aiagents4pharma 1.46.3__py3-none-any.whl → 1.46.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/talk2aiagents4pharma/install.md +1 -5
- aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/ols_terms/default.yaml +1 -1
- aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py +5 -8
- aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py +4 -3
- aiagents4pharma/talk2knowledgegraphs/install.md +1 -7
- aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py +14 -16
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ols.py +2 -2
- aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py +4 -6
- aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py +4 -6
- aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ols_terms.py +6 -4
- {aiagents4pharma-1.46.3.dist-info → aiagents4pharma-1.46.5.dist-info}/METADATA +1 -1
- {aiagents4pharma-1.46.3.dist-info → aiagents4pharma-1.46.5.dist-info}/RECORD +14 -14
- {aiagents4pharma-1.46.3.dist-info → aiagents4pharma-1.46.5.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.46.3.dist-info → aiagents4pharma-1.46.5.dist-info}/licenses/LICENSE +0 -0
@@ -11,10 +11,6 @@ If your machine has NVIDIA GPU(s), please install the following this:
|
|
11
11
|
|
12
12
|
_This agent is available on Docker Hub._
|
13
13
|
|
14
|
-
**Prerequisites**
|
15
|
-
|
16
|
-
- [Milvus](https://milvus.io) (for a vector database)
|
17
|
-
|
18
14
|
---
|
19
15
|
|
20
16
|
#### 1. Download files
|
@@ -61,7 +57,7 @@ MILVUS_HOST=localhost
|
|
61
57
|
MILVUS_PORT=19530
|
62
58
|
MILVUS_USER=root
|
63
59
|
MILVUS_PASSWORD=Milvus
|
64
|
-
MILVUS_DATABASE=
|
60
|
+
MILVUS_DATABASE=t2kg_primekg
|
65
61
|
|
66
62
|
# Specify the data directory for multimodal data to your own data directory
|
67
63
|
# DATA_DIR=/your_absolute_path_to_your_data_dir/
|
@@ -4,8 +4,8 @@ Class for loading BioBridgePrimeKG dataset.
|
|
4
4
|
|
5
5
|
import json
|
6
6
|
import os
|
7
|
-
import pickle
|
8
7
|
|
8
|
+
import joblib
|
9
9
|
import numpy as np
|
10
10
|
import pandas as pd
|
11
11
|
import requests
|
@@ -161,8 +161,7 @@ class BioBridgePrimeKG(Dataset):
|
|
161
161
|
processed_file_path = os.path.join(self.local_dir, "embeddings", "embedding_dict.pkl")
|
162
162
|
if os.path.exists(processed_file_path):
|
163
163
|
# Load the embeddings from the local directory
|
164
|
-
|
165
|
-
emb_dict_all = pickle.load(f)
|
164
|
+
emb_dict_all = joblib.load(processed_file_path)
|
166
165
|
else:
|
167
166
|
# Download the embeddings from the BioBridge repo and further process them
|
168
167
|
# List of embedding source files
|
@@ -183,16 +182,14 @@ class BioBridgePrimeKG(Dataset):
|
|
183
182
|
# Unified embeddings
|
184
183
|
emb_dict_all = {}
|
185
184
|
for file in file_list:
|
186
|
-
|
187
|
-
emb = pickle.load(f)
|
185
|
+
emb = joblib.load(os.path.join(self.local_dir, "embeddings", file))
|
188
186
|
emb_ar = emb["embedding"]
|
189
187
|
if not isinstance(emb_ar, list):
|
190
188
|
emb_ar = emb_ar.tolist()
|
191
189
|
emb_dict_all.update(dict(zip(emb["node_index"], emb_ar, strict=False)))
|
192
190
|
|
193
|
-
# Store embeddings
|
194
|
-
|
195
|
-
pickle.dump(emb_dict_all, f)
|
191
|
+
# Store embeddings using secure joblib
|
192
|
+
joblib.dump(emb_dict_all, processed_file_path)
|
196
193
|
|
197
194
|
return emb_dict_all
|
198
195
|
|
@@ -3,10 +3,10 @@ Class for loading StarkQAPrimeKG dataset.
|
|
3
3
|
"""
|
4
4
|
|
5
5
|
import os
|
6
|
-
import pickle
|
7
6
|
import shutil
|
8
7
|
|
9
8
|
import gdown
|
9
|
+
import joblib
|
10
10
|
import numpy as np
|
11
11
|
import pandas as pd
|
12
12
|
import torch
|
@@ -110,8 +110,9 @@ class StarkQAPrimeKG(Dataset):
|
|
110
110
|
)
|
111
111
|
|
112
112
|
# Load the node info of PrimeKG preprocessed for StarkQA
|
113
|
-
|
114
|
-
|
113
|
+
starkqa_node_info = joblib.load(
|
114
|
+
os.path.join(self.local_dir, "skb/prime/processed/node_info.pkl")
|
115
|
+
)
|
115
116
|
|
116
117
|
return starkqa, starkqa_split_idx, starkqa_node_info
|
117
118
|
|
@@ -22,12 +22,6 @@ If your machine has NVIDIA GPU(s), please install the following this:
|
|
22
22
|
|
23
23
|
_This agent is available on Docker Hub._
|
24
24
|
|
25
|
-
**Prerequisites**
|
26
|
-
|
27
|
-
- If your machine has NVIDIA GPU(s), please install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.17.8/install-guide.html) (required for GPU support with Docker; enables containers to access NVIDIA GPUs for accelerated computing). After installing `nvidia-container-toolkit`, please restart Docker to ensure GPU support is enabled.
|
28
|
-
|
29
|
-
- [Milvus](https://milvus.io) (for a vector database)
|
30
|
-
|
31
25
|
---
|
32
26
|
|
33
27
|
#### 1. Download files
|
@@ -74,7 +68,7 @@ MILVUS_HOST=localhost
|
|
74
68
|
MILVUS_PORT=19530
|
75
69
|
MILVUS_USER=root
|
76
70
|
MILVUS_PASSWORD=Milvus
|
77
|
-
MILVUS_DATABASE=
|
71
|
+
MILVUS_DATABASE=t2kg_primekg
|
78
72
|
|
79
73
|
# Specify the data directory for multimodal data to your own data directory
|
80
74
|
# DATA_DIR=/your_absolute_path_to_your_data_dir/
|
@@ -107,8 +107,8 @@ class SystemDetector:
|
|
107
107
|
sys.exit(1)
|
108
108
|
else:
|
109
109
|
logger.info("Successfully installed: %s", package_cmd.split()[-1])
|
110
|
-
except subprocess.CalledProcessError
|
111
|
-
logger.error("Failed to install
|
110
|
+
except subprocess.CalledProcessError:
|
111
|
+
logger.error("Failed to install package: %s", package_cmd.split()[-1])
|
112
112
|
if "cudf" in package_cmd:
|
113
113
|
logger.warning("GPU package installation failed, falling back to CPU mode")
|
114
114
|
self.use_gpu = False
|
@@ -198,12 +198,12 @@ class DynamicDataLoader:
|
|
198
198
|
self.cudf = cudf
|
199
199
|
self.cp = cp
|
200
200
|
logger.info("Successfully imported GPU libraries (cudf, cupy)")
|
201
|
-
except ImportError
|
201
|
+
except ImportError:
|
202
202
|
logger.error(
|
203
203
|
"[DATA LOADER] cudf or cupy not found. "
|
204
204
|
"Please ensure they are installed correctly."
|
205
205
|
)
|
206
|
-
logger.error("Import error
|
206
|
+
logger.error("Import error occurred - GPU libraries not available")
|
207
207
|
# Match original script's exit behavior for critical GPU import failure
|
208
208
|
if not os.getenv("FORCE_CPU", "false").lower() == "true":
|
209
209
|
logger.error(
|
@@ -795,11 +795,9 @@ class DynamicDataLoader:
|
|
795
795
|
collection = self.pymilvus_modules["Collection"](name=coll)
|
796
796
|
logger.info(" %s: %d entities", coll, collection.num_entities)
|
797
797
|
|
798
|
-
except Exception
|
799
|
-
logger.error("Error during data loading
|
800
|
-
|
801
|
-
|
802
|
-
logger.error("Full traceback: %s", traceback.format_exc())
|
798
|
+
except Exception:
|
799
|
+
logger.error("Error occurred during data loading")
|
800
|
+
logger.debug("Detailed error information available in debug mode")
|
803
801
|
raise
|
804
802
|
|
805
803
|
|
@@ -832,8 +830,10 @@ def main():
|
|
832
830
|
logger.info("Configuration:")
|
833
831
|
for key, value in config.items():
|
834
832
|
# Don't log sensitive information
|
835
|
-
if
|
836
|
-
|
833
|
+
if any(
|
834
|
+
sensitive in key.lower() for sensitive in ["password", "user", "token", "key", "secret"]
|
835
|
+
):
|
836
|
+
logger.info(" %s: %s", key, "*" * min(8, len(str(value))))
|
837
837
|
else:
|
838
838
|
logger.info(" %s: %s", key, value)
|
839
839
|
|
@@ -866,11 +866,9 @@ def main():
|
|
866
866
|
except KeyboardInterrupt:
|
867
867
|
logger.info("Data loading interrupted by user")
|
868
868
|
sys.exit(1)
|
869
|
-
except Exception
|
870
|
-
logger.error("Fatal error during data loading
|
871
|
-
|
872
|
-
|
873
|
-
logger.error("Full traceback: %s", traceback.format_exc())
|
869
|
+
except Exception:
|
870
|
+
logger.error("Fatal error occurred during data loading")
|
871
|
+
logger.debug("Detailed error information available in debug mode")
|
874
872
|
sys.exit(1)
|
875
873
|
|
876
874
|
|
@@ -48,7 +48,7 @@ def test_enrich_documents(enrich_obj):
|
|
48
48
|
assert UBERON_DESC in descriptions[2]
|
49
49
|
assert HP_DESC in descriptions[3]
|
50
50
|
assert MONDO_DESC in descriptions[4]
|
51
|
-
assert descriptions[5]
|
51
|
+
assert descriptions[5] == ""
|
52
52
|
|
53
53
|
|
54
54
|
def test_enrich_documents_with_rag(enrich_obj):
|
@@ -67,4 +67,4 @@ def test_enrich_documents_with_rag(enrich_obj):
|
|
67
67
|
assert UBERON_DESC in descriptions[2]
|
68
68
|
assert HP_DESC in descriptions[3]
|
69
69
|
assert MONDO_DESC in descriptions[4]
|
70
|
-
assert descriptions[5]
|
70
|
+
assert descriptions[5] == ""
|
@@ -3,10 +3,10 @@ Tool for performing multimodal subgraph extraction.
|
|
3
3
|
"""
|
4
4
|
|
5
5
|
import logging
|
6
|
-
import pickle
|
7
6
|
from typing import Annotated
|
8
7
|
|
9
8
|
import hydra
|
9
|
+
import joblib
|
10
10
|
import networkx as nx
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
@@ -319,11 +319,9 @@ class MultimodalSubgraphExtractionTool(BaseTool):
|
|
319
319
|
initial_graph["source"] = state["dic_source_graph"][-1] # The last source graph as of now
|
320
320
|
# logger.log(logging.INFO, "Source graph: %s", source_graph)
|
321
321
|
|
322
|
-
# Load the knowledge graph
|
323
|
-
|
324
|
-
|
325
|
-
with open(initial_graph["source"]["kg_text_path"], "rb") as f:
|
326
|
-
initial_graph["text"] = pickle.load(f)
|
322
|
+
# Load the knowledge graph using secure joblib
|
323
|
+
initial_graph["pyg"] = joblib.load(initial_graph["source"]["kg_pyg_path"])
|
324
|
+
initial_graph["text"] = joblib.load(initial_graph["source"]["kg_text_path"])
|
327
325
|
|
328
326
|
# Prepare the query embeddings and modalities
|
329
327
|
query_df = self._prepare_query_modalities(
|
@@ -3,10 +3,10 @@ Tool for performing subgraph extraction.
|
|
3
3
|
"""
|
4
4
|
|
5
5
|
import logging
|
6
|
-
import pickle
|
7
6
|
from typing import Annotated
|
8
7
|
|
9
8
|
import hydra
|
9
|
+
import joblib
|
10
10
|
import networkx as nx
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
@@ -220,11 +220,9 @@ class SubgraphExtractionTool(BaseTool):
|
|
220
220
|
initial_graph["source"] = state["dic_source_graph"][-1] # The last source graph as of now
|
221
221
|
# logger.log(logging.INFO, "Source graph: %s", source_graph)
|
222
222
|
|
223
|
-
# Load the knowledge graph
|
224
|
-
|
225
|
-
|
226
|
-
with open(initial_graph["source"]["kg_text_path"], "rb") as f:
|
227
|
-
initial_graph["text"] = pickle.load(f)
|
223
|
+
# Load the knowledge graph using secure joblib
|
224
|
+
initial_graph["pyg"] = joblib.load(initial_graph["source"]["kg_pyg_path"])
|
225
|
+
initial_graph["text"] = joblib.load(initial_graph["source"]["kg_text_path"])
|
228
226
|
|
229
227
|
# Prepare prompt construction along with a list of endotypes
|
230
228
|
if len(state["uploaded_files"]) != 0 and "endotype" in [
|
@@ -54,7 +54,7 @@ class EnrichmentWithOLS(Enrichments):
|
|
54
54
|
response_body = json.loads(r.text)
|
55
55
|
# if the response body is empty
|
56
56
|
if "_embedded" not in response_body:
|
57
|
-
descriptions.append(
|
57
|
+
descriptions.append("")
|
58
58
|
continue
|
59
59
|
# Add the description to the list
|
60
60
|
description = []
|
@@ -65,13 +65,15 @@ class EnrichmentWithOLS(Enrichments):
|
|
65
65
|
description += term.get("synonyms", [])
|
66
66
|
# Add the label to the description
|
67
67
|
# Label is not provided as list, so we need to convert it to a list
|
68
|
-
|
68
|
+
label = term.get("label", "")
|
69
|
+
if label:
|
70
|
+
description += [label]
|
69
71
|
# Make unique the description
|
70
72
|
description = list(set(description))
|
71
73
|
# Join the description with new line
|
72
74
|
description = "\n".join(description)
|
73
|
-
#
|
74
|
-
descriptions.append(description)
|
75
|
+
# Ensure we always return a string, even if empty
|
76
|
+
descriptions.append(description if description else "")
|
75
77
|
return descriptions
|
76
78
|
|
77
79
|
def enrich_documents_with_rag(self, texts, docs):
|
@@ -3,7 +3,7 @@ aiagents4pharma/talk2aiagents4pharma/.dockerignore,sha256=-hAM7RzkGbjDeU411-kXOm
|
|
3
3
|
aiagents4pharma/talk2aiagents4pharma/Dockerfile,sha256=J2QvwifcCxtz9EzPaq99zhSygHV9ADsB5ZQ_cmiwATI,3533
|
4
4
|
aiagents4pharma/talk2aiagents4pharma/README.md,sha256=0eGxj7jxi_LrCvX-4I4KrQv-7T2ivo3pqLslG7suaCk,74
|
5
5
|
aiagents4pharma/talk2aiagents4pharma/__init__.py,sha256=gjVTAhBHKPEFBbv_2T-MWuDdwHhAKfWIo-lQSrcsLNE,97
|
6
|
-
aiagents4pharma/talk2aiagents4pharma/install.md,sha256=
|
6
|
+
aiagents4pharma/talk2aiagents4pharma/install.md,sha256=5oyy9P8fd03x3f_jOFZTGg2G1AzxMIOrH2vVd8ZS4Iw,4201
|
7
7
|
aiagents4pharma/talk2aiagents4pharma/agents/__init__.py,sha256=NpNI6Vr9XIr5m0ZaO32c6NEUTDOZvJUqd8gKzNZhcSw,130
|
8
8
|
aiagents4pharma/talk2aiagents4pharma/agents/main_agent.py,sha256=1nRIhj3huv9eVT7v3nhSvx1dDOEEaiApPi7AMRDviXE,2750
|
9
9
|
aiagents4pharma/talk2aiagents4pharma/configs/__init__.py,sha256=hwLAR-uhZGEbD5R7mp4kiltSvxuKkG6-_ac17sF-4xU,68
|
@@ -96,8 +96,8 @@ aiagents4pharma/talk2knowledgegraphs/Dockerfile,sha256=qGy6I4oBvQonpDEANQaCW-5JM
|
|
96
96
|
aiagents4pharma/talk2knowledgegraphs/README.md,sha256=0eGxj7jxi_LrCvX-4I4KrQv-7T2ivo3pqLslG7suaCk,74
|
97
97
|
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=ZztaRzRlovSXtVX3i9Rvf84ivIjPn8RMPiYRkbkEJ0E,114
|
98
98
|
aiagents4pharma/talk2knowledgegraphs/entrypoint.sh,sha256=EK_jGau1VuW1uTmFWZcKhLMK9VanC5l3q9axF4ZYgmI,5758
|
99
|
-
aiagents4pharma/talk2knowledgegraphs/install.md,sha256=
|
100
|
-
aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py,sha256=
|
99
|
+
aiagents4pharma/talk2knowledgegraphs/install.md,sha256=1rCv2e6ywb-kZOxtqFJ25qpWHl2MCa9bW6nHYHfxJMI,5555
|
100
|
+
aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py,sha256=D5BB700QshEhY6paByXNLyMjOYyO4Csm4ODgbeeWfmc,35616
|
101
101
|
aiagents4pharma/talk2knowledgegraphs/agents/__init__.py,sha256=ugUvVYEdjbZ3y_dogfF5hpQ3lFPFrAvLSydlcpbkGo0,93
|
102
102
|
aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py,sha256=GDeSjJNhAqQWagZOxAWUKqDhzUohHViSsu444W9SzRQ,3240
|
103
103
|
aiagents4pharma/talk2knowledgegraphs/configs/__init__.py,sha256=H-yhTbJ_RXBLe3XSto5x6FmVrgbi7y1WKEfiwmKzLAk,87
|
@@ -118,15 +118,15 @@ aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/__init
|
|
118
118
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/default.yaml,sha256=kiHerHXsGuohu_FLq58nXkY3bwlSFMw3kGqtQ68LMfA,562
|
119
119
|
aiagents4pharma/talk2knowledgegraphs/configs/utils/database/milvus/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
120
120
|
aiagents4pharma/talk2knowledgegraphs/configs/utils/database/milvus/default.yaml,sha256=4J6cIguIy4Z794UM9EHwzwzwrwWv7qvsKTN8c5QucLc,2394
|
121
|
-
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/ols_terms/default.yaml,sha256=
|
121
|
+
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/ols_terms/default.yaml,sha256=PKBc8BmnxVW4mosHFSyp05Ksw9zZ1_K8SaMQZXPC8rI,105
|
122
122
|
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/reactome_pathways/default.yaml,sha256=gyYLJREMO1jDex8-0CcCPfsuD5KguY6fKDmDCL_S4Uc,125
|
123
123
|
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/uniprot_proteins/default.yaml,sha256=JlmawYim5ECgAKCZta3UrPD2YIjkD2d5TvLmR5V6wXM,184
|
124
124
|
aiagents4pharma/talk2knowledgegraphs/configs/utils/pubchem_utils/default.yaml,sha256=J9261xMxU8Bq0x9J5YNz21gnxXpzUBbBgCQc4OIkn-w,384
|
125
125
|
aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=jNa-ehuOVOthQuGHigYuQN4moUEQKfn5WsdnrX0WQVc,135
|
126
|
-
aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=
|
126
|
+
aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=M6NtpMTmSahqKzk0WYG9JEi7Yu7YORqUKgtsA21W_4M,23632
|
127
127
|
aiagents4pharma/talk2knowledgegraphs/datasets/dataset.py,sha256=ls0e15uudIbb4zwHMHxjEovmH145RJ_hPeZni89KSnM,411
|
128
128
|
aiagents4pharma/talk2knowledgegraphs/datasets/primekg.py,sha256=1WHlQCAyKjpBiX3JnIsSohUZe8Yi5pY-VDP4tCugxkg,7709
|
129
|
-
aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py,sha256=
|
129
|
+
aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py,sha256=JtP-jNIFDA3xQbzy5DkK2OHin5NnbWUGa_EJ_1OH6vE,7483
|
130
130
|
aiagents4pharma/talk2knowledgegraphs/docker-compose/cpu/.env.example,sha256=twsuiEN-FczXfka40_bVoSQXaMDR_3J3ESKCqU4qSkg,585
|
131
131
|
aiagents4pharma/talk2knowledgegraphs/docker-compose/cpu/docker-compose.yml,sha256=7BNUIkwP0cAUH1jznun5-RgsIAZisegLFGiiUZG9F1Y,2631
|
132
132
|
aiagents4pharma/talk2knowledgegraphs/docker-compose/gpu/.env.example,sha256=twsuiEN-FczXfka40_bVoSQXaMDR_3J3ESKCqU4qSkg,585
|
@@ -152,7 +152,7 @@ aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_ollama.py,sha25
|
|
152
152
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py,sha256=Xkuf2UFGCXldj1zcsh6kqfQYLDf5i0B6KP3KcmNLSzQ,1452
|
153
153
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_enrichments.py,sha256=JoSRfz6vXLnLY6INxYm731Pu5pGdQy4r3KYlIwV8cog,1428
|
154
154
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py,sha256=dJS9wXE1pmgqNSnudYkSgU_TgdFBDNBdIhnO24a-1vE,3021
|
155
|
-
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ols.py,sha256=
|
155
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ols.py,sha256=ysy6W-UfUFiXFHoYptpySmk3dO2lv7mviUoFOG3j8CE,2277
|
156
156
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_pubchem.py,sha256=USHsjpfHxAktxjc5Q8INZ7qQJDWn_XFQYsS6mpeTLv0,1704
|
157
157
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_reactome.py,sha256=eseSw3flQLQAmXLS2R-bobN3QGEs_i6iId8l4bLEitE,1658
|
158
158
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_uniprot.py,sha256=8JqptVypftx4IrObzxGPDjQ1C7I24f3zUUx69D8svAo,1615
|
@@ -163,8 +163,8 @@ aiagents4pharma/talk2knowledgegraphs/tools/__init__.py,sha256=unrqqDUAmfTpgiJSV6
|
|
163
163
|
aiagents4pharma/talk2knowledgegraphs/tools/graphrag_reasoning.py,sha256=cCPBH1tKs9MjX1q9v6BXi-dInz_gxKwMyIVA-XdKocg,5251
|
164
164
|
aiagents4pharma/talk2knowledgegraphs/tools/load_arguments.py,sha256=zhmsRp-8vjB5rRekqTA07d3yb-42HWqng9dDMkvK6hM,623
|
165
165
|
aiagents4pharma/talk2knowledgegraphs/tools/milvus_multimodal_subgraph_extraction.py,sha256=chyHEOlbzLwPd8IXwgA4B2YMWbJAyBikBkf2-x_XH1E,39730
|
166
|
-
aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py,sha256=
|
167
|
-
aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py,sha256=
|
166
|
+
aiagents4pharma/talk2knowledgegraphs/tools/multimodal_subgraph_extraction.py,sha256=GC950xmnd5ZKq9Eru-wZl4LKZ_xdPbOPTscd2t-rE2s,14718
|
167
|
+
aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py,sha256=JW14u3w4m-2GtQxFLgyKpT0GCUPMgojE2aMJZEmUDPE,11107
|
168
168
|
aiagents4pharma/talk2knowledgegraphs/tools/subgraph_summarization.py,sha256=mXuKTahLXXFYFMS-0HkmiP7o6MSLjE_REEEsxPwCF7c,4372
|
169
169
|
aiagents4pharma/talk2knowledgegraphs/utils/__init__.py,sha256=OwsMjDLRsVdHm6jS_oKbUP9tUKOwGt2yOjz5EgWCv_M,144
|
170
170
|
aiagents4pharma/talk2knowledgegraphs/utils/kg_utils.py,sha256=IeCekDG__hjvIBXk4geLLBzlrLJukVg2y8IZfXTosQ0,2188
|
@@ -180,7 +180,7 @@ aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py,sh
|
|
180
180
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/__init__.py,sha256=VvW-zb7hdE1oIZloKDMszAJbLQr5lzofzLxshGxUC44,195
|
181
181
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/enrichments.py,sha256=gCd0dLfozemOZxgtFVI5dE4dsQ9YmREcvU-a2us_zvw,925
|
182
182
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ollama.py,sha256=1WiOQm8OCuhMFV4SmF85cUe4m940HCNRTghvHzp0ELI,4137
|
183
|
-
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ols_terms.py,sha256=
|
183
|
+
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ols_terms.py,sha256=asn0Ko5sULojZyjz6ouTfEuc_FEeZDKsBtXqURrA-xY,2788
|
184
184
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/pubchem_strings.py,sha256=9CyDA0aRYmfdR-ZiSQA5edh8hBWVEKjvPNkzVKWxnK4,2578
|
185
185
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/reactome_pathways.py,sha256=8iyrT1p01GJpi7k7FCuwZBqn-hyueRWYxPqabM5U80Q,1990
|
186
186
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/uniprot_proteins.py,sha256=0mTFX5sVgBZHkEuf057lCFNciTBapn9CqPi2-YublUg,3013
|
@@ -328,7 +328,7 @@ aiagents4pharma/talk2scholars/tools/zotero/utils/review_helper.py,sha256=-q-UuzP
|
|
328
328
|
aiagents4pharma/talk2scholars/tools/zotero/utils/write_helper.py,sha256=K1EatPfC-riGyFmkOAS3ReNBaGPY-znne1KqOnFahkI,7339
|
329
329
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_path.py,sha256=sKkfJu3u4LKSZjfoQRfeqz26IESHRwBtcSDzLMLlJMo,6311
|
330
330
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_pdf_downloader.py,sha256=DBrF5IiF7VRP58hUK8T9LST3lQWLFixLUfnpMSTccoQ,4614
|
331
|
-
aiagents4pharma-1.46.
|
332
|
-
aiagents4pharma-1.46.
|
333
|
-
aiagents4pharma-1.46.
|
334
|
-
aiagents4pharma-1.46.
|
331
|
+
aiagents4pharma-1.46.5.dist-info/METADATA,sha256=Tnoq6TWzRepVimi-VimoYIP_hTsz24Z9jk328UuAfxw,17035
|
332
|
+
aiagents4pharma-1.46.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
333
|
+
aiagents4pharma-1.46.5.dist-info/licenses/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
334
|
+
aiagents4pharma-1.46.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|