aiagents4pharma 1.41.0__py3-none-any.whl → 1.43.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml +1 -1
- aiagents4pharma/talk2knowledgegraphs/configs/tools/multimodal_subgraph_extraction/default.yaml +37 -0
- aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/ols_terms/default.yaml +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/reactome_pathways/default.yaml +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/uniprot_proteins/default.yaml +6 -0
- aiagents4pharma/talk2knowledgegraphs/configs/utils/pubchem_utils/default.yaml +5 -0
- aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py +752 -350
- aiagents4pharma/talk2scholars/agents/paper_download_agent.py +7 -4
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml +49 -95
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/paper_download_agent/default.yaml +15 -1
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/pdf_agent/default.yaml +16 -2
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml +40 -5
- aiagents4pharma/talk2scholars/configs/agents/talk2scholars/zotero_agent/default.yaml +15 -5
- aiagents4pharma/talk2scholars/configs/config.yaml +1 -3
- aiagents4pharma/talk2scholars/configs/tools/paper_download/default.yaml +124 -0
- aiagents4pharma/talk2scholars/tests/test_arxiv_downloader.py +478 -0
- aiagents4pharma/talk2scholars/tests/test_base_paper_downloader.py +620 -0
- aiagents4pharma/talk2scholars/tests/test_biorxiv_downloader.py +697 -0
- aiagents4pharma/talk2scholars/tests/test_medrxiv_downloader.py +534 -0
- aiagents4pharma/talk2scholars/tests/test_paper_download_agent.py +22 -12
- aiagents4pharma/talk2scholars/tests/test_paper_downloader.py +545 -0
- aiagents4pharma/talk2scholars/tests/test_pubmed_downloader.py +1067 -0
- aiagents4pharma/talk2scholars/tools/paper_download/__init__.py +2 -4
- aiagents4pharma/talk2scholars/tools/paper_download/paper_downloader.py +457 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/__init__.py +20 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/arxiv_downloader.py +209 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/base_paper_downloader.py +343 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/biorxiv_downloader.py +321 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/medrxiv_downloader.py +198 -0
- aiagents4pharma/talk2scholars/tools/paper_download/utils/pubmed_downloader.py +337 -0
- aiagents4pharma/talk2scholars/tools/s2/query_dataframe.py +97 -45
- aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py +47 -29
- {aiagents4pharma-1.41.0.dist-info → aiagents4pharma-1.43.0.dist-info}/METADATA +30 -14
- {aiagents4pharma-1.41.0.dist-info → aiagents4pharma-1.43.0.dist-info}/RECORD +38 -30
- aiagents4pharma/talk2scholars/configs/tools/download_arxiv_paper/default.yaml +0 -4
- aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/__init__.py +0 -3
- aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/default.yaml +0 -2
- aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/__init__.py +0 -3
- aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/default.yaml +0 -2
- aiagents4pharma/talk2scholars/tests/test_paper_download_biorxiv.py +0 -151
- aiagents4pharma/talk2scholars/tests/test_paper_download_medrxiv.py +0 -151
- aiagents4pharma/talk2scholars/tests/test_paper_download_tools.py +0 -249
- aiagents4pharma/talk2scholars/tools/paper_download/download_arxiv_input.py +0 -177
- aiagents4pharma/talk2scholars/tools/paper_download/download_biorxiv_input.py +0 -114
- aiagents4pharma/talk2scholars/tools/paper_download/download_medrxiv_input.py +0 -114
- /aiagents4pharma/talk2scholars/configs/tools/{download_arxiv_paper → paper_download}/__init__.py +0 -0
- {aiagents4pharma-1.41.0.dist-info → aiagents4pharma-1.43.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.41.0.dist-info → aiagents4pharma-1.43.0.dist-info}/licenses/LICENSE +0 -0
- {aiagents4pharma-1.41.0.dist-info → aiagents4pharma-1.43.0.dist-info}/top_level.txt +0 -0
@@ -1,13 +1,31 @@
|
|
1
1
|
#!/usr/bin/env python3
|
2
2
|
|
3
|
-
"""
|
4
|
-
Tool for querying the metadata table of the last displayed papers.
|
5
3
|
|
6
|
-
This tool loads the most recently displayed papers into a pandas DataFrame and uses an
|
7
|
-
LLM-driven pandas agent to answer metadata-level questions (e.g., filter by author, list titles).
|
8
|
-
It is intended for metadata exploration only, and does not perform content-based retrieval
|
9
|
-
or summarization. For PDF-level question answering, use the 'question_and_answer_agent'.
|
10
4
|
"""
|
5
|
+
Query the metadata table of the most recently displayed papers.
|
6
|
+
|
7
|
+
This tool loads `state['last_displayed_papers']` into a pandas DataFrame and uses an
|
8
|
+
LLM-driven DataFrame agent to execute metadata-level queries. It supports both
|
9
|
+
natural-language prompts (e.g., “list titles by author X”) and direct Python expressions
|
10
|
+
over the DataFrame.
|
11
|
+
|
12
|
+
Capabilities
|
13
|
+
- Filter, sort, and aggregate rows using metadata columns (e.g., Title, Authors, Venue, Year).
|
14
|
+
- Extract paper identifiers from a designated column (default: 'paper_ids'),
|
15
|
+
optionally for a single row.
|
16
|
+
- Return the DataFrame agent’s textual result as a ToolMessage.
|
17
|
+
|
18
|
+
Requirements
|
19
|
+
- `state['llm_model']`: model used to instantiate the DataFrame agent.
|
20
|
+
- `state['last_displayed_papers']`: dictionary mapping row keys → metadata records.
|
21
|
+
|
22
|
+
Notes
|
23
|
+
- Operates strictly on the metadata table; it does not parse or read PDF content.
|
24
|
+
- When `extract_ids=True`, the tool constructs a Python expression for the agent to evaluate
|
25
|
+
and return identifiers from `id_column`. If `row_number` is provided (1-based), only that row’s
|
26
|
+
first identifier is returned; otherwise a list is returned from all rows that have values.
|
27
|
+
"""
|
28
|
+
|
11
29
|
|
12
30
|
import logging
|
13
31
|
from typing import Annotated, Optional, Any
|
@@ -32,23 +50,32 @@ class NoPapersFoundError(Exception):
|
|
32
50
|
|
33
51
|
class QueryDataFrameInput(BaseModel):
|
34
52
|
"""
|
35
|
-
|
53
|
+
Input schema for querying the last displayed papers metadata DataFrame.
|
36
54
|
|
37
55
|
Fields:
|
38
|
-
question:
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
56
|
+
question (str):
|
57
|
+
The query to execute. Accepts natural language (e.g., "List titles from 2024")
|
58
|
+
or a Python expression over the DataFrame (e.g., "df['Title'].tolist()").
|
59
|
+
|
60
|
+
extract_ids (bool, default=False):
|
61
|
+
When True, the tool prepares a Python expression for the DataFrame agent to extract
|
62
|
+
identifiers from `id_column`. Use to obtain IDs from the metadata table.
|
63
|
+
|
64
|
+
id_column (str, default="paper_ids"):
|
65
|
+
Name of the column that contains per-row lists of identifiers (e.g., ["arxiv:2301.12345"]).
|
66
|
+
Used only when `extract_ids=True`.
|
67
|
+
|
68
|
+
row_number (int | None, default=None):
|
69
|
+
1-based row index. When provided with `extract_ids=True`, returns only that row’s first
|
70
|
+
identifier. When omitted, returns a list of first identifiers from each applicable row.
|
71
|
+
|
72
|
+
tool_call_id (InjectedToolCallId):
|
73
|
+
Internal identifier for tracing the tool invocation.
|
74
|
+
|
75
|
+
state (dict):
|
76
|
+
Agent state containing:
|
77
|
+
- 'last_displayed_papers': dict with the current results table (rows → metadata)
|
78
|
+
- 'llm_model': model object or reference for the DataFrame agent
|
52
79
|
"""
|
53
80
|
|
54
81
|
question: str = Field(
|
@@ -95,30 +122,55 @@ def query_dataframe(
|
|
95
122
|
**kwargs: Any,
|
96
123
|
) -> Command:
|
97
124
|
"""
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
125
|
+
Execute a metadata query against the DataFrame built from `last_displayed_papers`.
|
126
|
+
|
127
|
+
Behavior
|
128
|
+
- Builds a pandas DataFrame from `state['last_displayed_papers']`.
|
129
|
+
- Instantiates a pandas DataFrame agent with `state['llm_model']`.
|
130
|
+
- Runs either:
|
131
|
+
• the provided natural-language prompt, or
|
132
|
+
• a constructed Python expression when `extract_ids=True`
|
133
|
+
(optionally scoped to `row_number`, 1-based).
|
134
|
+
- Returns the DataFrame agent’s output text in a ToolMessage.
|
135
|
+
|
136
|
+
Parameters
|
137
|
+
question (str):
|
138
|
+
Natural-language query or Python expression to run on the DataFrame.
|
139
|
+
state (dict):
|
140
|
+
Must provide 'llm_model' and 'last_displayed_papers'.
|
141
|
+
tool_call_id (str):
|
142
|
+
Internal identifier for the tool call.
|
143
|
+
**kwargs:
|
144
|
+
extract_ids (bool): Enable ID extraction from `id_column`.
|
145
|
+
id_column (str): Column containing lists of identifiers (default: "paper_ids").
|
146
|
+
row_number (int | None): 1-based index for a single-row extraction.
|
147
|
+
|
148
|
+
Returns
|
149
|
+
Command:
|
150
|
+
update = {
|
151
|
+
"messages": [
|
152
|
+
ToolMessage(
|
153
|
+
content=<text result from the DataFrame agent>,
|
154
|
+
tool_call_id=<tool_call_id>
|
155
|
+
)
|
156
|
+
]
|
157
|
+
}
|
158
|
+
|
159
|
+
Errors
|
160
|
+
- Raises `ValueError` if 'llm_model' is missing in `state`.
|
161
|
+
- Raises `NoPapersFoundError` if `state['last_displayed_papers']` is missing or empty.
|
162
|
+
- Raises `ValueError` if a required argument for the chosen mode is invalid
|
163
|
+
(e.g., no `id_column` when `extract_ids=True`).
|
164
|
+
|
165
|
+
Examples
|
166
|
+
- Natural language:
|
167
|
+
question="List titles where Year >= 2023"
|
168
|
+
- Python list of titles:
|
169
|
+
question="df.query('Year >= 2023')['Title'].tolist()"
|
170
|
+
- Extract first ID from row 1:
|
171
|
+
extract_ids=True, row_number=1
|
172
|
+
- Extract first IDs from all rows:
|
173
|
+
extract_ids=True
|
122
174
|
"""
|
123
175
|
logger.info("Querying last displayed papers with question: %s", question)
|
124
176
|
llm_model = state.get("llm_model")
|
@@ -1,12 +1,11 @@
|
|
1
1
|
#!/usr/bin/env python3
|
2
2
|
|
3
3
|
"""
|
4
|
-
|
4
|
+
Resolve a paper title to a Semantic Scholar paperId.
|
5
5
|
|
6
|
-
This tool queries the Semantic Scholar API for the best match
|
7
|
-
|
8
|
-
|
9
|
-
use this tool for broad literature search; use the `search` tool instead.
|
6
|
+
This module provides a tool that queries the Semantic Scholar API for the best match to a
|
7
|
+
given paper title (full or partial) and returns the corresponding `paperId` string.
|
8
|
+
Configuration is loaded via Hydra and the top ranked result is returned.
|
10
9
|
"""
|
11
10
|
|
12
11
|
import logging
|
@@ -27,11 +26,14 @@ logger = logging.getLogger(__name__)
|
|
27
26
|
|
28
27
|
class RetrieveSemanticScholarPaperIdInput(BaseModel):
|
29
28
|
"""
|
30
|
-
|
31
|
-
|
32
|
-
Fields
|
33
|
-
|
34
|
-
|
29
|
+
Input schema for title→paperId resolution.
|
30
|
+
|
31
|
+
Fields
|
32
|
+
-------
|
33
|
+
paper_title : str
|
34
|
+
Paper title to search. Accepts full titles or informative partial titles.
|
35
|
+
tool_call_id : InjectedToolCallId
|
36
|
+
Runtime-injected identifier for tracing the tool invocation.
|
35
37
|
"""
|
36
38
|
|
37
39
|
paper_title: str = Field(
|
@@ -50,27 +52,43 @@ def retrieve_semantic_scholar_paper_id(
|
|
50
52
|
tool_call_id: str,
|
51
53
|
) -> Command[Any]:
|
52
54
|
"""
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
55
|
+
Look up a Semantic Scholar paperId from a paper title.
|
56
|
+
|
57
|
+
Behavior
|
58
|
+
--------
|
59
|
+
- Loads Hydra config from `tools.retrieve_semantic_scholar_paper_id`.
|
60
|
+
- Sends a search request with `query=<paper_title>`, `limit=1`, and requested fields.
|
61
|
+
- Parses the top hit and returns its `paperId` as the ToolMessage content (plain string).
|
62
|
+
|
63
|
+
Parameters
|
64
|
+
----------
|
65
|
+
paper_title : str
|
66
|
+
Title or informative partial title to resolve.
|
67
|
+
tool_call_id : str
|
68
|
+
Runtime-injected identifier for the tool call.
|
69
|
+
|
70
|
+
Returns
|
71
|
+
-------
|
72
|
+
Command
|
73
|
+
update = {
|
74
|
+
"messages": [
|
75
|
+
ToolMessage(
|
76
|
+
content="<paperId>", # Semantic Scholar paperId string
|
77
|
+
tool_call_id=<tool_call_id>
|
78
|
+
)
|
79
|
+
]
|
80
|
+
}
|
66
81
|
|
67
|
-
|
68
|
-
|
69
|
-
|
82
|
+
Exceptions
|
83
|
+
----------
|
84
|
+
ValueError
|
85
|
+
Raised when no match is found for the provided title.
|
86
|
+
requests.RequestException
|
87
|
+
Raised on network/HTTP errors (timeout, connection issues, etc.).
|
70
88
|
|
71
|
-
|
72
|
-
|
73
|
-
|
89
|
+
Examples
|
90
|
+
--------
|
91
|
+
>>> retrieve_semantic_scholar_paper_id("Attention Is All You Need", "tc_123")
|
74
92
|
"""
|
75
93
|
# Load hydra configuration
|
76
94
|
with hydra.initialize(version_base=None, config_path="../../configs"):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.43.0
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
@@ -65,20 +65,37 @@ Requires-Dist: plotly-express==0.4.1
|
|
65
65
|
Requires-Dist: seaborn==0.13.2
|
66
66
|
Requires-Dist: scanpy==1.11.0
|
67
67
|
Requires-Dist: openpyxl==3.1.5
|
68
|
-
Requires-Dist: pymilvus==2.5.11
|
69
68
|
Dynamic: license-file
|
70
69
|
|
70
|
+
<img src="docs/assets/VPE.png" alt="Virtual Patient Engine Logo" width="150"/>
|
71
|
+
|
72
|
+
<!-- Project Info -->
|
73
|
+
|
74
|
+

|
75
|
+

|
76
|
+

|
77
|
+
|
78
|
+
<!-- Deployment Workflows -->
|
79
|
+
|
80
|
+
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/pages/pages-build-deployment)
|
81
|
+
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/mkdocs-deploy.yml)
|
82
|
+
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/docker_build.yml)
|
83
|
+
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/docker_compose_release.yml)
|
84
|
+
|
85
|
+
<!-- Tests -->
|
86
|
+
|
87
|
+
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2aiagents4pharma.yml)
|
71
88
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2biomodels.yml)
|
72
|
-
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml)
|
73
89
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2knowledgegraphs.yml)
|
74
90
|
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2scholars.yml)
|
75
|
-
[](https://github.com/VirtualPatientEngine/AIAgents4Pharma/actions/workflows/tests_talk2cells.yml)
|
92
|
+
|
93
|
+
<!-- Docker Pulls -->
|
94
|
+
|
95
|
+

|
96
|
+

|
97
|
+

|
98
|
+

|
82
99
|
|
83
100
|
## Introduction
|
84
101
|
|
@@ -170,14 +187,13 @@ If your machine has NVIDIA GPU(s), please install the following this:
|
|
170
187
|
|
171
188
|
To use the **Agents**, you need a free **NVIDIA API key**. Create an account and apply for free credits [here](https://build.nvidia.com/explore/discover).
|
172
189
|
|
173
|
-
**Talk2Scholars** requires Milvus to be set up as the vector database — install Milvus depending on your setup by following the official instructions for [CPU](https://milvus.io/docs/install_standalone-docker-compose.md) or [GPU](https://milvus.io/docs/install_standalone-docker-compose-gpu.md). You will also need a **Zotero API key**, which you can generate [here](https://www.zotero.org/user/login#applications). _(The Zotero key is only required for Talk2Scholars; all other agents do not need it.)_
|
190
|
+
**Talk2Scholars** and **Talk2KnowledgeGraphs** requires Milvus to be set up as the vector database — install Milvus depending on your setup by following the official instructions for [CPU](https://milvus.io/docs/install_standalone-docker-compose.md) or [GPU](https://milvus.io/docs/install_standalone-docker-compose-gpu.md). You will also need a **Zotero API key**, which you can generate [here](https://www.zotero.org/user/login#applications). _(The Zotero key is only required for Talk2Scholars; all other agents do not need it.)_
|
174
191
|
|
192
|
+
> By default, `talk2knowledgegraphs` includes a small subset of the PrimeKG knowledge graph, allowing users to start interacting with it out of the box.
|
193
|
+
> To switch to a different knowledge graph or use your own, refer to the [deployment guide](https://virtualpatientengine.github.io/AIAgents4Pharma/talk2knowledgegraphs/deployment/).
|
175
194
|
> Additionally on **Windows**, the `pcst_fast 1.0.10` library requires **Microsoft Visual C++ 14.0 or greater**.
|
176
195
|
> You can download the **Microsoft C++ Build Tools** [here](https://visualstudio.microsoft.com/visual-cpp-build-tools/).
|
177
196
|
|
178
|
-
📝 By default, `talk2knowledgegraphs` includes a small subset of the PrimeKG knowledge graph, allowing users to start interacting with it out of the box.
|
179
|
-
To switch to a different knowledge graph or use your own, refer to the [deployment guide](https://virtualpatientengine.github.io/AIAgents4Pharma/talk2knowledgegraphs/deployment/).
|
180
|
-
|
181
197
|
**LangSmith** support is optional. To enable it, create an API key [here](https://docs.smith.langchain.com/administration/how_to_guides/organization_management/create_account_api_key).
|
182
198
|
|
183
199
|
_Please note that this will create a new tracing project in your Langsmith
|
@@ -72,7 +72,7 @@ aiagents4pharma/talk2cells/tools/scp_agent/__init__.py,sha256=s7g0lyH1lMD9pcWHLP
|
|
72
72
|
aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQaiOU2rn55A3sIIFKlXi4SK3iKgySvUDrtQ,600
|
73
73
|
aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
|
74
74
|
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=Z0Eo7LTiKk0STsr8VI7wkCLq7PHrK1vYlH4I1hSNLiA,165
|
75
|
-
aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py,sha256=
|
75
|
+
aiagents4pharma/talk2knowledgegraphs/milvus_data_dump.py,sha256=2LMGp2Coh7Q1TeWez-_wkMDfHzf_Tkj9cPslV0_ixOU,36202
|
76
76
|
aiagents4pharma/talk2knowledgegraphs/agents/__init__.py,sha256=iOAzuy_8A03tQDFtSBhC9dldUo62z5gfxcVtXAdLOJs,92
|
77
77
|
aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py,sha256=eUARAhzOz8PpHFzN2fP4L_fDEyqdllrAkBWa0otxGv4,3363
|
78
78
|
aiagents4pharma/talk2knowledgegraphs/configs/__init__.py,sha256=4_DVdpahaJ55yPl0aZotlFA_MYWLFF2cubWyKtBVI_Q,126
|
@@ -81,15 +81,20 @@ aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/__init__.py,sha25
|
|
81
81
|
aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/default.yaml,sha256=ENCGROwYFpR6g4QD518h73sshdn3vPVpotBMk1QJcpU,4830
|
82
82
|
aiagents4pharma/talk2knowledgegraphs/configs/app/__init__.py,sha256=fKfc3FR7g5KjY9b6jzrU6cwKTVVpkoVZQS3dvUowu34,69
|
83
83
|
aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
84
|
-
aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml,sha256=
|
84
|
+
aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml,sha256=FnRUgImdaQ9wSy4EFItYAvbQAD8zm851If3K6akFCzU,2300
|
85
85
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/__init__.py,sha256=C1yyRZW8hqWw46p_bh1vAJp2z9aVvn4HpKjKkjlWIqY,150
|
86
86
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
87
87
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/default.yaml,sha256=Ua99yECXiwp4ZCUDgsDskYbKzcJrv7roQuLj31Zky4c,1037
|
88
88
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/multimodal_subgraph_extraction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
89
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/multimodal_subgraph_extraction/default.yaml,sha256=M4scS2KEgux24bWuepNyJLzTFZ-CagcF6zLCw-6JK3k,919
|
89
90
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
90
91
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/default.yaml,sha256=U8HvMsYbaOwDwQPATj7EFvLtTy7XZEplE5WMoNjgYYc,1469
|
91
92
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
92
93
|
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/default.yaml,sha256=OOSlPpJVwJK4_lu4lhA2E48yhFFbEYpyHsoi9Orgm00,561
|
94
|
+
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/ols_terms/default.yaml,sha256=ar2w5mL3H34Dy9sNoUk6gFVyR7WxxFhywNxFV50NmU8,106
|
95
|
+
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/reactome_pathways/default.yaml,sha256=tYSmVXt8RXSuVXKuHFJfuWnQk8SyYQ5NuhiHSu7nG44,124
|
96
|
+
aiagents4pharma/talk2knowledgegraphs/configs/utils/enrichments/uniprot_proteins/default.yaml,sha256=zndlkZnExOc12H6rJUDhrnxY6_0-cE7SSJBes_egLio,183
|
97
|
+
aiagents4pharma/talk2knowledgegraphs/configs/utils/pubchem_utils/default.yaml,sha256=0-ND1Bqvj1LZauTcg2ztYDjkTxsfaSCtZct9AiVrnQM,383
|
93
98
|
aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=L3gPuHskSegmtXskVrLIYr7FXe_ibKgJ2GGr1_Wok6k,173
|
94
99
|
aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=QlzDXmXREoa9MA6-GwzqRjdzndQeGBAF11Td6NFk_9Y,23426
|
95
100
|
aiagents4pharma/talk2knowledgegraphs/datasets/dataset.py,sha256=-LaPLse8BkALqwFetNK7wch2dt9Dz6QKGKZKBKM6bIk,409
|
@@ -152,36 +157,32 @@ aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py,sha256=m5p0yoJb7I
|
|
152
157
|
aiagents4pharma/talk2scholars/__init__.py,sha256=NOZxTklAH1j1ggu97Ib8Xn9LCKudEWt-8dx8w7yxVD8,180
|
153
158
|
aiagents4pharma/talk2scholars/agents/__init__.py,sha256=c_0Pk85bt-RfK5RMyALM3MXo3qXVMoYS7BOqM9wuFME,317
|
154
159
|
aiagents4pharma/talk2scholars/agents/main_agent.py,sha256=oQqa1z4nvfUvPWCX-SUHGs9jOCJKtzjw86jXJZ68gCk,3382
|
155
|
-
aiagents4pharma/talk2scholars/agents/paper_download_agent.py,sha256=
|
160
|
+
aiagents4pharma/talk2scholars/agents/paper_download_agent.py,sha256=gIaaUcT4JPuQSJ5C-PPtY92oskWKh69zl99WzqPO9AA,3501
|
156
161
|
aiagents4pharma/talk2scholars/agents/pdf_agent.py,sha256=GEXzJMQxIeZ7zLP-AlnTMU-n_KXZ7g22Qd9L3USIc_4,3626
|
157
162
|
aiagents4pharma/talk2scholars/agents/s2_agent.py,sha256=oui0CMSyXmBGBJ7LnYq8Ce0V8Qc3BS6GgH5Qx5wI6oM,4565
|
158
163
|
aiagents4pharma/talk2scholars/agents/zotero_agent.py,sha256=NAmEURIhH-sjXGO-dqAigUA10m-Re9Qe1hY8db4CIP0,4370
|
159
164
|
aiagents4pharma/talk2scholars/configs/__init__.py,sha256=Y9-4PxsNCMoxyyQgDSbPByJnO9wnyem5SYL3eOZt1HY,189
|
160
|
-
aiagents4pharma/talk2scholars/configs/config.yaml,sha256=
|
165
|
+
aiagents4pharma/talk2scholars/configs/config.yaml,sha256=GyL69HPuoccv93Gcw7S44xiWG-iPxfKU-p27VWC12iY,590
|
161
166
|
aiagents4pharma/talk2scholars/configs/agents/__init__.py,sha256=plv5Iw34gvbGZbRyJapvoOiiFXekRQIwjV_yy5AR_SI,104
|
162
167
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/__init__.py,sha256=D94LW4cXLmJe4dNl5qoR9QN0JnBqGLbQDgDLqhCNUE0,213
|
163
168
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
164
|
-
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml,sha256=
|
169
|
+
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml,sha256=vSxteufVdgZeXBnU_LhduoBNBVz17s3mpqrjFw-QPUI,3677
|
165
170
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/paper_download_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
166
|
-
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/paper_download_agent/default.yaml,sha256=
|
171
|
+
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/paper_download_agent/default.yaml,sha256=S1cmJaX6Xp4i_ixExZfP0qgD-tXQVFbpWpXvrh7ZVeQ,1173
|
167
172
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/pdf_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
168
|
-
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/pdf_agent/default.yaml,sha256=
|
173
|
+
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/pdf_agent/default.yaml,sha256=MYC9REeARVfTOCWyV_4cInvWHDksKMz193Q1LirKtZw,832
|
169
174
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
170
|
-
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml,sha256=
|
175
|
+
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml,sha256=X88qKa0DgqCIvpnJgO_qEqAhhT9ymDr1B8HkJLTkB0U,2718
|
171
176
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/zotero_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
172
|
-
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/zotero_agent/default.yaml,sha256=
|
177
|
+
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/zotero_agent/default.yaml,sha256=d_38r0JtOPW0wM3J7LTB17aW3eBRyA6nFhB8MJd6lOw,1016
|
173
178
|
aiagents4pharma/talk2scholars/configs/app/__init__.py,sha256=tXpOW3R4eAfNoqvoaHfabSG-DcMHmUGSTg_4zH_vlgw,94
|
174
179
|
aiagents4pharma/talk2scholars/configs/app/frontend/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
175
180
|
aiagents4pharma/talk2scholars/configs/app/frontend/default.yaml,sha256=A6nYjrgzEyRv5JYsGN7oqNX4-tufMBZ6mg-A7bMX6V4,906
|
176
181
|
aiagents4pharma/talk2scholars/configs/tools/__init__.py,sha256=6pHPF0ZGY78SD6KPMukd_xrfO1ocVXcyrsrB-kz-OnI,402
|
177
|
-
aiagents4pharma/talk2scholars/configs/tools/download_arxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
178
|
-
aiagents4pharma/talk2scholars/configs/tools/download_arxiv_paper/default.yaml,sha256=VT3f-E6QGtqUjLEX0eaw9b_7f1Fp83cnnMOpqOufK4I,120
|
179
|
-
aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
180
|
-
aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/default.yaml,sha256=d5_dl1_FYWseBGTVGkvC41jfJMsMUaDMOmC_av3aL4Q,72
|
181
|
-
aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
182
|
-
aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/default.yaml,sha256=NaWmyVZ71rIF3ZRUm912wQgRL0cgDTWA-hVKeu60rtg,70
|
183
182
|
aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
184
183
|
aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/default.yaml,sha256=comNgL9hRpH--IWuEsrN6hV5WdrJmh-ZsRh7hbryVhg,631
|
184
|
+
aiagents4pharma/talk2scholars/configs/tools/paper_download/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
185
|
+
aiagents4pharma/talk2scholars/configs/tools/paper_download/default.yaml,sha256=KaHKlCf-Y1Ob1wnEKhfhKEaLye_L9Qs_BT3PhLlDM6Y,3571
|
185
186
|
aiagents4pharma/talk2scholars/configs/tools/question_and_answer/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
186
187
|
aiagents4pharma/talk2scholars/configs/tools/question_and_answer/default.yaml,sha256=Pa3JVyA9tabXZ4Bk3n5dAml7P-nXUcT7HgkA8Kr_sXk,2238
|
187
188
|
aiagents4pharma/talk2scholars/configs/tools/retrieve_semantic_scholar_paper_id/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
@@ -197,12 +198,14 @@ aiagents4pharma/talk2scholars/configs/tools/zotero_write/default.yaml,sha256=gB7
|
|
197
198
|
aiagents4pharma/talk2scholars/state/__init__.py,sha256=ReScKLpEvedq4P6ww52NRQS0Xr6SSQV7hqoQ83Mt75U,138
|
198
199
|
aiagents4pharma/talk2scholars/state/state_talk2scholars.py,sha256=Z2zV-SXB2SMnn8PnjWjmK-OD5KjUwMTChBpXBAcl2hg,3885
|
199
200
|
aiagents4pharma/talk2scholars/tests/__init__.py,sha256=U3PsTiUZaUBD1IZanFGkDIOdFieDVJtGKQ5-woYUo8c,45
|
201
|
+
aiagents4pharma/talk2scholars/tests/test_arxiv_downloader.py,sha256=JvqMLUeNVnmkhGo9fjDr73r76kwWFiuBbJHMAdo7Jko,18772
|
202
|
+
aiagents4pharma/talk2scholars/tests/test_base_paper_downloader.py,sha256=Rtp05inMVbDg4Yt7HlmXFt3_9xOXUighQsxishmABSk,25107
|
203
|
+
aiagents4pharma/talk2scholars/tests/test_biorxiv_downloader.py,sha256=qvNDcJTpqV7L5bZ3r40wtBehNcrDNtlOJLkzhSNh6q0,27690
|
200
204
|
aiagents4pharma/talk2scholars/tests/test_main_agent.py,sha256=4Z3xLq8MGlayGhQE5qKOirYotwJrlf7fk8rqAaORorg,7617
|
205
|
+
aiagents4pharma/talk2scholars/tests/test_medrxiv_downloader.py,sha256=aoLB64tw7HXMv0xIIOUZ5CFt9fd8n61kQMmKpznh2M0,20848
|
201
206
|
aiagents4pharma/talk2scholars/tests/test_nvidia_nim_reranker.py,sha256=ftfn4VenufZ-zt2nSOyOoCjfSbwFOW9CS1DLzPtBEaM,4410
|
202
|
-
aiagents4pharma/talk2scholars/tests/test_paper_download_agent.py,sha256=
|
203
|
-
aiagents4pharma/talk2scholars/tests/
|
204
|
-
aiagents4pharma/talk2scholars/tests/test_paper_download_medrxiv.py,sha256=iNq9vEIVapmnUZTRJXCv_UoaWThGapW7Vt_2BmZG9NE,6414
|
205
|
-
aiagents4pharma/talk2scholars/tests/test_paper_download_tools.py,sha256=lGXbHl3lEXDjMHAX9uCgrREBOUuOHWv9TsYEshiG_tc,10421
|
207
|
+
aiagents4pharma/talk2scholars/tests/test_paper_download_agent.py,sha256=1QeIf9SrBM712DOPC5qotL-vDo7Ax-9l9LDDEtTJNdI,5344
|
208
|
+
aiagents4pharma/talk2scholars/tests/test_paper_downloader.py,sha256=8r_OZOJkHZ8mhrSNuSZ3aLyIA6Ngb-S23S30XmYRZ-c,22822
|
206
209
|
aiagents4pharma/talk2scholars/tests/test_pdf_agent.py,sha256=9Kr0FcyFWmUDTasYh6ZdS-OWQqy37mH9K3p5Y0dqQHw,4283
|
207
210
|
aiagents4pharma/talk2scholars/tests/test_pdf_answer_formatter.py,sha256=a1a_z1M9sOQ_SFo-gHM3xA_f5MoJJmEoW8Tc3AX9vL0,2239
|
208
211
|
aiagents4pharma/talk2scholars/tests/test_pdf_batch_processor.py,sha256=e8KQJ80nbOmCH4mgDnIXXjlrRk0zf0g-5Odt2jsCU0s,3251
|
@@ -216,6 +219,7 @@ aiagents4pharma/talk2scholars/tests/test_pdf_retrieve_chunks.py,sha256=2cjbCrf86
|
|
216
219
|
aiagents4pharma/talk2scholars/tests/test_pdf_singleton_manager.py,sha256=gOk8L9wNRPUnAiB89n1a4pQQPI7UtonRi7-IcCip94k,5628
|
217
220
|
aiagents4pharma/talk2scholars/tests/test_pdf_vector_normalization.py,sha256=pu9I3tromjToIN5r4S8sWanaLBVhhk71UPP5zTTGwZY,3928
|
218
221
|
aiagents4pharma/talk2scholars/tests/test_pdf_vector_store.py,sha256=-7CUiPLT4mOBVkNV2qlF7t4yU_mRArM0uAcUAKgEY4k,15644
|
222
|
+
aiagents4pharma/talk2scholars/tests/test_pubmed_downloader.py,sha256=FpuyL2NhlnX6tkI8UwU7rxYJe94TdHlwJWZan5rbXcg,44972
|
219
223
|
aiagents4pharma/talk2scholars/tests/test_question_and_answer_tool.py,sha256=UKSD7wLJ1cZunw8a1BHM7E-NUML6blxpqoDroCYuvQs,4245
|
220
224
|
aiagents4pharma/talk2scholars/tests/test_read_helper_utils.py,sha256=yTT1aLpTydDSdGcRZur5cMktwYZbFK5NEUgOBvltcWg,3819
|
221
225
|
aiagents4pharma/talk2scholars/tests/test_s2_agent.py,sha256=TsdNlZ6vHz18bbX6Vto28nbBLRDI94wSFt5-1acDK64,7768
|
@@ -235,10 +239,14 @@ aiagents4pharma/talk2scholars/tests/test_zotero_pdf_downloader_utils.py,sha256=N
|
|
235
239
|
aiagents4pharma/talk2scholars/tests/test_zotero_read.py,sha256=qkudWMjxjjTYKJ1zvpWs0EJXCIvFx-iNKyKs_Tv1CSI,29061
|
236
240
|
aiagents4pharma/talk2scholars/tests/test_zotero_write.py,sha256=qWlO0XoZJ6vxUxgisjYv9Np87CoTEDxiQBEOhdj9foo,6111
|
237
241
|
aiagents4pharma/talk2scholars/tools/__init__.py,sha256=c8pYHDqR9P0Frz2jWjbvyizfSTBMlMFzGsiQzx2KC9c,189
|
238
|
-
aiagents4pharma/talk2scholars/tools/paper_download/__init__.py,sha256=
|
239
|
-
aiagents4pharma/talk2scholars/tools/paper_download/
|
240
|
-
aiagents4pharma/talk2scholars/tools/paper_download/
|
241
|
-
aiagents4pharma/talk2scholars/tools/paper_download/
|
242
|
+
aiagents4pharma/talk2scholars/tools/paper_download/__init__.py,sha256=PzJTrcXBHB3e2rgOvJ3Q8JJjvZAXyUCtGcGdANk1svE,227
|
243
|
+
aiagents4pharma/talk2scholars/tools/paper_download/paper_downloader.py,sha256=YJuuRhkxFZIHyQTE3Hh4rkJF1hYCFNgORd_9dyp9-5E,16908
|
244
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/__init__.py,sha256=mbtb0IK6fW6ASQyqMhkaCHFBXQUguR7G6hZHrTJwZXc,467
|
245
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/arxiv_downloader.py,sha256=xWb4YPbDPZbgBDS1INDCSrOVeNiDRNC2KYhiOQjJV3o,7029
|
246
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/base_paper_downloader.py,sha256=pIt-BFgt7mh4XPXzcfRy5LY8xzmhADF6j8-TOyiaa1Q,11350
|
247
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/biorxiv_downloader.py,sha256=sz4lc1jQEKzYk9kX2QJotgjbNWXpLfmi8jfY-zVW8Wg,11652
|
248
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/medrxiv_downloader.py,sha256=9jKbh6lW9IBI9RJhHzqV1ktz3LfvoD3B5ayeXk15Eg4,6638
|
249
|
+
aiagents4pharma/talk2scholars/tools/paper_download/utils/pubmed_downloader.py,sha256=Md9bWaiy7_88NIue_3NkPrmXyNZQS8zLcK4xaFQmIjU,12177
|
242
250
|
aiagents4pharma/talk2scholars/tools/pdf/__init__.py,sha256=DPpOfON3AySko5EBBAe_3udOoSaAdQWNyGeNvJyV5R8,138
|
243
251
|
aiagents4pharma/talk2scholars/tools/pdf/question_and_answer.py,sha256=_HLO04bzTSlnEEWwkJ3rC9Gjz8MPeHVglqovoTDOSp4,5844
|
244
252
|
aiagents4pharma/talk2scholars/tools/pdf/utils/__init__.py,sha256=AlvoJY0hI4MCS4zHO3EtFkFJpKqjO7ZxWkoE3QvHi88,820
|
@@ -260,8 +268,8 @@ aiagents4pharma/talk2scholars/tools/pdf/utils/vector_store.py,sha256=X9OGwV3RHZI
|
|
260
268
|
aiagents4pharma/talk2scholars/tools/s2/__init__.py,sha256=w_eiw0pG8HNp79F9O_icXs_Yl_4odsmagYNKDTjIsvk,428
|
261
269
|
aiagents4pharma/talk2scholars/tools/s2/display_dataframe.py,sha256=qnY7AQDnAs0SrmV7AZ9pWm10HEmPlO7EBfzYvpb3jvs,3965
|
262
270
|
aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py,sha256=TEt4jOX1u8v3w_u10sGx-Ghwhe4yjuaYmUjD62nJQJM,3886
|
263
|
-
aiagents4pharma/talk2scholars/tools/s2/query_dataframe.py,sha256=
|
264
|
-
aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py,sha256=
|
271
|
+
aiagents4pharma/talk2scholars/tools/s2/query_dataframe.py,sha256=bZiSe7-hf0IHIoZhITtgOSDauyd9NAtim5ukWi1vyuA,8599
|
272
|
+
aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py,sha256=zwm4LGfFWxJLIPRc2TO5zQ48kCKe7EmkwY1SyTVCTAg,4014
|
265
273
|
aiagents4pharma/talk2scholars/tools/s2/search.py,sha256=SUAN32x1d9dNikFKitcXZZ0BhFfsGMdLDk0z0DpJXuA,3334
|
266
274
|
aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py,sha256=JTggOB4sqhTF1kP81Gl_54RjpbHIfqtJEoUTxlZ82N8,3630
|
267
275
|
aiagents4pharma/talk2scholars/tools/s2/utils/__init__.py,sha256=wBTPVgiXbmIJUMouOQRwojgk5PJXeEinDJzHzEToZbU,229
|
@@ -278,8 +286,8 @@ aiagents4pharma/talk2scholars/tools/zotero/utils/review_helper.py,sha256=IPD1V9y
|
|
278
286
|
aiagents4pharma/talk2scholars/tools/zotero/utils/write_helper.py,sha256=ALwLecy1QVebbsmXJiDj1GhGmyhq2R2tZlAyEl1vfhw,7410
|
279
287
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_path.py,sha256=oIrfbOySgts50ksHKyjcWjRkPRIS88g3Lc0v9mBkU8w,6375
|
280
288
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_pdf_downloader.py,sha256=ERBha8afU6Q1EaRBe9qB8tchOzZ4_KfFgDW6EElOJoU,4816
|
281
|
-
aiagents4pharma-1.
|
282
|
-
aiagents4pharma-1.
|
283
|
-
aiagents4pharma-1.
|
284
|
-
aiagents4pharma-1.
|
285
|
-
aiagents4pharma-1.
|
289
|
+
aiagents4pharma-1.43.0.dist-info/licenses/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
290
|
+
aiagents4pharma-1.43.0.dist-info/METADATA,sha256=9gum-z3uXsxDqDhQjnjD8tHEoNpfSFgxeusKXRC3WJ0,13281
|
291
|
+
aiagents4pharma-1.43.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
292
|
+
aiagents4pharma-1.43.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
|
293
|
+
aiagents4pharma-1.43.0.dist-info/RECORD,,
|