aiagents4pharma 1.9.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/__init__.py +9 -6
- aiagents4pharma/talk2biomodels/agents/t2b_agent.py +7 -10
- aiagents4pharma/talk2biomodels/models/basico_model.py +29 -32
- aiagents4pharma/talk2biomodels/models/sys_bio_model.py +9 -6
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +3 -3
- aiagents4pharma/talk2biomodels/tests/test_basico_model.py +7 -8
- aiagents4pharma/talk2biomodels/tests/test_langgraph.py +64 -2
- aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py +13 -7
- aiagents4pharma/talk2biomodels/tools/__init__.py +1 -0
- aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +5 -3
- aiagents4pharma/talk2biomodels/tools/parameter_scan.py +292 -0
- aiagents4pharma/talk2biomodels/tools/simulate_model.py +9 -11
- aiagents4pharma/talk2competitors/__init__.py +5 -0
- aiagents4pharma/talk2competitors/agents/__init__.py +6 -0
- aiagents4pharma/talk2competitors/agents/main_agent.py +130 -0
- aiagents4pharma/talk2competitors/agents/s2_agent.py +75 -0
- aiagents4pharma/talk2competitors/config/__init__.py +5 -0
- aiagents4pharma/talk2competitors/config/config.py +110 -0
- aiagents4pharma/talk2competitors/state/__init__.py +5 -0
- aiagents4pharma/talk2competitors/state/state_talk2competitors.py +32 -0
- aiagents4pharma/talk2competitors/tests/__init__.py +3 -0
- aiagents4pharma/talk2competitors/tests/test_langgraph.py +274 -0
- aiagents4pharma/talk2competitors/tools/__init__.py +7 -0
- aiagents4pharma/talk2competitors/tools/s2/__init__.py +8 -0
- aiagents4pharma/talk2competitors/tools/s2/display_results.py +25 -0
- aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py +132 -0
- aiagents4pharma/talk2competitors/tools/s2/search.py +119 -0
- aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py +141 -0
- {aiagents4pharma-1.9.0.dist-info → aiagents4pharma-1.11.0.dist-info}/METADATA +39 -23
- {aiagents4pharma-1.9.0.dist-info → aiagents4pharma-1.11.0.dist-info}/RECORD +33 -17
- {aiagents4pharma-1.9.0.dist-info → aiagents4pharma-1.11.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.9.0.dist-info → aiagents4pharma-1.11.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.9.0.dist-info → aiagents4pharma-1.11.0.dist-info}/top_level.txt +0 -0
@@ -138,7 +138,7 @@ class SimulateModelTool(BaseTool):
|
|
138
138
|
# of the BasicoModel class
|
139
139
|
duration = 100.0
|
140
140
|
interval = 10
|
141
|
-
dic_species_data =
|
141
|
+
dic_species_data = {}
|
142
142
|
if arg_data:
|
143
143
|
# Prepare the dictionary of species data
|
144
144
|
if arg_data.species_data is not None:
|
@@ -151,22 +151,21 @@ class SimulateModelTool(BaseTool):
|
|
151
151
|
if arg_data.time_data is not None:
|
152
152
|
duration = arg_data.time_data.duration
|
153
153
|
interval = arg_data.time_data.interval
|
154
|
-
|
154
|
+
# Update the model parameters
|
155
|
+
model_object.update_parameters(dic_species_data)
|
156
|
+
logger.log(logging.INFO,
|
157
|
+
"Following species/parameters updated in the model %s",
|
158
|
+
dic_species_data)
|
155
159
|
# Simulate the model
|
156
|
-
df = model_object.simulate(
|
157
|
-
|
158
|
-
duration=duration,
|
159
|
-
interval=interval
|
160
|
-
)
|
161
|
-
|
160
|
+
df = model_object.simulate(duration=duration, interval=interval)
|
161
|
+
logger.log(logging.INFO, "Simulation results ready with shape %s", df.shape)
|
162
162
|
dic_simulated_data = {
|
163
163
|
'name': arg_data.simulation_name,
|
164
164
|
'source': sys_bio_model.biomodel_id if sys_bio_model.biomodel_id else 'upload',
|
165
165
|
'tool_call_id': tool_call_id,
|
166
166
|
'data': df.to_dict()
|
167
167
|
}
|
168
|
-
|
169
|
-
# Prepare the dictionary of updated state for the model
|
168
|
+
# Prepare the dictionary of updated state
|
170
169
|
dic_updated_state_for_model = {}
|
171
170
|
for key, value in {
|
172
171
|
"model_id": [sys_bio_model.biomodel_id],
|
@@ -175,7 +174,6 @@ class SimulateModelTool(BaseTool):
|
|
175
174
|
}.items():
|
176
175
|
if value:
|
177
176
|
dic_updated_state_for_model[key] = value
|
178
|
-
|
179
177
|
# Return the updated state of the tool
|
180
178
|
return Command(
|
181
179
|
update=dic_updated_state_for_model|{
|
@@ -0,0 +1,130 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Main agent for the talk2competitors app.
|
5
|
+
"""
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from typing import Literal
|
9
|
+
from dotenv import load_dotenv
|
10
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
11
|
+
from langchain_core.messages import AIMessage
|
12
|
+
from langchain_openai import ChatOpenAI
|
13
|
+
from langgraph.checkpoint.memory import MemorySaver
|
14
|
+
from langgraph.graph import END, START, StateGraph
|
15
|
+
from langgraph.types import Command
|
16
|
+
from ..agents import s2_agent
|
17
|
+
from ..config.config import config
|
18
|
+
from ..state.state_talk2competitors import Talk2Competitors
|
19
|
+
|
20
|
+
logging.basicConfig(level=logging.INFO)
|
21
|
+
logger = logging.getLogger(__name__)
|
22
|
+
|
23
|
+
load_dotenv()
|
24
|
+
|
25
|
+
def make_supervisor_node(llm: BaseChatModel) -> str:
|
26
|
+
"""
|
27
|
+
Creates a supervisor node following LangGraph patterns.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
llm (BaseChatModel): The language model to use for generating responses.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
str: The supervisor node function.
|
34
|
+
"""
|
35
|
+
# options = ["FINISH", "s2_agent"]
|
36
|
+
|
37
|
+
def supervisor_node(state: Talk2Competitors) -> Command[Literal["s2_agent", "__end__"]]:
|
38
|
+
"""
|
39
|
+
Supervisor node that routes to appropriate sub-agents.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
state (Talk2Competitors): The current state of the conversation.
|
43
|
+
|
44
|
+
Returns:
|
45
|
+
Command[Literal["s2_agent", "__end__"]]: The command to execute next.
|
46
|
+
"""
|
47
|
+
logger.info("Supervisor node called")
|
48
|
+
|
49
|
+
messages = [{"role": "system", "content": config.MAIN_AGENT_PROMPT}] + state[
|
50
|
+
"messages"
|
51
|
+
]
|
52
|
+
response = llm.invoke(messages)
|
53
|
+
goto = (
|
54
|
+
"FINISH"
|
55
|
+
if not any(
|
56
|
+
kw in state["messages"][-1].content.lower()
|
57
|
+
for kw in ["search", "paper", "find"]
|
58
|
+
)
|
59
|
+
else "s2_agent"
|
60
|
+
)
|
61
|
+
|
62
|
+
if goto == "FINISH":
|
63
|
+
return Command(
|
64
|
+
goto=END,
|
65
|
+
update={
|
66
|
+
"messages": state["messages"]
|
67
|
+
+ [AIMessage(content=response.content)],
|
68
|
+
"is_last_step": True,
|
69
|
+
"current_agent": None,
|
70
|
+
},
|
71
|
+
)
|
72
|
+
|
73
|
+
return Command(
|
74
|
+
goto="s2_agent",
|
75
|
+
update={
|
76
|
+
"messages": state["messages"],
|
77
|
+
"is_last_step": False,
|
78
|
+
"current_agent": "s2_agent",
|
79
|
+
},
|
80
|
+
)
|
81
|
+
|
82
|
+
return supervisor_node
|
83
|
+
|
84
|
+
def get_app(thread_id: str, llm_model ='gpt-4o-mini') -> StateGraph:
|
85
|
+
"""
|
86
|
+
Returns the langraph app with hierarchical structure.
|
87
|
+
|
88
|
+
Args:
|
89
|
+
thread_id (str): The thread ID for the conversation.
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
The compiled langraph app.
|
93
|
+
"""
|
94
|
+
def call_s2_agent(state: Talk2Competitors) -> Command[Literal["__end__"]]:
|
95
|
+
"""
|
96
|
+
Node for calling the S2 agent.
|
97
|
+
|
98
|
+
Args:
|
99
|
+
state (Talk2Competitors): The current state of the conversation.
|
100
|
+
|
101
|
+
Returns:
|
102
|
+
Command[Literal["__end__"]]: The command to execute next.
|
103
|
+
"""
|
104
|
+
logger.info("Calling S2 agent")
|
105
|
+
app = s2_agent.get_app(thread_id, llm_model)
|
106
|
+
response = app.invoke(state)
|
107
|
+
logger.info("S2 agent completed")
|
108
|
+
return Command(
|
109
|
+
goto=END,
|
110
|
+
update={
|
111
|
+
"messages": response["messages"],
|
112
|
+
"papers": response.get("papers", []),
|
113
|
+
"is_last_step": True,
|
114
|
+
"current_agent": "s2_agent",
|
115
|
+
},
|
116
|
+
)
|
117
|
+
llm = ChatOpenAI(model=llm_model, temperature=0)
|
118
|
+
workflow = StateGraph(Talk2Competitors)
|
119
|
+
|
120
|
+
supervisor = make_supervisor_node(llm)
|
121
|
+
workflow.add_node("supervisor", supervisor)
|
122
|
+
workflow.add_node("s2_agent", call_s2_agent)
|
123
|
+
|
124
|
+
# Define edges
|
125
|
+
workflow.add_edge(START, "supervisor")
|
126
|
+
workflow.add_edge("s2_agent", END)
|
127
|
+
|
128
|
+
app = workflow.compile(checkpointer=MemorySaver())
|
129
|
+
logger.info("Main agent workflow compiled")
|
130
|
+
return app
|
@@ -0,0 +1,75 @@
|
|
1
|
+
#/usr/bin/env python3
|
2
|
+
|
3
|
+
'''
|
4
|
+
Agent for interacting with Semantic Scholar
|
5
|
+
'''
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from dotenv import load_dotenv
|
9
|
+
from langchain_openai import ChatOpenAI
|
10
|
+
from langgraph.graph import START, StateGraph
|
11
|
+
from langgraph.prebuilt import create_react_agent
|
12
|
+
from langgraph.checkpoint.memory import MemorySaver
|
13
|
+
from ..config.config import config
|
14
|
+
from ..state.state_talk2competitors import Talk2Competitors
|
15
|
+
# from ..tools.s2 import s2_tools
|
16
|
+
from ..tools.s2.search import search_tool
|
17
|
+
from ..tools.s2.display_results import display_results
|
18
|
+
from ..tools.s2.single_paper_rec import get_single_paper_recommendations
|
19
|
+
from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations
|
20
|
+
|
21
|
+
load_dotenv()
|
22
|
+
|
23
|
+
# Initialize logger
|
24
|
+
logging.basicConfig(level=logging.INFO)
|
25
|
+
logger = logging.getLogger(__name__)
|
26
|
+
|
27
|
+
def get_app(uniq_id, llm_model='gpt-4o-mini'):
|
28
|
+
'''
|
29
|
+
This function returns the langraph app.
|
30
|
+
'''
|
31
|
+
def agent_s2_node(state: Talk2Competitors):
|
32
|
+
'''
|
33
|
+
This function calls the model.
|
34
|
+
'''
|
35
|
+
logger.log(logging.INFO, "Creating Agent_S2 node with thread_id %s", uniq_id)
|
36
|
+
response = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
|
37
|
+
return response
|
38
|
+
|
39
|
+
# Define the tools
|
40
|
+
tools = [search_tool,
|
41
|
+
display_results,
|
42
|
+
get_single_paper_recommendations,
|
43
|
+
get_multi_paper_recommendations]
|
44
|
+
|
45
|
+
# Create the LLM
|
46
|
+
llm = ChatOpenAI(model=llm_model, temperature=0)
|
47
|
+
model = create_react_agent(
|
48
|
+
llm,
|
49
|
+
tools=tools,
|
50
|
+
state_schema=Talk2Competitors,
|
51
|
+
state_modifier=config.S2_AGENT_PROMPT,
|
52
|
+
checkpointer=MemorySaver()
|
53
|
+
)
|
54
|
+
|
55
|
+
# Define a new graph
|
56
|
+
workflow = StateGraph(Talk2Competitors)
|
57
|
+
|
58
|
+
# Define the two nodes we will cycle between
|
59
|
+
workflow.add_node("agent_s2", agent_s2_node)
|
60
|
+
|
61
|
+
# Set the entrypoint as `agent`
|
62
|
+
# This means that this node is the first one called
|
63
|
+
workflow.add_edge(START, "agent_s2")
|
64
|
+
|
65
|
+
# Initialize memory to persist state between graph runs
|
66
|
+
checkpointer = MemorySaver()
|
67
|
+
|
68
|
+
# Finally, we compile it!
|
69
|
+
# This compiles it into a LangChain Runnable,
|
70
|
+
# meaning you can use it as you would any other runnable.
|
71
|
+
# Note that we're (optionally) passing the memory when compiling the graph
|
72
|
+
app = workflow.compile(checkpointer=checkpointer)
|
73
|
+
logger.log(logging.INFO, "Compiled the graph")
|
74
|
+
|
75
|
+
return app
|
@@ -0,0 +1,110 @@
|
|
1
|
+
"""Configuration module for AI agents handling paper searches and recommendations."""
|
2
|
+
|
3
|
+
|
4
|
+
# pylint: disable=R0903
|
5
|
+
class Config:
|
6
|
+
"""Configuration class containing prompts for AI agents.
|
7
|
+
|
8
|
+
This class stores prompt templates used by various AI agents in the system,
|
9
|
+
particularly for academic paper searches and recommendations.
|
10
|
+
"""
|
11
|
+
|
12
|
+
MAIN_AGENT_PROMPT = (
|
13
|
+
"You are a supervisory AI agent that routes user queries to specialized tools.\n"
|
14
|
+
"Your task is to select the most appropriate tool based on the user's request.\n\n"
|
15
|
+
"Available tools and their capabilities:\n\n"
|
16
|
+
"1. semantic_scholar_agent:\n"
|
17
|
+
" - Search for academic papers and research\n"
|
18
|
+
" - Get paper recommendations\n"
|
19
|
+
" - Find similar papers\n"
|
20
|
+
" USE FOR: Any queries about finding papers, academic research, "
|
21
|
+
"or getting paper recommendations\n\n"
|
22
|
+
"ROUTING GUIDELINES:\n\n"
|
23
|
+
"ALWAYS route to semantic_scholar_agent for:\n"
|
24
|
+
"- Finding academic papers\n"
|
25
|
+
"- Searching research topics\n"
|
26
|
+
"- Getting paper recommendations\n"
|
27
|
+
"- Finding similar papers\n"
|
28
|
+
"- Any query about academic literature\n\n"
|
29
|
+
"Approach:\n"
|
30
|
+
"1. Identify the core need in the user's query\n"
|
31
|
+
"2. Select the most appropriate tool based on the guidelines above\n"
|
32
|
+
"3. If unclear, ask for clarification\n"
|
33
|
+
"4. For multi-step tasks, focus on the immediate next step\n\n"
|
34
|
+
"Remember:\n"
|
35
|
+
"- Be decisive in your tool selection\n"
|
36
|
+
"- Focus on the immediate task\n"
|
37
|
+
"- Default to semantic_scholar_agent for any paper-finding tasks\n"
|
38
|
+
"- Ask for clarification if the request is ambiguous\n\n"
|
39
|
+
"When presenting paper search results, always use this exact format:\n\n"
|
40
|
+
"Remember to:\n"
|
41
|
+
"- Always remember to add the url\n"
|
42
|
+
"- Put URLs on the title line itself as markdown\n"
|
43
|
+
"- Maintain consistent spacing and formatting"
|
44
|
+
)
|
45
|
+
|
46
|
+
S2_AGENT_PROMPT = (
|
47
|
+
"You are a specialized academic research assistant with access to the following tools:\n\n"
|
48
|
+
"1. search_papers:\n"
|
49
|
+
" USE FOR: General paper searches\n"
|
50
|
+
" - Enhances search terms automatically\n"
|
51
|
+
" - Adds relevant academic keywords\n"
|
52
|
+
" - Focuses on recent research when appropriate\n\n"
|
53
|
+
"2. get_single_paper_recommendations:\n"
|
54
|
+
" USE FOR: Finding papers similar to a specific paper\n"
|
55
|
+
" - Takes a single paper ID\n"
|
56
|
+
" - Returns related papers\n\n"
|
57
|
+
"3. get_multi_paper_recommendations:\n"
|
58
|
+
" USE FOR: Finding papers similar to multiple papers\n"
|
59
|
+
" - Takes multiple paper IDs\n"
|
60
|
+
" - Finds papers related to all inputs\n\n"
|
61
|
+
"GUIDELINES:\n\n"
|
62
|
+
"For paper searches:\n"
|
63
|
+
"- Enhance search terms with academic language\n"
|
64
|
+
"- Include field-specific terminology\n"
|
65
|
+
'- Add "recent" or "latest" when appropriate\n'
|
66
|
+
"- Keep queries focused and relevant\n\n"
|
67
|
+
"For paper recommendations:\n"
|
68
|
+
"- Identify paper IDs (40-character hexadecimal strings)\n"
|
69
|
+
"- Use single_paper_recommendations for one ID\n"
|
70
|
+
"- Use multi_paper_recommendations for multiple IDs\n\n"
|
71
|
+
"Best practices:\n"
|
72
|
+
"1. Start with a broad search if no paper IDs are provided\n"
|
73
|
+
"2. Look for paper IDs in user input\n"
|
74
|
+
"3. Enhance search terms for better results\n"
|
75
|
+
"4. Consider the academic context\n"
|
76
|
+
"5. Be prepared to refine searches based on feedback\n\n"
|
77
|
+
"Remember:\n"
|
78
|
+
"- Always select the most appropriate tool\n"
|
79
|
+
"- Enhance search queries naturally\n"
|
80
|
+
"- Consider academic context\n"
|
81
|
+
"- Focus on delivering relevant results\n\n"
|
82
|
+
"IMPORTANT GUIDELINES FOR PAPER RECOMMENDATIONS:\n\n"
|
83
|
+
"For Multiple Papers:\n"
|
84
|
+
"- When getting recommendations for multiple papers, always use "
|
85
|
+
"get_multi_paper_recommendations tool\n"
|
86
|
+
"- DO NOT call get_single_paper_recommendations multiple times\n"
|
87
|
+
"- Always pass all paper IDs in a single call to get_multi_paper_recommendations\n"
|
88
|
+
'- Use for queries like "find papers related to both/all papers" or '
|
89
|
+
'"find similar papers to these papers"\n\n'
|
90
|
+
"For Single Paper:\n"
|
91
|
+
"- Use get_single_paper_recommendations when focusing on one specific paper\n"
|
92
|
+
"- Pass only one paper ID at a time\n"
|
93
|
+
'- Use for queries like "find papers similar to this paper" or '
|
94
|
+
'"get recommendations for paper X"\n'
|
95
|
+
"- Do not use for multiple papers\n\n"
|
96
|
+
"Examples:\n"
|
97
|
+
'- For "find related papers for both papers":\n'
|
98
|
+
" ✓ Use get_multi_paper_recommendations with both paper IDs\n"
|
99
|
+
" × Don't make multiple calls to get_single_paper_recommendations\n\n"
|
100
|
+
'- For "find papers related to the first paper":\n'
|
101
|
+
" ✓ Use get_single_paper_recommendations with just that paper's ID\n"
|
102
|
+
" × Don't use get_multi_paper_recommendations\n\n"
|
103
|
+
"Remember:\n"
|
104
|
+
"- Be precise in identifying which paper ID to use for single recommendations\n"
|
105
|
+
"- Don't reuse previous paper IDs unless specifically requested\n"
|
106
|
+
"- For fresh paper recommendations, always use the original paper ID"
|
107
|
+
)
|
108
|
+
|
109
|
+
|
110
|
+
config = Config()
|
@@ -0,0 +1,32 @@
|
|
1
|
+
"""
|
2
|
+
This is the state file for the talk2comp agent.
|
3
|
+
"""
|
4
|
+
|
5
|
+
import logging
|
6
|
+
from typing import Annotated, Any, Dict, Optional
|
7
|
+
|
8
|
+
from langgraph.prebuilt.chat_agent_executor import AgentState
|
9
|
+
from typing_extensions import NotRequired, Required
|
10
|
+
|
11
|
+
# Configure logging
|
12
|
+
logging.basicConfig(level=logging.INFO)
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
|
16
|
+
def replace_dict(existing: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any]:
|
17
|
+
"""Replace the existing dict with the new one."""
|
18
|
+
logger.info("Updating existing state %s with the state dict: %s", existing, new)
|
19
|
+
return new
|
20
|
+
|
21
|
+
|
22
|
+
class Talk2Competitors(AgentState):
|
23
|
+
"""
|
24
|
+
The state for the talk2comp agent, inheriting from AgentState.
|
25
|
+
"""
|
26
|
+
|
27
|
+
papers: Annotated[Dict[str, Any], replace_dict] # Changed from List to Dict
|
28
|
+
search_table: NotRequired[str]
|
29
|
+
next: str # Required for routing in LangGraph
|
30
|
+
current_agent: NotRequired[Optional[str]]
|
31
|
+
is_last_step: Required[bool] # Required field for LangGraph
|
32
|
+
llm_model: str
|