aiagents4pharma 1.8.0__py3-none-any.whl → 1.15.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/__init__.py +9 -5
- aiagents4pharma/configs/__init__.py +5 -0
- aiagents4pharma/configs/config.yaml +4 -0
- aiagents4pharma/configs/talk2biomodels/__init__.py +6 -0
- aiagents4pharma/configs/talk2biomodels/agents/__init__.py +5 -0
- aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/__init__.py +3 -0
- aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml +14 -0
- aiagents4pharma/configs/talk2biomodels/tools/__init__.py +4 -0
- aiagents4pharma/configs/talk2biomodels/tools/ask_question/__init__.py +3 -0
- aiagents4pharma/talk2biomodels/__init__.py +3 -0
- aiagents4pharma/talk2biomodels/agents/__init__.py +5 -0
- aiagents4pharma/talk2biomodels/agents/t2b_agent.py +96 -0
- aiagents4pharma/talk2biomodels/api/__init__.py +6 -0
- aiagents4pharma/talk2biomodels/api/kegg.py +83 -0
- aiagents4pharma/talk2biomodels/api/ols.py +72 -0
- aiagents4pharma/talk2biomodels/api/uniprot.py +35 -0
- aiagents4pharma/talk2biomodels/models/basico_model.py +29 -32
- aiagents4pharma/talk2biomodels/models/sys_bio_model.py +9 -6
- aiagents4pharma/talk2biomodels/states/__init__.py +5 -0
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +41 -0
- aiagents4pharma/talk2biomodels/tests/__init__.py +3 -0
- aiagents4pharma/talk2biomodels/tests/test_api.py +57 -0
- aiagents4pharma/talk2biomodels/tests/test_ask_question.py +44 -0
- aiagents4pharma/talk2biomodels/tests/test_basico_model.py +54 -0
- aiagents4pharma/talk2biomodels/tests/test_get_annotation.py +171 -0
- aiagents4pharma/talk2biomodels/tests/test_getmodelinfo.py +26 -0
- aiagents4pharma/talk2biomodels/tests/test_integration.py +126 -0
- aiagents4pharma/talk2biomodels/tests/test_param_scan.py +68 -0
- aiagents4pharma/talk2biomodels/tests/test_query_article.py +76 -0
- aiagents4pharma/talk2biomodels/tests/test_search_models.py +28 -0
- aiagents4pharma/talk2biomodels/tests/test_simulate_model.py +39 -0
- aiagents4pharma/talk2biomodels/tests/test_steady_state.py +90 -0
- aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py +63 -0
- aiagents4pharma/talk2biomodels/tools/__init__.py +5 -0
- aiagents4pharma/talk2biomodels/tools/ask_question.py +61 -18
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py +20 -14
- aiagents4pharma/talk2biomodels/tools/get_annotation.py +304 -0
- aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +11 -9
- aiagents4pharma/talk2biomodels/tools/load_arguments.py +114 -0
- aiagents4pharma/talk2biomodels/tools/load_biomodel.py +0 -1
- aiagents4pharma/talk2biomodels/tools/parameter_scan.py +287 -0
- aiagents4pharma/talk2biomodels/tools/query_article.py +59 -0
- aiagents4pharma/talk2biomodels/tools/simulate_model.py +35 -90
- aiagents4pharma/talk2biomodels/tools/steady_state.py +167 -0
- aiagents4pharma/talk2cells/tests/scp_agent/test_scp_agent.py +23 -0
- aiagents4pharma/talk2cells/tools/scp_agent/__init__.py +6 -0
- aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py +25 -0
- aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py +79 -0
- aiagents4pharma/talk2competitors/__init__.py +5 -0
- aiagents4pharma/talk2competitors/agents/__init__.py +6 -0
- aiagents4pharma/talk2competitors/agents/main_agent.py +130 -0
- aiagents4pharma/talk2competitors/agents/s2_agent.py +75 -0
- aiagents4pharma/talk2competitors/config/__init__.py +5 -0
- aiagents4pharma/talk2competitors/config/config.py +110 -0
- aiagents4pharma/talk2competitors/state/__init__.py +5 -0
- aiagents4pharma/talk2competitors/state/state_talk2competitors.py +32 -0
- aiagents4pharma/talk2competitors/tests/__init__.py +3 -0
- aiagents4pharma/talk2competitors/tests/test_langgraph.py +274 -0
- aiagents4pharma/talk2competitors/tools/__init__.py +7 -0
- aiagents4pharma/talk2competitors/tools/s2/__init__.py +8 -0
- aiagents4pharma/talk2competitors/tools/s2/display_results.py +25 -0
- aiagents4pharma/talk2competitors/tools/s2/multi_paper_rec.py +132 -0
- aiagents4pharma/talk2competitors/tools/s2/search.py +119 -0
- aiagents4pharma/talk2competitors/tools/s2/single_paper_rec.py +141 -0
- aiagents4pharma/talk2knowledgegraphs/__init__.py +2 -1
- aiagents4pharma/talk2knowledgegraphs/tests/__init__.py +0 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_biobridge_primekg.py +242 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_dataset.py +29 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_primekg.py +73 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_starkqa_primekg.py +116 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_embeddings.py +47 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py +45 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py +40 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_enrichments.py +39 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py +117 -0
- aiagents4pharma/talk2knowledgegraphs/utils/__init__.py +5 -0
- aiagents4pharma/talk2knowledgegraphs/utils/enrichments/__init__.py +5 -0
- aiagents4pharma/talk2knowledgegraphs/utils/enrichments/enrichments.py +36 -0
- aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ollama.py +123 -0
- {aiagents4pharma-1.8.0.dist-info → aiagents4pharma-1.15.0.dist-info}/METADATA +44 -25
- aiagents4pharma-1.15.0.dist-info/RECORD +102 -0
- aiagents4pharma-1.8.0.dist-info/RECORD +0 -35
- {aiagents4pharma-1.8.0.dist-info → aiagents4pharma-1.15.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.8.0.dist-info → aiagents4pharma-1.15.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.8.0.dist-info → aiagents4pharma-1.15.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,54 @@
|
|
1
|
+
'''
|
2
|
+
A test BasicoModel class for pytest unit testing.
|
3
|
+
'''
|
4
|
+
|
5
|
+
import pandas as pd
|
6
|
+
import pytest
|
7
|
+
import basico
|
8
|
+
from ..models.basico_model import BasicoModel
|
9
|
+
|
10
|
+
@pytest.fixture(name="model")
|
11
|
+
def model_fixture():
|
12
|
+
"""
|
13
|
+
A fixture for the BasicoModel class.
|
14
|
+
"""
|
15
|
+
return BasicoModel(biomodel_id=64, species={"Pyruvate": 100}, duration=2, interval=2)
|
16
|
+
|
17
|
+
def test_with_biomodel_id(model):
|
18
|
+
"""
|
19
|
+
Test initialization of BasicoModel with biomodel_id.
|
20
|
+
"""
|
21
|
+
assert model.biomodel_id == 64
|
22
|
+
model.update_parameters(parameters={'Pyruvate': 0.5, 'KmPFKF6P': 1.5})
|
23
|
+
df_species = basico.model_info.get_species(model=model.copasi_model)
|
24
|
+
assert df_species.loc['Pyruvate', 'initial_concentration'] == 0.5
|
25
|
+
df_parameters = basico.model_info.get_parameters(model=model.copasi_model)
|
26
|
+
assert df_parameters.loc['KmPFKF6P', 'initial_value'] == 1.5
|
27
|
+
# check if the simulation results are a pandas DataFrame object
|
28
|
+
assert isinstance(model.simulate(duration=2, interval=2), pd.DataFrame)
|
29
|
+
model.update_parameters(parameters={None: None})
|
30
|
+
assert model.description == basico.biomodels.get_model_info(model.biomodel_id)["description"]
|
31
|
+
|
32
|
+
def test_with_sbml_file():
|
33
|
+
"""
|
34
|
+
Test initialization of BasicoModel with sbml_file_path.
|
35
|
+
"""
|
36
|
+
model_object = BasicoModel(sbml_file_path="./BIOMD0000000064_url.xml")
|
37
|
+
assert model_object.sbml_file_path == "./BIOMD0000000064_url.xml"
|
38
|
+
assert isinstance(model_object.simulate(duration=2, interval=2), pd.DataFrame)
|
39
|
+
|
40
|
+
def test_check_biomodel_id_or_sbml_file_path():
|
41
|
+
'''
|
42
|
+
Test the check_biomodel_id_or_sbml_file_path method of the BioModel class.
|
43
|
+
'''
|
44
|
+
with pytest.raises(ValueError):
|
45
|
+
BasicoModel(species={"Pyruvate": 100}, duration=2, interval=2)
|
46
|
+
|
47
|
+
def test_get_model_metadata():
|
48
|
+
"""
|
49
|
+
Test the get_model_metadata method of the BasicoModel class.
|
50
|
+
"""
|
51
|
+
model = BasicoModel(biomodel_id=64)
|
52
|
+
metadata = model.get_model_metadata()
|
53
|
+
assert metadata["Model Type"] == "SBML Model (COPASI)"
|
54
|
+
assert metadata["Parameter Count"] == len(basico.get_parameters())
|
@@ -0,0 +1,171 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels get_annotation tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
import random
|
6
|
+
import pytest
|
7
|
+
from langchain_core.messages import HumanMessage, ToolMessage
|
8
|
+
from ..agents.t2b_agent import get_app
|
9
|
+
from ..tools.get_annotation import prepare_content_msg
|
10
|
+
|
11
|
+
@pytest.fixture(name="make_graph")
|
12
|
+
def make_graph_fixture():
|
13
|
+
'''
|
14
|
+
Create an instance of the talk2biomodels agent.
|
15
|
+
'''
|
16
|
+
unique_id = random.randint(1000, 9999)
|
17
|
+
graph = get_app(unique_id)
|
18
|
+
config = {"configurable": {"thread_id": unique_id}}
|
19
|
+
return graph, config
|
20
|
+
|
21
|
+
def test_no_model_provided(make_graph):
|
22
|
+
'''
|
23
|
+
Test the tool by not specifying any model.
|
24
|
+
We are testing a condition where the user
|
25
|
+
asks for annotations of all species without
|
26
|
+
specifying a model.
|
27
|
+
'''
|
28
|
+
app, config = make_graph
|
29
|
+
prompt = "Extract annotations of all species. Call the tool get_annotation."
|
30
|
+
app.invoke({"messages": [HumanMessage(content=prompt)]},
|
31
|
+
config=config
|
32
|
+
)
|
33
|
+
current_state = app.get_state(config)
|
34
|
+
# Assert that the state key model_id is empty.
|
35
|
+
assert current_state.values["model_id"] == []
|
36
|
+
|
37
|
+
def test_specific_species_provided(make_graph):
|
38
|
+
'''
|
39
|
+
Test the tool by providing a specific species name.
|
40
|
+
We are testing a condition where the user asks for annotations
|
41
|
+
of a specific species in a specific model.
|
42
|
+
'''
|
43
|
+
# Test with a valid species name
|
44
|
+
app, config = make_graph
|
45
|
+
prompt = "Extract annotations of species IL6 in model 537."
|
46
|
+
app.invoke(
|
47
|
+
{"messages": [HumanMessage(content=prompt)]},
|
48
|
+
config=config
|
49
|
+
)
|
50
|
+
current_state = app.get_state(config)
|
51
|
+
# print (current_state.values["dic_annotations_data"])
|
52
|
+
dic_annotations_data = current_state.values["dic_annotations_data"]
|
53
|
+
|
54
|
+
# The assert statement checks if IL6 is present in the returned annotations.
|
55
|
+
assert dic_annotations_data[0]['data']["Species Name"][0] == "IL6"
|
56
|
+
|
57
|
+
# Test with an invalid species name
|
58
|
+
app, config = make_graph
|
59
|
+
prompt = "Extract annotations of species NADH in model 537."
|
60
|
+
app.invoke(
|
61
|
+
{"messages": [HumanMessage(content=prompt)]},
|
62
|
+
config=config
|
63
|
+
)
|
64
|
+
current_state = app.get_state(config)
|
65
|
+
reversed_messages = current_state.values["messages"][::-1]
|
66
|
+
# Loop through the reversed messages until a
|
67
|
+
# ToolMessage is found.
|
68
|
+
|
69
|
+
test_condition = False
|
70
|
+
for msg in reversed_messages:
|
71
|
+
# Assert that the one of the messages is a ToolMessage
|
72
|
+
# and its artifact is None.
|
73
|
+
if isinstance(msg, ToolMessage) and msg.name == "get_annotation":
|
74
|
+
#If a ToolMessage exists and artifact is None (meaning no valid annotation was found)
|
75
|
+
#and the rejected species (NADH) is mentioned, the test passes.
|
76
|
+
if msg.artifact is None and 'NADH' in msg.content:
|
77
|
+
#If artifact is None, it means no annotation was found
|
78
|
+
# (likely due to an invalid species).
|
79
|
+
#If artifact contains data, the tool successfully retrieved annotations.
|
80
|
+
test_condition = True
|
81
|
+
break
|
82
|
+
# assert test_condition
|
83
|
+
assert test_condition, "Expected rejection message for NADH but did not find it."
|
84
|
+
|
85
|
+
# Test with an invalid species name and a valid species name
|
86
|
+
app, config = make_graph
|
87
|
+
prompt = "Extract annotations of species NADH, NAD, and IL7 in model 64."
|
88
|
+
app.invoke(
|
89
|
+
{"messages": [HumanMessage(content=prompt)]},
|
90
|
+
config=config
|
91
|
+
)
|
92
|
+
current_state = app.get_state(config)
|
93
|
+
# dic_annotations_data = current_state.values["dic_annotations_data"]
|
94
|
+
reversed_messages = current_state.values["messages"][::-1]
|
95
|
+
# Loop through the reversed messages until a
|
96
|
+
# ToolMessage is found.
|
97
|
+
artifact_was_none = False
|
98
|
+
for msg in reversed_messages:
|
99
|
+
# Assert that the one of the messages is a ToolMessage
|
100
|
+
# and its artifact is None.
|
101
|
+
if isinstance(msg, ToolMessage) and msg.name == "get_annotation":
|
102
|
+
# print (msg.artifact, msg.content)
|
103
|
+
|
104
|
+
if msg.artifact is True and 'IL7' in msg.content:
|
105
|
+
artifact_was_none = True
|
106
|
+
break
|
107
|
+
assert artifact_was_none
|
108
|
+
|
109
|
+
def test_all_species_annotations(make_graph):
|
110
|
+
'''
|
111
|
+
Test the tool by asking for annotations of all species is specific models.
|
112
|
+
Here, we test the tool with three models since they have different use cases:
|
113
|
+
- model 12 contains a species with no URL provided.
|
114
|
+
- model 20 contains a species without description.
|
115
|
+
- model 56 contains a species with database outside of KEGG, UniProt, and OLS.
|
116
|
+
|
117
|
+
We are testing a condition where the user asks for annotations
|
118
|
+
of all species in a specific model.
|
119
|
+
'''
|
120
|
+
# Loop through the models and test the tool
|
121
|
+
# for each model's unique use case.
|
122
|
+
for model_id in [12, 20, 56]:
|
123
|
+
app, config = make_graph
|
124
|
+
prompt = f"Extract annotations of all species model {model_id}."
|
125
|
+
# Test the tool get_modelinfo
|
126
|
+
app.invoke({"messages": [HumanMessage(content=prompt)]},
|
127
|
+
config=config
|
128
|
+
)
|
129
|
+
current_state = app.get_state(config)
|
130
|
+
|
131
|
+
reversed_messages = current_state.values["messages"][::-1]
|
132
|
+
# Coveres all of the use cases for the expecetd sting on all the species
|
133
|
+
test_condition = False
|
134
|
+
for msg in reversed_messages:
|
135
|
+
# Skip messages that are not ToolMessages and those that are not
|
136
|
+
# from the get_annotation tool.
|
137
|
+
if not isinstance(msg, ToolMessage) or msg.name != "get_annotation":
|
138
|
+
continue
|
139
|
+
if model_id == 12:
|
140
|
+
# Extact the first and second description of the LacI protein
|
141
|
+
# We already know that the first or second description is missing ('-')
|
142
|
+
dic_annotations_data = current_state.values["dic_annotations_data"][0]
|
143
|
+
first_descp_laci_protein = dic_annotations_data['data']['Description'][0]
|
144
|
+
second_descp_laci_protein = dic_annotations_data['data']['Description'][1]
|
145
|
+
|
146
|
+
# Expect a successful extraction (artifact is True) and that the content
|
147
|
+
# matches what is returned by prepare_content_msg for species.
|
148
|
+
# And that the first or second description of the LacI protein is missing.
|
149
|
+
if (msg.artifact is True and msg.content == prepare_content_msg([],[])
|
150
|
+
and msg.status=="success" and (first_descp_laci_protein == '-' or
|
151
|
+
second_descp_laci_protein == '-')):
|
152
|
+
test_condition = True
|
153
|
+
break
|
154
|
+
|
155
|
+
if model_id == 20:
|
156
|
+
# Expect an error message containing a note
|
157
|
+
# that species extraction failed.
|
158
|
+
if ("Unable to extract species from the model"
|
159
|
+
in msg.content and msg.status == "error"):
|
160
|
+
test_condition = True
|
161
|
+
break
|
162
|
+
|
163
|
+
if model_id == 56:
|
164
|
+
# Expect a successful extraction (artifact is True) and that the content
|
165
|
+
# matches for for missing description ['ORI'].
|
166
|
+
if (msg.artifact is True and
|
167
|
+
msg.content == prepare_content_msg([],['ORI'])
|
168
|
+
and msg.status == "success"):
|
169
|
+
test_condition = True
|
170
|
+
break
|
171
|
+
assert test_condition # Expected output is validated
|
@@ -0,0 +1,26 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels get_modelinfo tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
from langchain_core.messages import HumanMessage
|
6
|
+
from ..agents.t2b_agent import get_app
|
7
|
+
|
8
|
+
def test_get_modelinfo_tool():
|
9
|
+
'''
|
10
|
+
Test the get_modelinfo tool.
|
11
|
+
'''
|
12
|
+
unique_id = 12345
|
13
|
+
app = get_app(unique_id)
|
14
|
+
config = {"configurable": {"thread_id": unique_id}}
|
15
|
+
# Update state
|
16
|
+
app.update_state(config,
|
17
|
+
{"sbml_file_path": ["aiagents4pharma/talk2biomodels/tests/BIOMD0000000449_url.xml"]})
|
18
|
+
prompt = "Extract all relevant information from the uploaded model."
|
19
|
+
# Test the tool get_modelinfo
|
20
|
+
response = app.invoke(
|
21
|
+
{"messages": [HumanMessage(content=prompt)]},
|
22
|
+
config=config
|
23
|
+
)
|
24
|
+
assistant_msg = response["messages"][-1].content
|
25
|
+
# Check if the assistant message is a string
|
26
|
+
assert isinstance(assistant_msg, str)
|
@@ -0,0 +1,126 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels.
|
3
|
+
'''
|
4
|
+
|
5
|
+
import pandas as pd
|
6
|
+
from langchain_core.messages import HumanMessage, ToolMessage
|
7
|
+
from ..agents.t2b_agent import get_app
|
8
|
+
|
9
|
+
def test_integration():
|
10
|
+
'''
|
11
|
+
Test the integration of the tools.
|
12
|
+
'''
|
13
|
+
unique_id = 1234567
|
14
|
+
app = get_app(unique_id)
|
15
|
+
config = {"configurable": {"thread_id": unique_id}}
|
16
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
17
|
+
# ##########################################
|
18
|
+
# ## Test simulate_model tool
|
19
|
+
# ##########################################
|
20
|
+
prompt = '''Simulate the model 537 for 100 hours and intervals
|
21
|
+
100 with an initial concentration of `DoseQ2W`
|
22
|
+
set to 300 and `Dose` set to 0. Reset the concentration
|
23
|
+
of `Ab{serum}` to 100 every 25 hours.'''
|
24
|
+
# Test the tool get_modelinfo
|
25
|
+
response = app.invoke(
|
26
|
+
{"messages": [HumanMessage(content=prompt)]},
|
27
|
+
config=config
|
28
|
+
)
|
29
|
+
assistant_msg = response["messages"][-1].content
|
30
|
+
print (assistant_msg)
|
31
|
+
# Check if the assistant message is a string
|
32
|
+
assert isinstance(assistant_msg, str)
|
33
|
+
##########################################
|
34
|
+
# Test ask_question tool when simulation
|
35
|
+
# results are available
|
36
|
+
##########################################
|
37
|
+
# Update state
|
38
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
39
|
+
prompt = """What is the concentration of CRP in serum after 100 hours?
|
40
|
+
Round off the value to 2 decimal places."""
|
41
|
+
# Test the tool get_modelinfo
|
42
|
+
response = app.invoke(
|
43
|
+
{"messages": [HumanMessage(content=prompt)]},
|
44
|
+
config=config
|
45
|
+
)
|
46
|
+
assistant_msg = response["messages"][-1].content
|
47
|
+
# print (assistant_msg)
|
48
|
+
# Check if the assistant message is a string
|
49
|
+
assert '211' in assistant_msg
|
50
|
+
|
51
|
+
##########################################
|
52
|
+
# Test custom_plotter tool when the
|
53
|
+
# simulation results are available
|
54
|
+
##########################################
|
55
|
+
prompt = "Plot only CRP related species."
|
56
|
+
|
57
|
+
# Update state
|
58
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"}
|
59
|
+
)
|
60
|
+
# Test the tool get_modelinfo
|
61
|
+
response = app.invoke(
|
62
|
+
{"messages": [HumanMessage(content=prompt)]},
|
63
|
+
config=config
|
64
|
+
)
|
65
|
+
assistant_msg = response["messages"][-1].content
|
66
|
+
current_state = app.get_state(config)
|
67
|
+
# Get the messages from the current state
|
68
|
+
# and reverse the order
|
69
|
+
reversed_messages = current_state.values["messages"][::-1]
|
70
|
+
# Loop through the reversed messages
|
71
|
+
# until a ToolMessage is found.
|
72
|
+
expected_header = ['Time', 'CRP{serum}', 'CRPExtracellular']
|
73
|
+
expected_header += ['CRP Suppression (%)', 'CRP (% of baseline)']
|
74
|
+
expected_header += ['CRP{liver}']
|
75
|
+
predicted_artifact = []
|
76
|
+
for msg in reversed_messages:
|
77
|
+
if isinstance(msg, ToolMessage):
|
78
|
+
# Work on the message if it is a ToolMessage
|
79
|
+
# These may contain additional visuals that
|
80
|
+
# need to be displayed to the user.
|
81
|
+
if msg.name == "custom_plotter":
|
82
|
+
predicted_artifact = msg.artifact
|
83
|
+
break
|
84
|
+
# Convert the artifact into a pandas dataframe
|
85
|
+
# for easy comparison
|
86
|
+
df = pd.DataFrame(predicted_artifact)
|
87
|
+
# Extract the headers from the dataframe
|
88
|
+
predicted_header = df.columns.tolist()
|
89
|
+
# Check if the header is in the expected_header
|
90
|
+
# assert expected_header in predicted_artifact
|
91
|
+
assert set(expected_header).issubset(set(predicted_header))
|
92
|
+
##########################################
|
93
|
+
# Test custom_plotter tool when the
|
94
|
+
# simulation results are available but
|
95
|
+
# the species is not available
|
96
|
+
##########################################
|
97
|
+
prompt = """Make a custom plot showing the
|
98
|
+
concentration of the species `TP53` over
|
99
|
+
time. Do not show any other species."""
|
100
|
+
# Update state
|
101
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"}
|
102
|
+
)
|
103
|
+
# Test the tool get_modelinfo
|
104
|
+
response = app.invoke(
|
105
|
+
{"messages": [HumanMessage(content=prompt)]},
|
106
|
+
config=config
|
107
|
+
)
|
108
|
+
assistant_msg = response["messages"][-1].content
|
109
|
+
# print (response["messages"])
|
110
|
+
current_state = app.get_state(config)
|
111
|
+
# Get the messages from the current state
|
112
|
+
# and reverse the order
|
113
|
+
reversed_messages = current_state.values["messages"][::-1]
|
114
|
+
# Loop through the reversed messages until a
|
115
|
+
# ToolMessage is found.
|
116
|
+
predicted_artifact = []
|
117
|
+
for msg in reversed_messages:
|
118
|
+
if isinstance(msg, ToolMessage):
|
119
|
+
# Work on the message if it is a ToolMessage
|
120
|
+
# These may contain additional visuals that
|
121
|
+
# need to be displayed to the user.
|
122
|
+
if msg.name == "custom_plotter":
|
123
|
+
predicted_artifact = msg.artifact
|
124
|
+
break
|
125
|
+
# Check if the the predicted artifact is `None`
|
126
|
+
assert predicted_artifact is None
|
@@ -0,0 +1,68 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels parameter scan tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
import pandas as pd
|
6
|
+
from langchain_core.messages import HumanMessage, ToolMessage
|
7
|
+
from ..agents.t2b_agent import get_app
|
8
|
+
|
9
|
+
def test_param_scan_tool():
|
10
|
+
'''
|
11
|
+
In this test, we will test the parameter_scan tool.
|
12
|
+
We will prompt it to scan the parameter `kIL6RBind`
|
13
|
+
from 1 to 100 in steps of 10, record the changes
|
14
|
+
in the concentration of the species `Ab{serum}` in
|
15
|
+
model 537.
|
16
|
+
|
17
|
+
We will pass the inaccuarate parameter (`KIL6Rbind`)
|
18
|
+
and species names (just `Ab`) to the tool to test
|
19
|
+
if it can deal with it.
|
20
|
+
|
21
|
+
We expect the agent to first invoke the parameter_scan
|
22
|
+
tool and raise an error. It will then invoke another
|
23
|
+
tool get_modelinfo to get the correct parameter
|
24
|
+
and species names. Finally, the agent will reinvoke
|
25
|
+
the parameter_scan tool with the correct parameter
|
26
|
+
and species names.
|
27
|
+
|
28
|
+
'''
|
29
|
+
unique_id = 1234
|
30
|
+
app = get_app(unique_id)
|
31
|
+
config = {"configurable": {"thread_id": unique_id}}
|
32
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
33
|
+
prompt = """How will the value of Ab in serum in model 537 change
|
34
|
+
if the param kIL6Rbind is varied from 1 to 100 in steps of 10?
|
35
|
+
Set the initial `DoseQ2W` concentration to 300. Assume
|
36
|
+
that the model is simulated for 2016 hours with an interval of 50."""
|
37
|
+
# Invoke the agent
|
38
|
+
app.invoke(
|
39
|
+
{"messages": [HumanMessage(content=prompt)]},
|
40
|
+
config=config
|
41
|
+
)
|
42
|
+
current_state = app.get_state(config)
|
43
|
+
reversed_messages = current_state.values["messages"][::-1]
|
44
|
+
# Loop through the reversed messages until a
|
45
|
+
# ToolMessage is found.
|
46
|
+
df = pd.DataFrame(columns=['name', 'status', 'content'])
|
47
|
+
names = []
|
48
|
+
statuses = []
|
49
|
+
contents = []
|
50
|
+
for msg in reversed_messages:
|
51
|
+
# Assert that the message is a ToolMessage
|
52
|
+
# and its status is "error"
|
53
|
+
if not isinstance(msg, ToolMessage):
|
54
|
+
continue
|
55
|
+
names.append(msg.name)
|
56
|
+
statuses.append(msg.status)
|
57
|
+
contents.append(msg.content)
|
58
|
+
df = pd.DataFrame({'name': names, 'status': statuses, 'content': contents})
|
59
|
+
# print (df)
|
60
|
+
assert any((df["status"] == "error") &
|
61
|
+
(df["name"] == "parameter_scan") &
|
62
|
+
(df["content"].str.startswith(
|
63
|
+
"Error: ValueError('Invalid species or parameter name:")))
|
64
|
+
assert any((df["status"] == "success") &
|
65
|
+
(df["name"] == "parameter_scan") &
|
66
|
+
(df["content"].str.startswith("Parameter scan results of")))
|
67
|
+
assert any((df["status"] == "success") &
|
68
|
+
(df["name"] == "get_modelinfo"))
|
@@ -0,0 +1,76 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels query_article tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
from pydantic import BaseModel, Field
|
6
|
+
from langchain_core.messages import HumanMessage, ToolMessage
|
7
|
+
from langchain_openai import ChatOpenAI
|
8
|
+
from ..agents.t2b_agent import get_app
|
9
|
+
|
10
|
+
class Article(BaseModel):
|
11
|
+
'''
|
12
|
+
Article schema.
|
13
|
+
'''
|
14
|
+
title: str = Field(description="Title of the article.")
|
15
|
+
|
16
|
+
def test_query_article_with_an_article():
|
17
|
+
'''
|
18
|
+
Test the query_article tool by providing an article.
|
19
|
+
'''
|
20
|
+
unique_id = 12345
|
21
|
+
app = get_app(unique_id)
|
22
|
+
config = {"configurable": {"thread_id": unique_id}}
|
23
|
+
# Update state by providing the pdf file name
|
24
|
+
app.update_state(config,
|
25
|
+
{"pdf_file_name": "aiagents4pharma/talk2biomodels/tests/article_on_model_537.pdf"})
|
26
|
+
prompt = "What is the title of the article?"
|
27
|
+
# Test the tool query_article
|
28
|
+
response = app.invoke(
|
29
|
+
{"messages": [HumanMessage(content=prompt)]},
|
30
|
+
config=config
|
31
|
+
)
|
32
|
+
# Get the response from the tool
|
33
|
+
assistant_msg = response["messages"][-1].content
|
34
|
+
# Prepare a LLM that can be used as a judge
|
35
|
+
llm = ChatOpenAI(model='gpt-4o-mini', temperature=0)
|
36
|
+
# Make it return a structured output
|
37
|
+
structured_llm = llm.with_structured_output(Article)
|
38
|
+
# Prepare a prompt for the judge
|
39
|
+
prompt = "Given the text below, what is the title of the article?"
|
40
|
+
prompt += f"\n\n{assistant_msg}"
|
41
|
+
# Get the structured output
|
42
|
+
article = structured_llm.invoke(prompt)
|
43
|
+
# Check if the article title is correct
|
44
|
+
expected_title = "A Multiscale Model of IL-6–Mediated "
|
45
|
+
expected_title += "Immune Regulation in Crohn’s Disease"
|
46
|
+
# Check if the article title is correct
|
47
|
+
assert article.title == expected_title
|
48
|
+
|
49
|
+
def test_query_article_without_an_article():
|
50
|
+
'''
|
51
|
+
Test the query_article tool without providing an article.
|
52
|
+
The status of the tool should be error.
|
53
|
+
'''
|
54
|
+
unique_id = 12345
|
55
|
+
app = get_app(unique_id)
|
56
|
+
config = {"configurable": {"thread_id": unique_id}}
|
57
|
+
prompt = "What is the title of the uploaded article?"
|
58
|
+
# Test the tool query_article
|
59
|
+
app.invoke(
|
60
|
+
{"messages": [HumanMessage(content=prompt)]},
|
61
|
+
config=config
|
62
|
+
)
|
63
|
+
current_state = app.get_state(config)
|
64
|
+
# Get the messages from the current state
|
65
|
+
# and reverse the order
|
66
|
+
reversed_messages = current_state.values["messages"][::-1]
|
67
|
+
# Loop through the reversed messages
|
68
|
+
# until a ToolMessage is found.
|
69
|
+
tool_status_is_error = False
|
70
|
+
for msg in reversed_messages:
|
71
|
+
if isinstance(msg, ToolMessage):
|
72
|
+
# Skip until it finds a ToolMessage
|
73
|
+
if msg.name == "query_article" and msg.status == "error":
|
74
|
+
tool_status_is_error = True
|
75
|
+
break
|
76
|
+
assert tool_status_is_error
|
@@ -0,0 +1,28 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels search models tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
from langchain_core.messages import HumanMessage
|
6
|
+
from ..agents.t2b_agent import get_app
|
7
|
+
|
8
|
+
def test_search_models_tool():
|
9
|
+
'''
|
10
|
+
Test the search_models tool.
|
11
|
+
'''
|
12
|
+
unique_id = 12345
|
13
|
+
app = get_app(unique_id)
|
14
|
+
config = {"configurable": {"thread_id": unique_id}}
|
15
|
+
# Update state
|
16
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
17
|
+
prompt = "Search for models on Crohn's disease."
|
18
|
+
# Test the tool get_modelinfo
|
19
|
+
response = app.invoke(
|
20
|
+
{"messages": [HumanMessage(content=prompt)]},
|
21
|
+
config=config
|
22
|
+
)
|
23
|
+
assistant_msg = response["messages"][-1].content
|
24
|
+
# Check if the assistant message is a string
|
25
|
+
assert isinstance(assistant_msg, str)
|
26
|
+
# Check if the assistant message contains the
|
27
|
+
# biomodel id BIO0000000537
|
28
|
+
assert "BIOMD0000000537" in assistant_msg
|
@@ -0,0 +1,39 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels.
|
3
|
+
'''
|
4
|
+
|
5
|
+
from langchain_core.messages import HumanMessage
|
6
|
+
from ..agents.t2b_agent import get_app
|
7
|
+
|
8
|
+
def test_simulate_model_tool():
|
9
|
+
'''
|
10
|
+
Test the simulate_model tool when simulating
|
11
|
+
multiple models.
|
12
|
+
'''
|
13
|
+
unique_id = 123
|
14
|
+
app = get_app(unique_id)
|
15
|
+
config = {"configurable": {"thread_id": unique_id}}
|
16
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
17
|
+
# Upload a model to the state
|
18
|
+
app.update_state(config,
|
19
|
+
{"sbml_file_path": ["aiagents4pharma/talk2biomodels/tests/BIOMD0000000449_url.xml"]})
|
20
|
+
prompt = "Simulate model 64 and the uploaded model"
|
21
|
+
# Invoke the agent
|
22
|
+
app.invoke(
|
23
|
+
{"messages": [HumanMessage(content=prompt)]},
|
24
|
+
config=config
|
25
|
+
)
|
26
|
+
current_state = app.get_state(config)
|
27
|
+
dic_simulated_data = current_state.values["dic_simulated_data"]
|
28
|
+
# Check if the dic_simulated_data is a list
|
29
|
+
assert isinstance(dic_simulated_data, list)
|
30
|
+
# Check if the length of the dic_simulated_data is 2
|
31
|
+
assert len(dic_simulated_data) == 2
|
32
|
+
# Check if the source of the first model is 64
|
33
|
+
assert dic_simulated_data[0]['source'] == 64
|
34
|
+
# Check if the source of the second model is upload
|
35
|
+
assert dic_simulated_data[1]['source'] == "upload"
|
36
|
+
# Check if the data of the first model contains
|
37
|
+
assert '1,3-bisphosphoglycerate' in dic_simulated_data[0]['data']
|
38
|
+
# Check if the data of the second model contains
|
39
|
+
assert 'mTORC2' in dic_simulated_data[1]['data']
|
@@ -0,0 +1,90 @@
|
|
1
|
+
'''
|
2
|
+
Test cases for Talk2Biomodels steady state tool.
|
3
|
+
'''
|
4
|
+
|
5
|
+
from langchain_core.messages import HumanMessage, ToolMessage
|
6
|
+
from ..agents.t2b_agent import get_app
|
7
|
+
|
8
|
+
def test_steady_state_tool():
|
9
|
+
'''
|
10
|
+
Test the steady_state tool.
|
11
|
+
'''
|
12
|
+
unique_id = 123
|
13
|
+
app = get_app(unique_id)
|
14
|
+
config = {"configurable": {"thread_id": unique_id}}
|
15
|
+
app.update_state(config, {"llm_model": "gpt-4o-mini"})
|
16
|
+
#########################################################
|
17
|
+
# In this case, we will test if the tool returns an error
|
18
|
+
# when the model does not achieve a steady state. The tool
|
19
|
+
# status should be "error".
|
20
|
+
prompt = """Run a steady state analysis of model 537."""
|
21
|
+
# Invoke the agent
|
22
|
+
app.invoke(
|
23
|
+
{"messages": [HumanMessage(content=prompt)]},
|
24
|
+
config=config
|
25
|
+
)
|
26
|
+
current_state = app.get_state(config)
|
27
|
+
reversed_messages = current_state.values["messages"][::-1]
|
28
|
+
tool_msg_status = None
|
29
|
+
for msg in reversed_messages:
|
30
|
+
# Assert that the status of the
|
31
|
+
# ToolMessage is "error"
|
32
|
+
if isinstance(msg, ToolMessage):
|
33
|
+
# print (msg)
|
34
|
+
tool_msg_status = msg.status
|
35
|
+
break
|
36
|
+
assert tool_msg_status == "error"
|
37
|
+
#########################################################
|
38
|
+
# In this case, we will test if the tool is indeed invoked
|
39
|
+
# successfully
|
40
|
+
prompt = """Run a steady state analysis of model 64.
|
41
|
+
Set the initial concentration of `Pyruvate` to 0.2. The
|
42
|
+
concentration of `NAD` resets to 100 every 2 time units."""
|
43
|
+
# Invoke the agent
|
44
|
+
app.invoke(
|
45
|
+
{"messages": [HumanMessage(content=prompt)]},
|
46
|
+
config=config
|
47
|
+
)
|
48
|
+
# Loop through the reversed messages until a
|
49
|
+
# ToolMessage is found.
|
50
|
+
current_state = app.get_state(config)
|
51
|
+
reversed_messages = current_state.values["messages"][::-1]
|
52
|
+
steady_state_invoked = False
|
53
|
+
for msg in reversed_messages:
|
54
|
+
# Assert that the message is a ToolMessage
|
55
|
+
# and its status is "error"
|
56
|
+
if isinstance(msg, ToolMessage):
|
57
|
+
print (msg)
|
58
|
+
if msg.name == "steady_state" and msg.status != "error":
|
59
|
+
steady_state_invoked = True
|
60
|
+
break
|
61
|
+
assert steady_state_invoked
|
62
|
+
#########################################################
|
63
|
+
# In this case, we will test if the `ask_question` tool is
|
64
|
+
# invoked upon asking a question about the already generated
|
65
|
+
# steady state results
|
66
|
+
prompt = """What is the Phosphoenolpyruvate concentration
|
67
|
+
at the steady state? Show only the concentration, rounded
|
68
|
+
to 2 decimal places. For example, if the concentration is
|
69
|
+
0.123456, your response should be `0.12`. Do not return
|
70
|
+
any other information."""
|
71
|
+
# Invoke the agent
|
72
|
+
response = app.invoke(
|
73
|
+
{"messages": [HumanMessage(content=prompt)]},
|
74
|
+
config=config
|
75
|
+
)
|
76
|
+
assistant_msg = response["messages"][-1].content
|
77
|
+
current_state = app.get_state(config)
|
78
|
+
reversed_messages = current_state.values["messages"][::-1]
|
79
|
+
# Loop through the reversed messages until a
|
80
|
+
# ToolMessage is found.
|
81
|
+
ask_questool_invoked = False
|
82
|
+
for msg in reversed_messages:
|
83
|
+
# Assert that the message is a ToolMessage
|
84
|
+
# and its status is "error"
|
85
|
+
if isinstance(msg, ToolMessage):
|
86
|
+
if msg.name == "ask_question":
|
87
|
+
ask_questool_invoked = True
|
88
|
+
break
|
89
|
+
assert ask_questool_invoked
|
90
|
+
assert "0.06" in assistant_msg
|