aiagents4pharma 1.9.0__py3-none-any.whl → 1.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,8 +1,11 @@
1
- '''
1
+ """
2
2
  This file is used to import aiagents4pharma modules.
3
- '''
3
+ """
4
4
 
5
- from . import talk2biomodels
6
- from . import talk2cells
7
- from . import talk2knowledgegraphs
8
- from . import configs
5
+ from . import (
6
+ configs,
7
+ talk2biomodels,
8
+ talk2cells,
9
+ talk2competitors,
10
+ talk2knowledgegraphs,
11
+ )
@@ -0,0 +1,5 @@
1
+ """
2
+ This file is used to import all the modules in the package.
3
+ """
4
+
5
+ from . import agents, config, state, tests, tools
@@ -0,0 +1,6 @@
1
+ '''
2
+ This file is used to import all the modules in the package.
3
+ '''
4
+
5
+ from . import main_agent
6
+ from . import s2_agent
@@ -0,0 +1,130 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ Main agent for the talk2competitors app.
5
+ """
6
+
7
+ import logging
8
+ from typing import Literal
9
+ from dotenv import load_dotenv
10
+ from langchain_core.language_models.chat_models import BaseChatModel
11
+ from langchain_core.messages import AIMessage
12
+ from langchain_openai import ChatOpenAI
13
+ from langgraph.checkpoint.memory import MemorySaver
14
+ from langgraph.graph import END, START, StateGraph
15
+ from langgraph.types import Command
16
+ from ..agents import s2_agent
17
+ from ..config.config import config
18
+ from ..state.state_talk2competitors import Talk2Competitors
19
+
20
+ logging.basicConfig(level=logging.INFO)
21
+ logger = logging.getLogger(__name__)
22
+
23
+ load_dotenv()
24
+
25
+ def make_supervisor_node(llm: BaseChatModel) -> str:
26
+ """
27
+ Creates a supervisor node following LangGraph patterns.
28
+
29
+ Args:
30
+ llm (BaseChatModel): The language model to use for generating responses.
31
+
32
+ Returns:
33
+ str: The supervisor node function.
34
+ """
35
+ # options = ["FINISH", "s2_agent"]
36
+
37
+ def supervisor_node(state: Talk2Competitors) -> Command[Literal["s2_agent", "__end__"]]:
38
+ """
39
+ Supervisor node that routes to appropriate sub-agents.
40
+
41
+ Args:
42
+ state (Talk2Competitors): The current state of the conversation.
43
+
44
+ Returns:
45
+ Command[Literal["s2_agent", "__end__"]]: The command to execute next.
46
+ """
47
+ logger.info("Supervisor node called")
48
+
49
+ messages = [{"role": "system", "content": config.MAIN_AGENT_PROMPT}] + state[
50
+ "messages"
51
+ ]
52
+ response = llm.invoke(messages)
53
+ goto = (
54
+ "FINISH"
55
+ if not any(
56
+ kw in state["messages"][-1].content.lower()
57
+ for kw in ["search", "paper", "find"]
58
+ )
59
+ else "s2_agent"
60
+ )
61
+
62
+ if goto == "FINISH":
63
+ return Command(
64
+ goto=END,
65
+ update={
66
+ "messages": state["messages"]
67
+ + [AIMessage(content=response.content)],
68
+ "is_last_step": True,
69
+ "current_agent": None,
70
+ },
71
+ )
72
+
73
+ return Command(
74
+ goto="s2_agent",
75
+ update={
76
+ "messages": state["messages"],
77
+ "is_last_step": False,
78
+ "current_agent": "s2_agent",
79
+ },
80
+ )
81
+
82
+ return supervisor_node
83
+
84
+ def get_app(thread_id: str, llm_model ='gpt-4o-mini') -> StateGraph:
85
+ """
86
+ Returns the langraph app with hierarchical structure.
87
+
88
+ Args:
89
+ thread_id (str): The thread ID for the conversation.
90
+
91
+ Returns:
92
+ The compiled langraph app.
93
+ """
94
+ def call_s2_agent(state: Talk2Competitors) -> Command[Literal["__end__"]]:
95
+ """
96
+ Node for calling the S2 agent.
97
+
98
+ Args:
99
+ state (Talk2Competitors): The current state of the conversation.
100
+
101
+ Returns:
102
+ Command[Literal["__end__"]]: The command to execute next.
103
+ """
104
+ logger.info("Calling S2 agent")
105
+ app = s2_agent.get_app(thread_id, llm_model)
106
+ response = app.invoke(state)
107
+ logger.info("S2 agent completed")
108
+ return Command(
109
+ goto=END,
110
+ update={
111
+ "messages": response["messages"],
112
+ "papers": response.get("papers", []),
113
+ "is_last_step": True,
114
+ "current_agent": "s2_agent",
115
+ },
116
+ )
117
+ llm = ChatOpenAI(model=llm_model, temperature=0)
118
+ workflow = StateGraph(Talk2Competitors)
119
+
120
+ supervisor = make_supervisor_node(llm)
121
+ workflow.add_node("supervisor", supervisor)
122
+ workflow.add_node("s2_agent", call_s2_agent)
123
+
124
+ # Define edges
125
+ workflow.add_edge(START, "supervisor")
126
+ workflow.add_edge("s2_agent", END)
127
+
128
+ app = workflow.compile(checkpointer=MemorySaver())
129
+ logger.info("Main agent workflow compiled")
130
+ return app
@@ -0,0 +1,75 @@
1
+ #/usr/bin/env python3
2
+
3
+ '''
4
+ Agent for interacting with Semantic Scholar
5
+ '''
6
+
7
+ import logging
8
+ from dotenv import load_dotenv
9
+ from langchain_openai import ChatOpenAI
10
+ from langgraph.graph import START, StateGraph
11
+ from langgraph.prebuilt import create_react_agent
12
+ from langgraph.checkpoint.memory import MemorySaver
13
+ from ..config.config import config
14
+ from ..state.state_talk2competitors import Talk2Competitors
15
+ # from ..tools.s2 import s2_tools
16
+ from ..tools.s2.search import search_tool
17
+ from ..tools.s2.display_results import display_results
18
+ from ..tools.s2.single_paper_rec import get_single_paper_recommendations
19
+ from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations
20
+
21
+ load_dotenv()
22
+
23
+ # Initialize logger
24
+ logging.basicConfig(level=logging.INFO)
25
+ logger = logging.getLogger(__name__)
26
+
27
+ def get_app(uniq_id, llm_model='gpt-4o-mini'):
28
+ '''
29
+ This function returns the langraph app.
30
+ '''
31
+ def agent_s2_node(state: Talk2Competitors):
32
+ '''
33
+ This function calls the model.
34
+ '''
35
+ logger.log(logging.INFO, "Creating Agent_S2 node with thread_id %s", uniq_id)
36
+ response = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
37
+ return response
38
+
39
+ # Define the tools
40
+ tools = [search_tool,
41
+ display_results,
42
+ get_single_paper_recommendations,
43
+ get_multi_paper_recommendations]
44
+
45
+ # Create the LLM
46
+ llm = ChatOpenAI(model=llm_model, temperature=0)
47
+ model = create_react_agent(
48
+ llm,
49
+ tools=tools,
50
+ state_schema=Talk2Competitors,
51
+ state_modifier=config.S2_AGENT_PROMPT,
52
+ checkpointer=MemorySaver()
53
+ )
54
+
55
+ # Define a new graph
56
+ workflow = StateGraph(Talk2Competitors)
57
+
58
+ # Define the two nodes we will cycle between
59
+ workflow.add_node("agent_s2", agent_s2_node)
60
+
61
+ # Set the entrypoint as `agent`
62
+ # This means that this node is the first one called
63
+ workflow.add_edge(START, "agent_s2")
64
+
65
+ # Initialize memory to persist state between graph runs
66
+ checkpointer = MemorySaver()
67
+
68
+ # Finally, we compile it!
69
+ # This compiles it into a LangChain Runnable,
70
+ # meaning you can use it as you would any other runnable.
71
+ # Note that we're (optionally) passing the memory when compiling the graph
72
+ app = workflow.compile(checkpointer=checkpointer)
73
+ logger.log(logging.INFO, "Compiled the graph")
74
+
75
+ return app
@@ -0,0 +1,5 @@
1
+ """
2
+ This package contains configuration settings and prompts used by various AI agents
3
+ """
4
+
5
+ from . import config
@@ -0,0 +1,110 @@
1
+ """Configuration module for AI agents handling paper searches and recommendations."""
2
+
3
+
4
+ # pylint: disable=R0903
5
+ class Config:
6
+ """Configuration class containing prompts for AI agents.
7
+
8
+ This class stores prompt templates used by various AI agents in the system,
9
+ particularly for academic paper searches and recommendations.
10
+ """
11
+
12
+ MAIN_AGENT_PROMPT = (
13
+ "You are a supervisory AI agent that routes user queries to specialized tools.\n"
14
+ "Your task is to select the most appropriate tool based on the user's request.\n\n"
15
+ "Available tools and their capabilities:\n\n"
16
+ "1. semantic_scholar_agent:\n"
17
+ " - Search for academic papers and research\n"
18
+ " - Get paper recommendations\n"
19
+ " - Find similar papers\n"
20
+ " USE FOR: Any queries about finding papers, academic research, "
21
+ "or getting paper recommendations\n\n"
22
+ "ROUTING GUIDELINES:\n\n"
23
+ "ALWAYS route to semantic_scholar_agent for:\n"
24
+ "- Finding academic papers\n"
25
+ "- Searching research topics\n"
26
+ "- Getting paper recommendations\n"
27
+ "- Finding similar papers\n"
28
+ "- Any query about academic literature\n\n"
29
+ "Approach:\n"
30
+ "1. Identify the core need in the user's query\n"
31
+ "2. Select the most appropriate tool based on the guidelines above\n"
32
+ "3. If unclear, ask for clarification\n"
33
+ "4. For multi-step tasks, focus on the immediate next step\n\n"
34
+ "Remember:\n"
35
+ "- Be decisive in your tool selection\n"
36
+ "- Focus on the immediate task\n"
37
+ "- Default to semantic_scholar_agent for any paper-finding tasks\n"
38
+ "- Ask for clarification if the request is ambiguous\n\n"
39
+ "When presenting paper search results, always use this exact format:\n\n"
40
+ "Remember to:\n"
41
+ "- Always remember to add the url\n"
42
+ "- Put URLs on the title line itself as markdown\n"
43
+ "- Maintain consistent spacing and formatting"
44
+ )
45
+
46
+ S2_AGENT_PROMPT = (
47
+ "You are a specialized academic research assistant with access to the following tools:\n\n"
48
+ "1. search_papers:\n"
49
+ " USE FOR: General paper searches\n"
50
+ " - Enhances search terms automatically\n"
51
+ " - Adds relevant academic keywords\n"
52
+ " - Focuses on recent research when appropriate\n\n"
53
+ "2. get_single_paper_recommendations:\n"
54
+ " USE FOR: Finding papers similar to a specific paper\n"
55
+ " - Takes a single paper ID\n"
56
+ " - Returns related papers\n\n"
57
+ "3. get_multi_paper_recommendations:\n"
58
+ " USE FOR: Finding papers similar to multiple papers\n"
59
+ " - Takes multiple paper IDs\n"
60
+ " - Finds papers related to all inputs\n\n"
61
+ "GUIDELINES:\n\n"
62
+ "For paper searches:\n"
63
+ "- Enhance search terms with academic language\n"
64
+ "- Include field-specific terminology\n"
65
+ '- Add "recent" or "latest" when appropriate\n'
66
+ "- Keep queries focused and relevant\n\n"
67
+ "For paper recommendations:\n"
68
+ "- Identify paper IDs (40-character hexadecimal strings)\n"
69
+ "- Use single_paper_recommendations for one ID\n"
70
+ "- Use multi_paper_recommendations for multiple IDs\n\n"
71
+ "Best practices:\n"
72
+ "1. Start with a broad search if no paper IDs are provided\n"
73
+ "2. Look for paper IDs in user input\n"
74
+ "3. Enhance search terms for better results\n"
75
+ "4. Consider the academic context\n"
76
+ "5. Be prepared to refine searches based on feedback\n\n"
77
+ "Remember:\n"
78
+ "- Always select the most appropriate tool\n"
79
+ "- Enhance search queries naturally\n"
80
+ "- Consider academic context\n"
81
+ "- Focus on delivering relevant results\n\n"
82
+ "IMPORTANT GUIDELINES FOR PAPER RECOMMENDATIONS:\n\n"
83
+ "For Multiple Papers:\n"
84
+ "- When getting recommendations for multiple papers, always use "
85
+ "get_multi_paper_recommendations tool\n"
86
+ "- DO NOT call get_single_paper_recommendations multiple times\n"
87
+ "- Always pass all paper IDs in a single call to get_multi_paper_recommendations\n"
88
+ '- Use for queries like "find papers related to both/all papers" or '
89
+ '"find similar papers to these papers"\n\n'
90
+ "For Single Paper:\n"
91
+ "- Use get_single_paper_recommendations when focusing on one specific paper\n"
92
+ "- Pass only one paper ID at a time\n"
93
+ '- Use for queries like "find papers similar to this paper" or '
94
+ '"get recommendations for paper X"\n'
95
+ "- Do not use for multiple papers\n\n"
96
+ "Examples:\n"
97
+ '- For "find related papers for both papers":\n'
98
+ " ✓ Use get_multi_paper_recommendations with both paper IDs\n"
99
+ " × Don't make multiple calls to get_single_paper_recommendations\n\n"
100
+ '- For "find papers related to the first paper":\n'
101
+ " ✓ Use get_single_paper_recommendations with just that paper's ID\n"
102
+ " × Don't use get_multi_paper_recommendations\n\n"
103
+ "Remember:\n"
104
+ "- Be precise in identifying which paper ID to use for single recommendations\n"
105
+ "- Don't reuse previous paper IDs unless specifically requested\n"
106
+ "- For fresh paper recommendations, always use the original paper ID"
107
+ )
108
+
109
+
110
+ config = Config()
@@ -0,0 +1,5 @@
1
+ '''
2
+ This file is used to import all the modules in the package.
3
+ '''
4
+
5
+ from . import state_talk2competitors
@@ -0,0 +1,32 @@
1
+ """
2
+ This is the state file for the talk2comp agent.
3
+ """
4
+
5
+ import logging
6
+ from typing import Annotated, Any, Dict, Optional
7
+
8
+ from langgraph.prebuilt.chat_agent_executor import AgentState
9
+ from typing_extensions import NotRequired, Required
10
+
11
+ # Configure logging
12
+ logging.basicConfig(level=logging.INFO)
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def replace_dict(existing: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any]:
17
+ """Replace the existing dict with the new one."""
18
+ logger.info("Updating existing state %s with the state dict: %s", existing, new)
19
+ return new
20
+
21
+
22
+ class Talk2Competitors(AgentState):
23
+ """
24
+ The state for the talk2comp agent, inheriting from AgentState.
25
+ """
26
+
27
+ papers: Annotated[Dict[str, Any], replace_dict] # Changed from List to Dict
28
+ search_table: NotRequired[str]
29
+ next: str # Required for routing in LangGraph
30
+ current_agent: NotRequired[Optional[str]]
31
+ is_last_step: Required[bool] # Required field for LangGraph
32
+ llm_model: str
@@ -0,0 +1,3 @@
1
+ """
2
+ This module contains the test cases.
3
+ """
@@ -0,0 +1,274 @@
1
+ """
2
+ Unit and integration tests for Talk2Competitors system.
3
+ Each test focuses on a single, specific functionality.
4
+ Tests are deterministic and independent of each other.
5
+ """
6
+
7
+ from unittest.mock import Mock, patch
8
+
9
+ import pytest
10
+ from langchain_core.messages import AIMessage, HumanMessage
11
+
12
+ from ..agents.main_agent import get_app, make_supervisor_node
13
+ from ..state.state_talk2competitors import replace_dict
14
+ from ..tools.s2.display_results import display_results
15
+ from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations
16
+ from ..tools.s2.search import search_tool
17
+ from ..tools.s2.single_paper_rec import get_single_paper_recommendations
18
+
19
+ # pylint: disable=redefined-outer-name
20
+
21
+ # Fixed test data for deterministic results
22
+ MOCK_SEARCH_RESPONSE = {
23
+ "data": [
24
+ {
25
+ "paperId": "123",
26
+ "title": "Machine Learning Basics",
27
+ "abstract": "An introduction to ML",
28
+ "year": 2023,
29
+ "citationCount": 100,
30
+ "url": "https://example.com/paper1",
31
+ "authors": [{"name": "Test Author"}],
32
+ }
33
+ ]
34
+ }
35
+
36
+ MOCK_STATE_PAPER = {
37
+ "123": {
38
+ "Title": "Machine Learning Basics",
39
+ "Abstract": "An introduction to ML",
40
+ "Year": 2023,
41
+ "Citation Count": 100,
42
+ "URL": "https://example.com/paper1",
43
+ }
44
+ }
45
+
46
+
47
+ @pytest.fixture
48
+ def initial_state():
49
+ """Create a base state for tests"""
50
+ return {
51
+ "messages": [],
52
+ "papers": {},
53
+ "is_last_step": False,
54
+ "current_agent": None,
55
+ "llm_model": "gpt-4o-mini",
56
+ }
57
+
58
+
59
+ class TestMainAgent:
60
+ """Unit tests for main agent functionality"""
61
+
62
+ def test_supervisor_routes_search_to_s2(self, initial_state):
63
+ """Verifies that search-related queries are routed to S2 agent"""
64
+ llm_mock = Mock()
65
+ llm_mock.invoke.return_value = AIMessage(content="Search initiated")
66
+
67
+ supervisor = make_supervisor_node(llm_mock)
68
+ state = initial_state.copy()
69
+ state["messages"] = [HumanMessage(content="search for papers")]
70
+
71
+ result = supervisor(state)
72
+ assert result.goto == "s2_agent"
73
+ assert not result.update["is_last_step"]
74
+ assert result.update["current_agent"] == "s2_agent"
75
+
76
+ def test_supervisor_routes_general_to_end(self, initial_state):
77
+ """Verifies that non-search queries end the conversation"""
78
+ llm_mock = Mock()
79
+ llm_mock.invoke.return_value = AIMessage(content="General response")
80
+
81
+ supervisor = make_supervisor_node(llm_mock)
82
+ state = initial_state.copy()
83
+ state["messages"] = [HumanMessage(content="What is ML?")]
84
+
85
+ result = supervisor(state)
86
+ assert result.goto == "__end__"
87
+ assert result.update["is_last_step"]
88
+
89
+
90
+ class TestS2Tools:
91
+ """Unit tests for individual S2 tools"""
92
+
93
+ def test_display_results_shows_papers(self, initial_state):
94
+ """Verifies display_results tool correctly returns papers from state"""
95
+ state = initial_state.copy()
96
+ state["papers"] = MOCK_STATE_PAPER
97
+ result = display_results.invoke(input={"state": state})
98
+ assert result == MOCK_STATE_PAPER
99
+ assert isinstance(result, dict)
100
+
101
+ @patch("requests.get")
102
+ def test_search_finds_papers(self, mock_get):
103
+ """Verifies search tool finds and formats papers correctly"""
104
+ mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
105
+ mock_get.return_value.status_code = 200
106
+
107
+ result = search_tool.invoke(
108
+ input={
109
+ "query": "machine learning",
110
+ "limit": 1,
111
+ "tool_call_id": "test123",
112
+ "id": "test123",
113
+ }
114
+ )
115
+
116
+ assert "papers" in result.update
117
+ assert "messages" in result.update
118
+ papers = result.update["papers"]
119
+ assert isinstance(papers, dict)
120
+ assert len(papers) > 0
121
+ paper = next(iter(papers.values()))
122
+ assert paper["Title"] == "Machine Learning Basics"
123
+ assert paper["Year"] == 2023
124
+
125
+ @patch("requests.get")
126
+ def test_single_paper_rec_basic(self, mock_get):
127
+ """Tests basic single paper recommendation functionality"""
128
+ mock_get.return_value.json.return_value = {
129
+ "recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
130
+ }
131
+ mock_get.return_value.status_code = 200
132
+
133
+ result = get_single_paper_recommendations.invoke(
134
+ input={
135
+ "paper_id": "123",
136
+ "limit": 1,
137
+ "tool_call_id": "test123",
138
+ "id": "test123",
139
+ }
140
+ )
141
+ assert "papers" in result.update
142
+ assert len(result.update["messages"]) == 1
143
+
144
+ @patch("requests.get")
145
+ def test_single_paper_rec_with_optional_params(self, mock_get):
146
+ """Tests single paper recommendations with year parameter"""
147
+ mock_get.return_value.json.return_value = {
148
+ "recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
149
+ }
150
+ mock_get.return_value.status_code = 200
151
+
152
+ result = get_single_paper_recommendations.invoke(
153
+ input={
154
+ "paper_id": "123",
155
+ "limit": 1,
156
+ "year": "2023-",
157
+ "tool_call_id": "test123",
158
+ "id": "test123",
159
+ }
160
+ )
161
+ assert "papers" in result.update
162
+
163
+ @patch("requests.post")
164
+ def test_multi_paper_rec_basic(self, mock_post):
165
+ """Tests basic multi-paper recommendation functionality"""
166
+ mock_post.return_value.json.return_value = {
167
+ "recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
168
+ }
169
+ mock_post.return_value.status_code = 200
170
+
171
+ result = get_multi_paper_recommendations.invoke(
172
+ input={
173
+ "paper_ids": ["123", "456"],
174
+ "limit": 1,
175
+ "tool_call_id": "test123",
176
+ "id": "test123",
177
+ }
178
+ )
179
+ assert "papers" in result.update
180
+ assert len(result.update["messages"]) == 1
181
+
182
+ @patch("requests.post")
183
+ def test_multi_paper_rec_with_optional_params(self, mock_post):
184
+ """Tests multi-paper recommendations with all optional parameters"""
185
+ mock_post.return_value.json.return_value = {
186
+ "recommendedPapers": [MOCK_SEARCH_RESPONSE["data"][0]]
187
+ }
188
+ mock_post.return_value.status_code = 200
189
+
190
+ result = get_multi_paper_recommendations.invoke(
191
+ input={
192
+ "paper_ids": ["123", "456"],
193
+ "limit": 1,
194
+ "year": "2023-",
195
+ "tool_call_id": "test123",
196
+ "id": "test123",
197
+ }
198
+ )
199
+ assert "papers" in result.update
200
+ assert len(result.update["messages"]) == 1
201
+
202
+ @patch("requests.get")
203
+ def test_single_paper_rec_empty_response(self, mock_get):
204
+ """Tests single paper recommendations with empty response"""
205
+ mock_get.return_value.json.return_value = {"recommendedPapers": []}
206
+ mock_get.return_value.status_code = 200
207
+
208
+ result = get_single_paper_recommendations.invoke(
209
+ input={
210
+ "paper_id": "123",
211
+ "limit": 1,
212
+ "tool_call_id": "test123",
213
+ "id": "test123",
214
+ }
215
+ )
216
+ assert "papers" in result.update
217
+ assert len(result.update["papers"]) == 0
218
+
219
+ @patch("requests.post")
220
+ def test_multi_paper_rec_empty_response(self, mock_post):
221
+ """Tests multi-paper recommendations with empty response"""
222
+ mock_post.return_value.json.return_value = {"recommendedPapers": []}
223
+ mock_post.return_value.status_code = 200
224
+
225
+ result = get_multi_paper_recommendations.invoke(
226
+ input={
227
+ "paper_ids": ["123", "456"],
228
+ "limit": 1,
229
+ "tool_call_id": "test123",
230
+ "id": "test123",
231
+ }
232
+ )
233
+ assert "papers" in result.update
234
+ assert len(result.update["papers"]) == 0
235
+
236
+
237
+ def test_state_replace_dict():
238
+ """Verifies state dictionary replacement works correctly"""
239
+ existing = {"key1": "value1", "key2": "value2"}
240
+ new = {"key3": "value3"}
241
+ result = replace_dict(existing, new)
242
+ assert result == new
243
+ assert isinstance(result, dict)
244
+
245
+
246
+ @pytest.mark.integration
247
+ def test_end_to_end_search_workflow(initial_state):
248
+ """Integration test: Complete search workflow"""
249
+ with (
250
+ patch("requests.get") as mock_get,
251
+ patch("langchain_openai.ChatOpenAI") as mock_llm,
252
+ ):
253
+ mock_get.return_value.json.return_value = MOCK_SEARCH_RESPONSE
254
+ mock_get.return_value.status_code = 200
255
+
256
+ llm_instance = Mock()
257
+ llm_instance.invoke.return_value = AIMessage(content="Search completed")
258
+ mock_llm.return_value = llm_instance
259
+
260
+ app = get_app("test_integration")
261
+ test_state = initial_state.copy()
262
+ test_state["messages"] = [HumanMessage(content="search for ML papers")]
263
+
264
+ config = {
265
+ "configurable": {
266
+ "thread_id": "test_integration",
267
+ "checkpoint_ns": "test",
268
+ "checkpoint_id": "test123",
269
+ }
270
+ }
271
+
272
+ response = app.invoke(test_state, config)
273
+ assert "papers" in response
274
+ assert len(response["messages"]) > 0
@@ -0,0 +1,7 @@
1
+ #!/usr/bin/env python3
2
+
3
+ '''
4
+ Import statements
5
+ '''
6
+
7
+ from . import s2
@@ -0,0 +1,8 @@
1
+ '''
2
+ This file is used to import all the modules in the package.
3
+ '''
4
+
5
+ from . import display_results
6
+ from . import multi_paper_rec
7
+ from . import search
8
+ from . import single_paper_rec
@@ -0,0 +1,25 @@
1
+ #!/usr/bin/env python3
2
+
3
+ '''
4
+ This tool is used to display the table of studies.
5
+ '''
6
+
7
+ import logging
8
+ from typing import Annotated
9
+ from langchain_core.tools import tool
10
+ from langgraph.prebuilt import InjectedState
11
+
12
+ # Configure logging
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ @tool('display_results')
17
+ def display_results(state: Annotated[dict, InjectedState]):
18
+ """
19
+ Display the papers in the state.
20
+
21
+ Args:
22
+ state (dict): The state of the agent.
23
+ """
24
+ logger.info("Displaying papers from the state")
25
+ return state["papers"]
@@ -0,0 +1,132 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ multi_paper_rec: Tool for getting recommendations
5
+ based on multiple papers
6
+ """
7
+
8
+ import json
9
+ import logging
10
+ from typing import Annotated, Any, Dict, List, Optional
11
+
12
+ import pandas as pd
13
+ import requests
14
+ from langchain_core.messages import ToolMessage
15
+ from langchain_core.tools import tool
16
+ from langchain_core.tools.base import InjectedToolCallId
17
+ from langgraph.types import Command
18
+ from pydantic import BaseModel, Field
19
+
20
+
21
+ class MultiPaperRecInput(BaseModel):
22
+ """Input schema for multiple paper recommendations tool."""
23
+
24
+ paper_ids: List[str] = Field(
25
+ description=("List of Semantic Scholar Paper IDs to get recommendations for")
26
+ )
27
+ limit: int = Field(
28
+ default=2,
29
+ description="Maximum total number of recommendations to return",
30
+ ge=1,
31
+ le=500,
32
+ )
33
+ year: Optional[str] = Field(
34
+ default=None,
35
+ description="Year range in format: YYYY for specific year, "
36
+ "YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
37
+ )
38
+ tool_call_id: Annotated[str, InjectedToolCallId]
39
+
40
+ model_config = {"arbitrary_types_allowed": True}
41
+
42
+
43
+ @tool(args_schema=MultiPaperRecInput)
44
+ def get_multi_paper_recommendations(
45
+ paper_ids: List[str],
46
+ tool_call_id: Annotated[str, InjectedToolCallId],
47
+ limit: int = 2,
48
+ year: Optional[str] = None,
49
+ ) -> Dict[str, Any]:
50
+ """
51
+ Get paper recommendations based on multiple papers.
52
+
53
+ Args:
54
+ paper_ids (List[str]): The list of paper IDs to base recommendations on.
55
+ tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
56
+ limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
57
+ year (str, optional): Year range for papers.
58
+ Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
59
+
60
+ Returns:
61
+ Dict[str, Any]: The recommendations and related information.
62
+ """
63
+ logging.info("Starting multi-paper recommendations search.")
64
+
65
+ endpoint = "https://api.semanticscholar.org/recommendations/v1/papers"
66
+ headers = {"Content-Type": "application/json"}
67
+ payload = {"positivePaperIds": paper_ids, "negativePaperIds": []}
68
+ params = {
69
+ "limit": min(limit, 500),
70
+ "fields": "paperId,title,abstract,year,authors,citationCount,url",
71
+ }
72
+
73
+ # Add year parameter if provided
74
+ if year:
75
+ params["year"] = year
76
+
77
+ # Getting recommendations
78
+ response = requests.post(
79
+ endpoint,
80
+ headers=headers,
81
+ params=params,
82
+ data=json.dumps(payload),
83
+ timeout=10,
84
+ )
85
+ logging.info(
86
+ "API Response Status for multi-paper recommendations: %s", response.status_code
87
+ )
88
+
89
+ data = response.json()
90
+ recommendations = data.get("recommendedPapers", [])
91
+
92
+ # Create a dictionary to store the papers
93
+ filtered_papers = {
94
+ paper["paperId"]: {
95
+ "Title": paper.get("title", "N/A"),
96
+ "Abstract": paper.get("abstract", "N/A"),
97
+ "Year": paper.get("year", "N/A"),
98
+ "Citation Count": paper.get("citationCount", "N/A"),
99
+ "URL": paper.get("url", "N/A"),
100
+ }
101
+ for paper in recommendations
102
+ if paper.get("title") and paper.get("paperId")
103
+ }
104
+
105
+ # Create a DataFrame from the dictionary
106
+ df = pd.DataFrame.from_dict(filtered_papers, orient="index")
107
+ # print("Created DataFrame with results:")
108
+ logging.info("Created DataFrame with results: %s", df)
109
+
110
+ # Format papers for state update
111
+ papers = [
112
+ f"Paper ID: {paper_id}\n"
113
+ f"Title: {paper_data['Title']}\n"
114
+ f"Abstract: {paper_data['Abstract']}\n"
115
+ f"Year: {paper_data['Year']}\n"
116
+ f"Citations: {paper_data['Citation Count']}\n"
117
+ f"URL: {paper_data['URL']}\n"
118
+ for paper_id, paper_data in filtered_papers.items()
119
+ ]
120
+
121
+ # Convert DataFrame to markdown table
122
+ markdown_table = df.to_markdown(tablefmt="grid")
123
+ logging.info("Search results: %s", papers)
124
+
125
+ return Command(
126
+ update={
127
+ "papers": filtered_papers, # Now sending the dictionary directly
128
+ "messages": [
129
+ ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
130
+ ],
131
+ }
132
+ )
@@ -0,0 +1,119 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ This tool is used to search for academic papers on Semantic Scholar.
5
+ """
6
+
7
+ import logging
8
+ from typing import Annotated, Any, Dict, Optional
9
+
10
+ import pandas as pd
11
+ import requests
12
+ from langchain_core.messages import ToolMessage
13
+ from langchain_core.tools import tool
14
+ from langchain_core.tools.base import InjectedToolCallId
15
+ from langgraph.types import Command
16
+ from pydantic import BaseModel, Field
17
+
18
+
19
+ class SearchInput(BaseModel):
20
+ """Input schema for the search papers tool."""
21
+
22
+ query: str = Field(
23
+ description="Search query string to find academic papers."
24
+ "Be specific and include relevant academic terms."
25
+ )
26
+ limit: int = Field(
27
+ default=2, description="Maximum number of results to return", ge=1, le=100
28
+ )
29
+ year: Optional[str] = Field(
30
+ default=None,
31
+ description="Year range in format: YYYY for specific year, "
32
+ "YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
33
+ )
34
+ tool_call_id: Annotated[str, InjectedToolCallId]
35
+
36
+
37
+ @tool(args_schema=SearchInput)
38
+ def search_tool(
39
+ query: str,
40
+ tool_call_id: Annotated[str, InjectedToolCallId],
41
+ limit: int = 2,
42
+ year: Optional[str] = None,
43
+ ) -> Dict[str, Any]:
44
+ """
45
+ Search for academic papers on Semantic Scholar.
46
+
47
+ Args:
48
+ query (str): The search query string to find academic papers.
49
+ tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
50
+ limit (int, optional): The maximum number of results to return. Defaults to 2.
51
+ year (str, optional): Year range for papers.
52
+ Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
53
+
54
+ Returns:
55
+ Dict[str, Any]: The search results and related information.
56
+ """
57
+ print("Starting paper search...")
58
+ endpoint = "https://api.semanticscholar.org/graph/v1/paper/search"
59
+ params = {
60
+ "query": query,
61
+ "limit": min(limit, 100),
62
+ # "fields": "paperId,title,abstract,year,authors,
63
+ # citationCount,url,publicationTypes,openAccessPdf",
64
+ "fields": "paperId,title,abstract,year,authors,citationCount,url",
65
+ }
66
+
67
+ # Add year parameter if provided
68
+ if year:
69
+ params["year"] = year
70
+
71
+ response = requests.get(endpoint, params=params, timeout=10)
72
+ data = response.json()
73
+ papers = data.get("data", [])
74
+
75
+ # Create a dictionary to store the papers
76
+ filtered_papers = {
77
+ paper["paperId"]: {
78
+ "Title": paper.get("title", "N/A"),
79
+ "Abstract": paper.get("abstract", "N/A"),
80
+ "Year": paper.get("year", "N/A"),
81
+ "Citation Count": paper.get("citationCount", "N/A"),
82
+ "URL": paper.get("url", "N/A"),
83
+ # "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
84
+ # if paper.get("publicationTypes")
85
+ # else "N/A",
86
+ # "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
87
+ # if paper.get("openAccessPdf") is not None
88
+ # else "N/A",
89
+ }
90
+ for paper in papers
91
+ if paper.get("title") and paper.get("authors")
92
+ }
93
+
94
+ df = pd.DataFrame(filtered_papers)
95
+
96
+ # Format papers for state update
97
+ papers = [
98
+ f"Paper ID: {paper_id}\n"
99
+ f"Title: {paper_data['Title']}\n"
100
+ f"Abstract: {paper_data['Abstract']}\n"
101
+ f"Year: {paper_data['Year']}\n"
102
+ f"Citations: {paper_data['Citation Count']}\n"
103
+ f"URL: {paper_data['URL']}\n"
104
+ # f"Publication Type: {paper_data['Publication Type']}\n"
105
+ # f"Open Access PDF: {paper_data['Open Access PDF']}"
106
+ for paper_id, paper_data in filtered_papers.items()
107
+ ]
108
+
109
+ markdown_table = df.to_markdown(tablefmt="grid")
110
+ logging.info("Search results: %s", papers)
111
+
112
+ return Command(
113
+ update={
114
+ "papers": filtered_papers, # Now sending the dictionary directly
115
+ "messages": [
116
+ ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
117
+ ],
118
+ }
119
+ )
@@ -0,0 +1,141 @@
1
+ #!/usr/bin/env python3
2
+
3
+ """
4
+ This tool is used to return recommendations for a single paper.
5
+ """
6
+
7
+ import logging
8
+ from typing import Annotated, Any, Dict, Optional
9
+
10
+ import pandas as pd
11
+ import requests
12
+ from langchain_core.messages import ToolMessage
13
+ from langchain_core.tools import tool
14
+ from langchain_core.tools.base import InjectedToolCallId
15
+ from langgraph.types import Command
16
+ from pydantic import BaseModel, Field
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+ logger = logging.getLogger(__name__)
21
+
22
+
23
+ class SinglePaperRecInput(BaseModel):
24
+ """Input schema for single paper recommendation tool."""
25
+
26
+ paper_id: str = Field(
27
+ description="Semantic Scholar Paper ID to get recommendations for (40-character string)"
28
+ )
29
+ limit: int = Field(
30
+ default=2,
31
+ description="Maximum number of recommendations to return",
32
+ ge=1,
33
+ le=500,
34
+ )
35
+ year: Optional[str] = Field(
36
+ default=None,
37
+ description="Year range in format: YYYY for specific year, "
38
+ "YYYY- for papers after year, -YYYY for papers before year, or YYYY:YYYY for range",
39
+ )
40
+ tool_call_id: Annotated[str, InjectedToolCallId]
41
+ model_config = {"arbitrary_types_allowed": True}
42
+
43
+
44
+ @tool(args_schema=SinglePaperRecInput)
45
+ def get_single_paper_recommendations(
46
+ paper_id: str,
47
+ tool_call_id: Annotated[str, InjectedToolCallId],
48
+ limit: int = 2,
49
+ year: Optional[str] = None,
50
+ ) -> Dict[str, Any]:
51
+ """
52
+ Get paper recommendations based on a single paper.
53
+
54
+ Args:
55
+ paper_id (str): The Semantic Scholar Paper ID to get recommendations for.
56
+ tool_call_id (Annotated[str, InjectedToolCallId]): The tool call ID.
57
+ limit (int, optional): The maximum number of recommendations to return. Defaults to 2.
58
+ year (str, optional): Year range for papers.
59
+ Supports formats like "2024-", "-2024", "2024:2025". Defaults to None.
60
+
61
+ Returns:
62
+ Dict[str, Any]: The recommendations and related information.
63
+ """
64
+ logger.info("Starting single paper recommendations search.")
65
+
66
+ endpoint = (
67
+ f"https://api.semanticscholar.org/recommendations/v1/papers/forpaper/{paper_id}"
68
+ )
69
+ params = {
70
+ "limit": min(limit, 500), # Max 500 per API docs
71
+ "fields": "paperId,title,abstract,year,authors,citationCount,url",
72
+ "from": "all-cs", # Using all-cs pool as specified in docs
73
+ }
74
+
75
+ # Add year parameter if provided
76
+ if year:
77
+ params["year"] = year
78
+
79
+ response = requests.get(endpoint, params=params, timeout=10)
80
+ data = response.json()
81
+ papers = data.get("data", [])
82
+ response = requests.get(endpoint, params=params, timeout=10)
83
+ # print(f"API Response Status: {response.status_code}")
84
+ logging.info(
85
+ "API Response Status for recommendations of paper %s: %s",
86
+ paper_id,
87
+ response.status_code,
88
+ )
89
+ # print(f"Request params: {params}")
90
+ logging.info("Request params: %s", params)
91
+
92
+ data = response.json()
93
+ recommendations = data.get("recommendedPapers", [])
94
+
95
+ # Extract paper ID and title from recommendations
96
+ filtered_papers = {
97
+ paper["paperId"]: {
98
+ "Title": paper.get("title", "N/A"),
99
+ "Abstract": paper.get("abstract", "N/A"),
100
+ "Year": paper.get("year", "N/A"),
101
+ "Citation Count": paper.get("citationCount", "N/A"),
102
+ "URL": paper.get("url", "N/A"),
103
+ # "Publication Type": paper.get("publicationTypes", ["N/A"])[0]
104
+ # if paper.get("publicationTypes")
105
+ # else "N/A",
106
+ # "Open Access PDF": paper.get("openAccessPdf", {}).get("url", "N/A")
107
+ # if paper.get("openAccessPdf") is not None
108
+ # else "N/A",
109
+ }
110
+ for paper in recommendations
111
+ if paper.get("title") and paper.get("authors")
112
+ }
113
+
114
+ # Create a DataFrame for pretty printing
115
+ df = pd.DataFrame(filtered_papers)
116
+
117
+ # Format papers for state update
118
+ papers = [
119
+ f"Paper ID: {paper_id}\n"
120
+ f"Title: {paper_data['Title']}\n"
121
+ f"Abstract: {paper_data['Abstract']}\n"
122
+ f"Year: {paper_data['Year']}\n"
123
+ f"Citations: {paper_data['Citation Count']}\n"
124
+ f"URL: {paper_data['URL']}\n"
125
+ # f"Publication Type: {paper_data['Publication Type']}\n"
126
+ # f"Open Access PDF: {paper_data['Open Access PDF']}"
127
+ for paper_id, paper_data in filtered_papers.items()
128
+ ]
129
+
130
+ # Convert DataFrame to markdown table
131
+ markdown_table = df.to_markdown(tablefmt="grid")
132
+ logging.info("Search results: %s", papers)
133
+
134
+ return Command(
135
+ update={
136
+ "papers": filtered_papers, # Now sending the dictionary directly
137
+ "messages": [
138
+ ToolMessage(content=markdown_table, tool_call_id=tool_call_id)
139
+ ],
140
+ }
141
+ )
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: aiagents4pharma
3
- Version: 1.9.0
3
+ Version: 1.10.0
4
4
  Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: MIT License
7
7
  Classifier: Operating System :: OS Independent
8
- Requires-Python: >=3.10
8
+ Requires-Python: >=3.12
9
9
  Description-Content-Type: text/markdown
10
10
  License-File: LICENSE
11
11
  Requires-Dist: copasi_basico==0.78
@@ -48,6 +48,9 @@ Requires-Dist: streamlit-feedback
48
48
  [![Talk2Cells](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml)
49
49
  [![Talk2KnowledgeGraphs](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml)
50
50
  [![Talk2Competitors](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2competitors.yml/badge.svg)](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2competitors.yml)
51
+ ![GitHub Release](https://img.shields.io/github/v/release/VirtualPatientEngine/AIAgents4Pharma)
52
+ ![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2FVirtualPatientEngine%2FAIAgents4Pharma%2Frefs%2Fheads%2Fmain%2Fpyproject.toml)
53
+
51
54
 
52
55
  <h1 align="center" style="border-bottom: none;">🤖 AIAgents4Pharma</h1>
53
56
 
@@ -56,9 +59,9 @@ Welcome to **AIAgents4Pharma** – an open-source project by [Team VPE](https://
56
59
  Our toolkit currently consists of three intelligent agents, each designed to simplify and enhance access to specialized data in biology:
57
60
 
58
61
  - **Talk2BioModels**: Engage directly with mathematical models in systems biology.
59
- - **Talk2Cells** *(Work in progress)*: Query and analyze sequencing data with ease.
60
- - **Talk2KnowledgeGraphs** *(Work in progress)*: Access and explore complex biological knowledge graphs for insightful data connections.
61
- - **Talk2Competitors** *(Coming soon)*: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
62
+ - **Talk2Cells** _(Work in progress)_: Query and analyze sequencing data with ease.
63
+ - **Talk2KnowledgeGraphs** _(Work in progress)_: Access and explore complex biological knowledge graphs for insightful data connections.
64
+ - **Talk2Competitors** _(Coming soon)_: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
62
65
 
63
66
  ---
64
67
 
@@ -72,15 +75,15 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
72
75
  - Adjust parameters within the model to simulate different conditions.
73
76
  - Query simulation results.
74
77
 
75
- ### 2. Talk2Cells *(Work in Progress)*
78
+ ### 2. Talk2Cells _(Work in Progress)_
76
79
 
77
80
  **Talk2Cells** is being developed to provide direct access to and analysis of sequencing data, such as RNA-Seq or DNA-Seq, using natural language.
78
81
 
79
- ### 3. Talk2KnowledgeGraphs *(Work in Progress)*
82
+ ### 3. Talk2KnowledgeGraphs _(Work in Progress)_
80
83
 
81
84
  **Talk2KnowledgeGraphs** is an agent designed to enable interaction with biological knowledge graphs (KGs). KGs integrate vast amounts of structured biological data into a format that highlights relationships between entities, such as proteins, genes, and diseases.
82
85
 
83
- ### 4. Talk2KnowledgeGraphs *(Coming soon)*
86
+ ### 4. Talk2Competitors _(Coming soon)_
84
87
 
85
88
  ## Getting Started
86
89
 
@@ -91,48 +94,60 @@ Our toolkit currently consists of three intelligent agents, each designed to sim
91
94
  - Required libraries specified in `requirements.txt`
92
95
 
93
96
  ### Installation
97
+
94
98
  #### Option 1: PyPI
95
- ```bash
96
- pip install aiagents4pharma
97
- ```
99
+
100
+ ```bash
101
+ pip install aiagents4pharma
102
+ ```
98
103
 
99
104
  Check out the tutorials on each agent for detailed instrcutions.
100
105
 
101
106
  #### Option 2: git
107
+
102
108
  1. **Clone the repository:**
109
+
103
110
  ```bash
104
111
  git clone https://github.com/VirtualPatientEngine/AIAgents4Pharma
105
112
  cd AIAgents4Pharma
106
113
  ```
107
114
 
108
115
  2. **Install dependencies:**
116
+
109
117
  ```bash
110
118
  pip install .
111
119
  ```
112
120
 
113
121
  3. **Initialize OPENAI_API_KEY**
122
+
114
123
  ```bash
115
- export OPENAI_API_KEY = ....
124
+ export OPENAI_API_KEY=....
116
125
  ```
117
126
 
118
127
  4. **[Optional] Set up login credentials**
128
+
119
129
  ```bash
120
130
  vi .streamlit/secrets.toml
121
131
  ```
132
+
122
133
  and enter
134
+
123
135
  ```
124
136
  password='XXX'
125
137
  ```
126
- Please note that the passowrd will be same for all the users.
138
+
139
+ Please note that the passoword will be same for all the users.
127
140
 
128
141
  5. **[Optional] Initialize LANGSMITH_API_KEY**
142
+
129
143
  ```bash
130
144
  export LANGCHAIN_TRACING_V2=true
131
145
  export LANGCHAIN_API_KEY=<your-api-key>
132
146
  ```
133
- Please note that this will create a new tracing project in your Langsmith
134
- account with the name `<user_name>@<uuid>`, where `user_name` is the name
135
- you provided in the previous step. If you skip the previous step, it will
147
+
148
+ Please note that this will create a new tracing project in your Langsmith
149
+ account with the name `<user_name>@<uuid>`, where `user_name` is the name
150
+ you provided in the previous step. If you skip the previous step, it will
136
151
  default to `default`. <uuid> will be the 128 bit unique ID created for the
137
152
  session.
138
153
 
@@ -164,6 +179,7 @@ We welcome contributions to AIAgents4Pharma! Here’s how you can help:
164
179
  5. **Open a pull request**
165
180
 
166
181
  ### Current Needs
182
+
167
183
  - **Beta testers** for Talk2BioModels.
168
184
  - **Developers** with experience in natural language processing, bioinformatics, or knowledge graphs for contributions to AIAgents4Pharma.
169
185
 
@@ -174,19 +190,22 @@ Check out our [CONTRIBUTING.md](CONTRIBUTING.md) for more information.
174
190
  ## Roadmap
175
191
 
176
192
  ### Completed
193
+
177
194
  - **Talk2BioModels**: Initial release with core capabilities for interacting with systems biology models.
178
195
 
179
196
  ### Planned
197
+
180
198
  - **User Interface**: Interactive web UI for all agents.
181
199
  - **Talk2Cells**: Integration of sequencing data analysis tools.
182
200
  - **Talk2KnowledgeGraphs**: Interface for biological knowledge graph interaction.
183
- - **Talk2Competitors**
201
+ - **Talk2Competitors**: Interface for exploring articles
184
202
 
185
- We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
203
+ We’re excited to bring AIAgents4Pharma to the bioinformatics and pharmaceutical research community. Together, let’s make data-driven biological research more accessible and insightful.
186
204
 
187
205
  **Get Started** with AIAgents4Pharma today and transform the way you interact with biological data.
188
206
 
189
207
  ---
190
208
 
191
209
  ## Feedback
210
+
192
211
  Questions/Bug reports/Feature requests/Comments/Suggestions? We welcome all. Please use the `Isssues` tab 😀
@@ -1,4 +1,4 @@
1
- aiagents4pharma/__init__.py,sha256=X-Mpbf4sfjMvoxiTTl4qFgCxrWZgtVgRjnjX6gbUtCg,173
1
+ aiagents4pharma/__init__.py,sha256=5muWWIg89VHPybfxonO_5xOMJPasKNsGdQRhozDaEmk,177
2
2
  aiagents4pharma/configs/__init__.py,sha256=hNkSrXw1Ix1HhkGn_aaidr2coBYySfM0Hm_pMeRcX7k,76
3
3
  aiagents4pharma/configs/config.yaml,sha256=8y8uG6Dzx4-9jyb6hZ8r4lOJz5gA_sQhCiSCgXL5l7k,65
4
4
  aiagents4pharma/configs/talk2biomodels/__init__.py,sha256=5ah__-8XyRblwT0U1ByRigNjt_GyCheu7zce4aM-eZE,68
@@ -34,7 +34,22 @@ aiagents4pharma/talk2cells/tools/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCY
34
34
  aiagents4pharma/talk2cells/tools/scp_agent/__init__.py,sha256=s7g0lyH1lMD9pcWHLPtwRJRvzmTh2II7DrxyLulpjmQ,163
35
35
  aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQaiOU2rn55A3sIIFKlXi4SK3iKgySvUDrtQ,600
36
36
  aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
37
- aiagents4pharma/talk2competitors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
+ aiagents4pharma/talk2competitors/__init__.py,sha256=haaikzND3c0Euqq86ndA4fl9q42aOop5rYG_8Zh1D-o,119
38
+ aiagents4pharma/talk2competitors/agents/__init__.py,sha256=ykszlVGxz3egLHZAttlNoTPxIrnQJZYva_ssR8fwIFk,117
39
+ aiagents4pharma/talk2competitors/agents/main_agent.py,sha256=UoHCpZd-HoeG0B6_gAF1cEP2OqMvrTuGe7MZDwL_u1U,3878
40
+ aiagents4pharma/talk2competitors/agents/s2_agent.py,sha256=eTrhc4ZPvWOUWMHNYxK0WltsZedZUnAWNu-TeUa-ruk,2501
41
+ aiagents4pharma/talk2competitors/config/__init__.py,sha256=HyM6paOpKZ5_tZnyVheSAFmxjT6Mb3PxvWKfP0rz-dE,113
42
+ aiagents4pharma/talk2competitors/config/config.py,sha256=jd4ltMBJyTztm9wT7j3ujOyYxL2SXRgxQJ4OZUBmCG4,5387
43
+ aiagents4pharma/talk2competitors/state/__init__.py,sha256=DzFjV3hZNes_pL4bDW2_8RsyK9BJcj6ejfBzU0KWn1k,106
44
+ aiagents4pharma/talk2competitors/state/state_talk2competitors.py,sha256=GUl1ZfM77XsjIEu-3xy4dtvaiMTA1pXf6i1ozVcX5Gg,993
45
+ aiagents4pharma/talk2competitors/tests/__init__.py,sha256=U3PsTiUZaUBD1IZanFGkDIOdFieDVJtGKQ5-woYUo8c,45
46
+ aiagents4pharma/talk2competitors/tests/test_langgraph.py,sha256=sEROK1aU3wFqJhZohONVI6Pr7t1d3PSqs-4erVIyiJw,9283
47
+ aiagents4pharma/talk2competitors/tools/__init__.py,sha256=YudBDRwaEzDnAcpxGZvEOfyh5-6xd51CTvTKTkywgXw,68
48
+ aiagents4pharma/talk2competitors/tools/s2/__init__.py,sha256=9RQH3efTj6qkXk0ICKSc7Mzpkitt4gRGsQ1pGPrrREU,181
49
+ aiagents4pharma/talk2competitors/tools/s2/display_results.py,sha256=B8JJGohi1Eyx8C3MhO_SiyQP3R6hPyUKJOAzcHmq3FU,584
50
+ aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py,sha256=FYLt47DAk6WOKfEk1Gj9zVvJGNyxA283PCp8IKW9U5M,4262
51
+ aiagents4pharma/talk2competitors/tools/s2/search.py,sha256=pppjrQv5-8ep4fnqgTSBNgnbSnQsVIcNrRrH0p2TP1o,4025
52
+ aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py,sha256=dAfUQxI7T5eu0eDxK8VAl7-JH0Wnw24CVkOQqwj-hXc,4810
38
53
  aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=SW7Ys2A4eXyFtizNPdSw91SHOPVUBGBsrCQ7TqwSUL0,91
39
54
  aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=L3gPuHskSegmtXskVrLIYr7FXe_ibKgJ2GGr1_Wok6k,173
40
55
  aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=QlzDXmXREoa9MA6-GwzqRjdzndQeGBAF11Td6NFk_9Y,23426
@@ -55,8 +70,8 @@ aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py,sha256=xRb0x7S
55
70
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/embeddings.py,sha256=1nGznrAj-xT0xuSMBGz2dOujJ7M_IwSR84njxtxsy9A,2523
56
71
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py,sha256=2vi_elf6EgzfagFAO5QnL3a_aXZyN7B1EBziu44MTfM,3806
57
72
  aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py,sha256=36iKlisOpMtGR5xfTAlSHXWvPqVC_Jbezod8kbBBMVg,2136
58
- aiagents4pharma-1.9.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
59
- aiagents4pharma-1.9.0.dist-info/METADATA,sha256=c8KtNUIWjkl_hwW4ebu9SlAXiG7BWPX5CoMeC2T4Jb8,7988
60
- aiagents4pharma-1.9.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
61
- aiagents4pharma-1.9.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
62
- aiagents4pharma-1.9.0.dist-info/RECORD,,
73
+ aiagents4pharma-1.10.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
74
+ aiagents4pharma-1.10.0.dist-info/METADATA,sha256=a5XUji4VHk7HcE5GC7txe7v2sNUbgH4ijSHpxoNh74E,8340
75
+ aiagents4pharma-1.10.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
76
+ aiagents4pharma-1.10.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
77
+ aiagents4pharma-1.10.0.dist-info/RECORD,,