15
15
  else:
16
- # AIAUTO_API_TARGET is like "api.aiauto.pangyo.ainode.ai:443"
17
- # Convert to "https://api.aiauto.pangyo.ainode.ai"
16
+ # AIAUTO_API_TARGET is like "api.common.aiauto.pangyo.ainode.ai:443"
17
+ # Convert to "https://api.common.aiauto.pangyo.ainode.ai"
18
18
  host = AIAUTO_API_TARGET.split(':')[0]
19
19
  self.base_url = f"https://{host}"
20
20
 
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: aiauto-client
3
- Version: 0.1.8
3
+ Version: 0.1.10
4
4
  Summary: AI Auto HPO (Hyperparameter Optimization) Client Library
5
5
  Author-email: AIAuto Team <ainode@zeroone.ai>
6
- Project-URL: Homepage, https://dashboard.aiauto.pangyo.ainode.ai
7
- Project-URL: Repository, https://dashboard.aiauto.pangyo.ainode.ai
8
- Project-URL: Documentation, https://dashboard.aiauto.pangyo.ainode.ai
6
+ Project-URL: Homepage, https://dashboard.common.aiauto.pangyo.ainode.ai
7
+ Project-URL: Repository, https://dashboard.common.aiauto.pangyo.ainode.ai
8
+ Project-URL: Documentation, https://dashboard.common.aiauto.pangyo.ainode.ai
9
9
  Classifier: Development Status :: 3 - Alpha
10
10
  Classifier: Intended Audience :: Developers
11
11
  Classifier: Intended Audience :: Science/Research
@@ -94,6 +94,17 @@ study_wrapper.optimize(
94
94
  runtime_image=aiauto.RUNTIME_IMAGES[0],
95
95
  )
96
96
  ```
97
+ - 종료 됐는지 optuna-dashboard 가 아닌 코드로 확인하는 법
98
+ ```python
99
+ study_wrapper.get_status()
100
+ # {'study_name': 'test', 'count_active': 0, 'count_succeeded': 10, 'count_pruned': 0, 'count_failed': 0, 'count_total': 10, 'count_completed': 10, 'dashboard_url': 'https://optuna-dashboard-10f804bb-52be-48e8-aa06-9f5411ed4b0d.aiauto.pangyo.ainode.ai', 'last_error': '', 'updated_at': '2025-09-01T11:31:49.375Z'}
101
+ while study_wrapper.get_status()['count_completed'] <= study_wrapper.get_status()['count_total']:
102
+ sleep(10) # 10초 마다 한 번 씩
103
+ ```
104
+ - best trial 을 가져오는 법
105
+ ```python
106
+ TODO
107
+ ```
97
108
 
98
109
  ## Jupyter Notebook 사용 시 주의사항
99
110
 
@@ -470,3 +481,137 @@ study.tell(trial, ret)
470
481
  ```bash
471
482
  make build push
472
483
  ```
484
+
485
+
486
+ ## LLM을 위한 설명 (for code assistants / agents)
487
+
488
+ 이 섹션은 **코드 어시스턴트/에이전트**가 AIAuto를 자동으로 사용할 때 참고하는 규칙 모음입니다.
489
+ 사람 사용자는 위 본문 가이드를 우선적으로 따르세요.
490
+
491
+ ### 1) 목적과 사용 흐름 (요약)
492
+ - AIAuto는 **Optuna를 Kubernetes에서 분산 실행**하도록 해주는 Python 클라이언트입니다.
493
+ - 두 가지 흐름을 지원합니다:
494
+ 1) `StudyWrapper.optimize(...)` → 원격(K8s) 병렬 실행
495
+ 2) `StudyWrapper.get_study()` → 실제 `optuna.Study` 로드 후 **ask/tell** 직접 사용
496
+
497
+ ### 2) 네트워크/도메인 규칙 (필수)
498
+ - **Connect RPC (HTTPS/443)**: `https://api.aiauto.pangyo.ainode.ai`
499
+ - **Optuna Storage (gRPC, 평문 h2c/13000)**:
500
+ `{userID}.journal-grpc-storage-proxy.aiauto.pangyo.ainode.ai:13000`
501
+ → **항상 평문(h2c)**. 443/TLS 시도 **금지**.
502
+ - 대시보드(웹): `https://dashboard.aiauto.pangyo.ainode.ai`
503
+
504
+ ### 3) 호출 순서 (결정 트리)
505
+ 1) 컨트롤러 생성: `AIAutoController(token)` → 토큰 검증 & 워크스페이스/엔드포인트 획득
506
+ 2) 스터디 생성: `controller.create_study(study_name, direction=… | directions=[…])`
507
+ - 제약: `direction` **또는** `directions` 중 **하나만** 사용
508
+ 3) 분기:
509
+ - **분산 실행**: `study.optimize(objective, n_trials, parallelism, …)`
510
+ - **네이티브 제어**: `real = study.get_study()` 후 `real.ask() / real.tell(...)`
511
+
512
+ ### 4) 인자/작성 제약(LLM이 반드시 지킬 불변식)
513
+ - `direction` **XOR** `directions` (동시 지정 금지)
514
+ - `requirements_file` **XOR** `requirements_list` (동시 지정 금지)
515
+ - `objective` 작성 규칙:
516
+ - 모든 **import는 함수 내부**에 작성
517
+ - 함수 시그니처에 **타입 힌트 금지** (예: `trial: optuna.trial.Trial` 사용 금지)
518
+ - 로컬 파일 경로 의존 금지(원격에서 다운로드/생성)
519
+
520
+ ### 5) 최소 예제
521
+
522
+ #### (A) 분산 실행
523
+ ```python
524
+ import aiauto, optuna
525
+
526
+ controller = aiauto.AIAutoController('aiauto_xxx')
527
+ study = controller.create_study('exp1', direction='minimize')
528
+
529
+ def objective(trial):
530
+ import numpy as np
531
+ x = trial.suggest_float('x', -10, 10)
532
+ return (x - 1.23) ** 2
533
+
534
+ study.optimize(
535
+ objective,
536
+ n_trials=64,
537
+ parallelism=8,
538
+ requirements_list=['numpy'],
539
+ )
540
+ ```
541
+
542
+ #### (B) ask/tell (실제 optuna.Study 사용)
543
+ ```python
544
+ import aiauto, optuna
545
+
546
+ controller = aiauto.AIAutoController('aiauto_xxx')
547
+ sw = controller.create_study('manual', direction='minimize')
548
+
549
+ real = sw.get_study() # 실제 optuna.Study 로드 (gRPC: h2c 13000)
550
+ t = real.ask()
551
+ x = t.suggest_float('x', -10, 10)
552
+ real.tell(t, (x - 2) ** 2)
553
+ ```
554
+
555
+ ### 6) 에러 응답 템플릿(자동 응답 가이드)
556
+ - 초기화/토큰 문제 감지:
557
+ - “대시보드에서 토큰을 재발급한 뒤 다시 시도하세요: https://dashboard.aiauto.pangyo.ainode.ai”
558
+ - `get_study()` 연결 실패(스토리지 준비 전):
559
+ - “Workspace/Storage가 아직 준비 중일 수 있어요. 잠시 후 다시 시도하거나 대시보드에서 상태를 확인해 주세요.”
560
+
561
+ ### 7) 금지/주의 목록
562
+ - gRPC를 **443/TLS**로 붙이려는 시도 **금지** (항상 **13000/h2c**).
563
+ - `direction & directions`, `requirements_file & requirements_list` 동시 지정 **금지**.
564
+ - `objective`는 함수 내부 import, 타입 힌트 금지, 로컬 파일 경로 의존 금지.
565
+
566
+ ### 8) Optuna 호환성 (Sampler/Pruner & Study API)
567
+ - **Sampler/Pruner 호환**: `create_study()`에 **Optuna 원본** `sampler`/`pruner` 인스턴스를 그대로 전달하면 됩니다.
568
+ Study 생성 시 지정된 sampler/pruner는 **Optuna Journal Storage**에 저장되고, 원격 Pod에서 `optuna.load_study()`로 로드될 때 **자동으로 동일 설정이 적용**됩니다. 별도 복원 로직이 필요 없습니다.
569
+ - **네이티브 Study 사용**: `StudyWrapper.get_study()`는 **실제 `optuna.Study` 객체**를 반환합니다.
570
+ 따라서 `best_trial`, `best_trials`(다중 목적), `trials_dataframe()`, `get_trials()`, `ask()/tell()` 등 **Optuna API를 그대로** 사용할 수 있습니다.
571
+
572
+ **공식 문서 링크**
573
+ - Samplers: https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
574
+ - Pruners: https://optuna.readthedocs.io/en/stable/reference/pruners.html
575
+ - Study API: https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.Study.html
576
+
577
+ #### 예시: Sampler/Pruner 그대로 사용
578
+ ```python
579
+ import optuna, aiauto
580
+
581
+ controller = aiauto.AIAutoController('aiauto_xxx')
582
+ study = controller.create_study(
583
+ study_name='cnn',
584
+ direction='minimize',
585
+ sampler=optuna.samplers.TPESampler(seed=42),
586
+ pruner=optuna.pruners.MedianPruner(n_startup_trials=5),
587
+ )
588
+
589
+ def objective(trial):
590
+ import numpy as np
591
+ lr = trial.suggest_float('lr', 1e-5, 1e-1, log=True)
592
+ return (np.log10(lr) + 2) ** 2
593
+
594
+ study.optimize(objective, n_trials=50, parallelism=4)
595
+ ```
596
+
597
+ #### 예시: get_study() 후 Optuna API 그대로 사용
598
+ ```python
599
+ # 실제 optuna.Study 로드
600
+ real = study.get_study()
601
+
602
+ # 단일 목적: best_trial
603
+ print('best value:', real.best_trial.value)
604
+ print('best params:', real.best_trial.params)
605
+
606
+ # (옵션) 다중 목적: Pareto front
607
+ # print(real.best_trials) # multi-objective일 때 사용
608
+
609
+ # 분석/시각화용 DataFrame
610
+ df = real.trials_dataframe(attrs=('number', 'value', 'params', 'state'))
611
+ print(df.head())
612
+
613
+ # 세밀 제어: ask/tell
614
+ t = real.ask()
615
+ x = t.suggest_float('x', -10, 10)
616
+ real.tell(t, (x - 1.23) ** 2)
617
+ ```
@@ -0,0 +1,10 @@
1
+ aiauto/__init__.py,sha256=sF7sJaXg7-MqolSYLxsaXAir1dBzARhXLrHo7zLsupg,345
2
+ aiauto/_config.py,sha256=hTFh2bH9m-HuX6QCpNtBC0j6rEB0S97hhPKjbEjv4Tg,89
3
+ aiauto/constants.py,sha256=rBibGOQHHrdkwaai92-3I8-N0cu-B4CoCoQbG9-Cl8k,821
4
+ aiauto/core.py,sha256=eEwit5oL8DIfglOVe2km_7MAtuZquEd5Xvkbq6EaW9o,9945
5
+ aiauto/http_client.py,sha256=gVDlgnqjC6FcAbZ4rsjzZHfkusotixOShDCdWBdd-sk,2100
6
+ aiauto/serializer.py,sha256=KqQeH0xp4LQuZE6r8kzXQsWY6QgC3hqn8MSuWTt4QmU,1938
7
+ aiauto_client-0.1.10.dist-info/METADATA,sha256=UQAtHz3UFAgqSYIIC3eusxBjRtmnaDuNLSyfQavj2BI,24554
8
+ aiauto_client-0.1.10.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
9
+ aiauto_client-0.1.10.dist-info/top_level.txt,sha256=Sk2ctO9_Bf_tAPwq1x6Vfl6OuL29XzwMTO4F_KG6oJE,7
10
+ aiauto_client-0.1.10.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- aiauto/__init__.py,sha256=sF7sJaXg7-MqolSYLxsaXAir1dBzARhXLrHo7zLsupg,345
2
- aiauto/_config.py,sha256=DaRTIZlph9T3iuW-Cy4fkw8i3bXB--gMtW947SLZZNs,159
3
- aiauto/constants.py,sha256=rBibGOQHHrdkwaai92-3I8-N0cu-B4CoCoQbG9-Cl8k,821
4
- aiauto/core.py,sha256=XaRKX3aLtMPae5guRjj8Ly-PWT96LIS8Picxqg82rjU,9930
5
- aiauto/http_client.py,sha256=t1gxeM5-d5bsVoFWgaNcTrt_WWUXuMuxge9gDlEqhoA,2086
6
- aiauto/serializer.py,sha256=KqQeH0xp4LQuZE6r8kzXQsWY6QgC3hqn8MSuWTt4QmU,1938
7
- aiauto_client-0.1.8.dist-info/METADATA,sha256=iN8NS-QK9Usszy7hF3OzAGpSaFSOYNwIf365jjRUgb4,18450
8
- aiauto_client-0.1.8.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
9
- aiauto_client-0.1.8.dist-info/top_level.txt,sha256=Sk2ctO9_Bf_tAPwq1x6Vfl6OuL29XzwMTO4F_KG6oJE,7
10
- aiauto_client-0.1.8.dist-info/RECORD,,