aiagents4pharma 1.38.0__py3-none-any.whl → 1.39.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/talk2scholars/agents/paper_download_agent.py +12 -4
- aiagents4pharma/talk2scholars/configs/config.yaml +2 -0
- aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/__init__.py +3 -0
- aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/__init__.py +3 -0
- aiagents4pharma/talk2scholars/tests/test_paper_download_biorxiv.py +151 -0
- aiagents4pharma/talk2scholars/tests/test_paper_download_medrxiv.py +151 -0
- aiagents4pharma/talk2scholars/tools/paper_download/__init__.py +4 -1
- aiagents4pharma/talk2scholars/tools/paper_download/download_biorxiv_input.py +112 -0
- aiagents4pharma/talk2scholars/tools/paper_download/download_medrxiv_input.py +112 -0
- aiagents4pharma/talk2scholars/tools/pdf/question_and_answer.py +20 -1
- aiagents4pharma/talk2scholars/tools/s2/utils/multi_helper.py +2 -0
- aiagents4pharma/talk2scholars/tools/s2/utils/search_helper.py +2 -0
- aiagents4pharma/talk2scholars/tools/s2/utils/single_helper.py +2 -0
- {aiagents4pharma-1.38.0.dist-info → aiagents4pharma-1.39.0.dist-info}/METADATA +1 -1
- {aiagents4pharma-1.38.0.dist-info → aiagents4pharma-1.39.0.dist-info}/RECORD +18 -12
- {aiagents4pharma-1.38.0.dist-info → aiagents4pharma-1.39.0.dist-info}/WHEEL +1 -1
- {aiagents4pharma-1.38.0.dist-info → aiagents4pharma-1.39.0.dist-info}/licenses/LICENSE +0 -0
- {aiagents4pharma-1.38.0.dist-info → aiagents4pharma-1.39.0.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,8 @@ from langgraph.prebuilt.tool_node import ToolNode
|
|
14
14
|
from langgraph.checkpoint.memory import MemorySaver
|
15
15
|
from ..state.state_talk2scholars import Talk2Scholars
|
16
16
|
from ..tools.paper_download.download_arxiv_input import download_arxiv_paper
|
17
|
+
from ..tools.paper_download.download_medrxiv_input import download_medrxiv_paper
|
18
|
+
from ..tools.paper_download.download_biorxiv_input import download_biorxiv_paper
|
17
19
|
|
18
20
|
# Initialize logger
|
19
21
|
logging.basicConfig(level=logging.INFO)
|
@@ -24,14 +26,20 @@ def get_app(uniq_id, llm_model: BaseChatModel):
|
|
24
26
|
"""
|
25
27
|
Initializes and returns the LangGraph application for the Talk2Scholars paper download agent.
|
26
28
|
|
29
|
+
This agent supports downloading scientific papers from multiple preprint servers, including
|
30
|
+
arXiv, BioRxiv, and MedRxiv. It can intelligently handle user queries by extracting or resolving
|
31
|
+
necessary identifiers (e.g., arXiv ID or DOI) from the paper title and routing the request to
|
32
|
+
the appropriate download tool.
|
33
|
+
|
27
34
|
Args:
|
28
35
|
uniq_id (str): A unique identifier for tracking the current session.
|
29
36
|
llm_model (BaseChatModel, optional): The language model to be used by the agent.
|
30
|
-
|
37
|
+
Defaults to ChatOpenAI(model="gpt-4o-mini", temperature=0.5).
|
31
38
|
|
32
39
|
Returns:
|
33
40
|
StateGraph: A compiled LangGraph application that enables the paper download agent to
|
34
|
-
|
41
|
+
process user queries and retrieve research papers from arXiv (using arXiv ID),
|
42
|
+
BioRxiv and MedRxiv (using DOI resolved from the paper title or provided directly).
|
35
43
|
"""
|
36
44
|
|
37
45
|
# Load Hydra configuration
|
@@ -44,7 +52,7 @@ def get_app(uniq_id, llm_model: BaseChatModel):
|
|
44
52
|
cfg = cfg.agents.talk2scholars.paper_download_agent
|
45
53
|
|
46
54
|
# Define tools properly
|
47
|
-
tools = ToolNode([download_arxiv_paper])
|
55
|
+
tools = ToolNode([download_arxiv_paper, download_medrxiv_paper, download_biorxiv_paper])
|
48
56
|
|
49
57
|
# Define the model
|
50
58
|
logger.info("Using OpenAI model %s", llm_model)
|
@@ -58,7 +66,7 @@ def get_app(uniq_id, llm_model: BaseChatModel):
|
|
58
66
|
|
59
67
|
def paper_download_agent_node(state: Talk2Scholars) -> Dict[str, Any]:
|
60
68
|
"""
|
61
|
-
Processes the current state to fetch the arXiv
|
69
|
+
Processes the current state to fetch the research paper from arXiv, BioRxiv, or MedRxiv.
|
62
70
|
"""
|
63
71
|
logger.info("Creating paper download agent node with thread_id: %s", uniq_id)
|
64
72
|
result = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
|
@@ -8,6 +8,8 @@ defaults:
|
|
8
8
|
- agents/talk2scholars/pdf_agent: default
|
9
9
|
- tools/search: default
|
10
10
|
- tools/download_arxiv_paper: default
|
11
|
+
- tools/download_biorxiv_paper: default
|
12
|
+
- tools/download_medrxiv_paper: default
|
11
13
|
- tools/single_paper_recommendation: default
|
12
14
|
- tools/multi_paper_recommendation: default
|
13
15
|
- tools/retrieve_semantic_scholar_paper_id: default
|
@@ -0,0 +1,151 @@
|
|
1
|
+
"""
|
2
|
+
Unit tests for bioRxiv paper downloading functionality, including:
|
3
|
+
- download_bioRxiv_paper tool function.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import unittest
|
7
|
+
from unittest.mock import MagicMock, patch
|
8
|
+
from langchain_core.messages import ToolMessage
|
9
|
+
|
10
|
+
from aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input import (
|
11
|
+
download_biorxiv_paper,
|
12
|
+
)
|
13
|
+
|
14
|
+
|
15
|
+
class TestDownloadBiorxivPaper(unittest.TestCase):
|
16
|
+
"""Tests for the download_bioRxiv_paper tool."""
|
17
|
+
|
18
|
+
@patch(
|
19
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.initialize"
|
20
|
+
)
|
21
|
+
@patch(
|
22
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.compose"
|
23
|
+
)
|
24
|
+
@patch(
|
25
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.requests.get"
|
26
|
+
)
|
27
|
+
def test_download_biorxiv_paper_success(self, mock_get, mock_compose, mock_initialize):
|
28
|
+
"""Test successful metadata and PDF URL retrieval."""
|
29
|
+
dummy_cfg = MagicMock()
|
30
|
+
dummy_cfg.tools.download_biorxiv_paper.api_url = "http://dummy.biorxiv.org/api"
|
31
|
+
dummy_cfg.tools.download_biorxiv_paper.request_timeout = 10
|
32
|
+
mock_compose.return_value = dummy_cfg
|
33
|
+
mock_initialize.return_value.__enter__.return_value = None
|
34
|
+
|
35
|
+
doi = "10.1101/2025.05.13.653102"
|
36
|
+
|
37
|
+
dummy_response = MagicMock()
|
38
|
+
dummy_response.status_code = 200
|
39
|
+
dummy_response.raise_for_status = MagicMock()
|
40
|
+
dummy_response.json.return_value = {
|
41
|
+
"collection": [
|
42
|
+
{
|
43
|
+
"title": "Sample BioRxiv Paper",
|
44
|
+
"authors": "Author One; Author Two",
|
45
|
+
"abstract": "This is a bioRxiv abstract.",
|
46
|
+
"date": "2025-04-25",
|
47
|
+
"doi": doi,
|
48
|
+
"link": f"https://www.biorxiv.org/content/{doi}.full.pdf"
|
49
|
+
}
|
50
|
+
]
|
51
|
+
}
|
52
|
+
mock_get.return_value = dummy_response
|
53
|
+
|
54
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
55
|
+
result = download_biorxiv_paper.run(tool_input)
|
56
|
+
update = result.update
|
57
|
+
|
58
|
+
self.assertIn("article_data", update)
|
59
|
+
self.assertIn(doi, update["article_data"])
|
60
|
+
metadata = update["article_data"][doi]
|
61
|
+
self.assertEqual(metadata["Title"], "Sample BioRxiv Paper")
|
62
|
+
self.assertEqual(metadata["Authors"], "Author One; Author Two")
|
63
|
+
self.assertEqual(metadata["Abstract"], "This is a bioRxiv abstract.")
|
64
|
+
self.assertEqual(metadata["Publication Date"], "2025-04-25")
|
65
|
+
self.assertEqual(metadata["URL"], f"https://www.biorxiv.org/content/{doi}.full.pdf")
|
66
|
+
self.assertEqual(metadata["pdf_url"], f"https://www.biorxiv.org/content/{doi}.full.pdf")
|
67
|
+
self.assertEqual(metadata["filename"], f"{doi.rsplit('/', maxsplit=1)[-1]}.pdf")
|
68
|
+
self.assertEqual(metadata["source"], "biorxiv")
|
69
|
+
self.assertEqual(metadata["biorxiv_id"], doi)
|
70
|
+
|
71
|
+
self.assertTrue(len(update["messages"]) >= 1)
|
72
|
+
self.assertIsInstance(update["messages"][0], ToolMessage)
|
73
|
+
self.assertIn("Successfully retrieved metadata and PDF URL", update["messages"][0].content)
|
74
|
+
|
75
|
+
@patch(
|
76
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.initialize"
|
77
|
+
)
|
78
|
+
@patch(
|
79
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.compose"
|
80
|
+
)
|
81
|
+
@patch(
|
82
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.requests.get"
|
83
|
+
)
|
84
|
+
def test_no_entry_found(self, mock_get, mock_compose, mock_initialize):
|
85
|
+
"""Test behavior when no 'entry' is in response."""
|
86
|
+
dummy_cfg = MagicMock()
|
87
|
+
dummy_cfg.tools.download_biorxiv_paper.api_url = "http://dummy.biorxiv.org/api"
|
88
|
+
dummy_cfg.tools.download_biorxiv_paper.request_timeout = 10
|
89
|
+
mock_compose.return_value = dummy_cfg
|
90
|
+
mock_initialize.return_value.__enter__.return_value = None
|
91
|
+
|
92
|
+
dummy_response = MagicMock()
|
93
|
+
dummy_response.status_code = 200
|
94
|
+
dummy_response.raise_for_status = MagicMock()
|
95
|
+
dummy_response.json.return_value = {} # No entry
|
96
|
+
mock_get.return_value = dummy_response
|
97
|
+
|
98
|
+
doi = "10.1101/2025.05.13.653102"
|
99
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
100
|
+
|
101
|
+
with self.assertRaises(ValueError) as context:
|
102
|
+
download_biorxiv_paper.run(tool_input)
|
103
|
+
|
104
|
+
self.assertEqual(str(context.exception), f"No metadata found for DOI: {doi}")
|
105
|
+
|
106
|
+
@patch(
|
107
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.initialize"
|
108
|
+
)
|
109
|
+
@patch(
|
110
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.hydra.compose"
|
111
|
+
)
|
112
|
+
@patch(
|
113
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_biorxiv_input.requests.get"
|
114
|
+
)
|
115
|
+
def test_no_pdf_url_found(self, mock_get, mock_compose, mock_initialize):
|
116
|
+
"""Test fallback to DOI-based PDF URL construction when 'link' is missing."""
|
117
|
+
dummy_cfg = MagicMock()
|
118
|
+
dummy_cfg.tools.download_biorxiv_paper.api_url = "http://dummy.biorxiv.org/api"
|
119
|
+
dummy_cfg.tools.download_biorxiv_paper.request_timeout = 10
|
120
|
+
mock_compose.return_value = dummy_cfg
|
121
|
+
mock_initialize.return_value.__enter__.return_value = None
|
122
|
+
|
123
|
+
doi = "10.1101/2025.05.13.653102"
|
124
|
+
|
125
|
+
dummy_response = MagicMock()
|
126
|
+
dummy_response.status_code = 200
|
127
|
+
dummy_response.raise_for_status = MagicMock()
|
128
|
+
dummy_response.json.return_value = {
|
129
|
+
"collection": [
|
130
|
+
{
|
131
|
+
"title": "Sample Biorxiv Paper",
|
132
|
+
"authors": "Author One; Author Two",
|
133
|
+
"abstract": "This is a BioRxiv abstract.",
|
134
|
+
"date": "2025-04-25",
|
135
|
+
"doi": doi
|
136
|
+
# 'link' is intentionally omitted
|
137
|
+
}
|
138
|
+
]
|
139
|
+
}
|
140
|
+
mock_get.return_value = dummy_response
|
141
|
+
|
142
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
143
|
+
result = download_biorxiv_paper.run(tool_input)
|
144
|
+
update = result.update
|
145
|
+
metadata = update["article_data"][doi]
|
146
|
+
|
147
|
+
# Assert that the PDF URL was constructed from DOI
|
148
|
+
expected_suffix = doi.rsplit('/', maxsplit=1)[-1]
|
149
|
+
expected_url = f"https://www.biorxiv.org/content/10.1101/{expected_suffix}.full.pdf"
|
150
|
+
|
151
|
+
self.assertEqual(metadata["pdf_url"], expected_url)
|
@@ -0,0 +1,151 @@
|
|
1
|
+
"""
|
2
|
+
Unit tests for medrXiv paper downloading functionality, including:
|
3
|
+
- download_medrxiv_paper tool function.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import unittest
|
7
|
+
from unittest.mock import MagicMock, patch
|
8
|
+
from langchain_core.messages import ToolMessage
|
9
|
+
|
10
|
+
from aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input import (
|
11
|
+
download_medrxiv_paper,
|
12
|
+
)
|
13
|
+
|
14
|
+
|
15
|
+
class TestDownloadMedrxivPaper(unittest.TestCase):
|
16
|
+
"""Tests for the download_medrxiv_paper tool."""
|
17
|
+
|
18
|
+
@patch(
|
19
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.initialize"
|
20
|
+
)
|
21
|
+
@patch(
|
22
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.compose"
|
23
|
+
)
|
24
|
+
@patch(
|
25
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.requests.get"
|
26
|
+
)
|
27
|
+
def test_download_medrxiv_paper_success(self, mock_get, mock_compose, mock_initialize):
|
28
|
+
"""Test successful metadata and PDF URL retrieval."""
|
29
|
+
dummy_cfg = MagicMock()
|
30
|
+
dummy_cfg.tools.download_medrxiv_paper.api_url = "http://dummy.medrxiv.org/api"
|
31
|
+
dummy_cfg.tools.download_medrxiv_paper.request_timeout = 10
|
32
|
+
mock_compose.return_value = dummy_cfg
|
33
|
+
mock_initialize.return_value.__enter__.return_value = None
|
34
|
+
|
35
|
+
doi = "10.1101/2025.04.25.25326432"
|
36
|
+
|
37
|
+
dummy_response = MagicMock()
|
38
|
+
dummy_response.status_code = 200
|
39
|
+
dummy_response.raise_for_status = MagicMock()
|
40
|
+
dummy_response.json.return_value = {
|
41
|
+
"collection": [
|
42
|
+
{
|
43
|
+
"title": "Sample Medrxiv Paper",
|
44
|
+
"authors": "Author One; Author Two",
|
45
|
+
"abstract": "This is a medRxiv abstract.",
|
46
|
+
"date": "2025-04-25",
|
47
|
+
"doi": doi,
|
48
|
+
"link": f"https://www.medrxiv.org/content/{doi}.full.pdf"
|
49
|
+
}
|
50
|
+
]
|
51
|
+
}
|
52
|
+
mock_get.return_value = dummy_response
|
53
|
+
|
54
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
55
|
+
result = download_medrxiv_paper.run(tool_input)
|
56
|
+
update = result.update
|
57
|
+
|
58
|
+
self.assertIn("article_data", update)
|
59
|
+
self.assertIn(doi, update["article_data"])
|
60
|
+
metadata = update["article_data"][doi]
|
61
|
+
self.assertEqual(metadata["Title"], "Sample Medrxiv Paper")
|
62
|
+
self.assertEqual(metadata["Authors"], "Author One; Author Two")
|
63
|
+
self.assertEqual(metadata["Abstract"], "This is a medRxiv abstract.")
|
64
|
+
self.assertEqual(metadata["Publication Date"], "2025-04-25")
|
65
|
+
self.assertEqual(metadata["URL"], f"https://www.medrxiv.org/content/{doi}.full.pdf")
|
66
|
+
self.assertEqual(metadata["pdf_url"], f"https://www.medrxiv.org/content/{doi}.full.pdf")
|
67
|
+
self.assertEqual(metadata["filename"], f"{doi.rsplit('/', maxsplit=1)[-1]}.pdf")
|
68
|
+
self.assertEqual(metadata["source"], "medrxiv")
|
69
|
+
self.assertEqual(metadata["medrxiv_id"], doi)
|
70
|
+
|
71
|
+
self.assertTrue(len(update["messages"]) >= 1)
|
72
|
+
self.assertIsInstance(update["messages"][0], ToolMessage)
|
73
|
+
self.assertIn("Successfully retrieved metadata and PDF URL", update["messages"][0].content)
|
74
|
+
|
75
|
+
@patch(
|
76
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.initialize"
|
77
|
+
)
|
78
|
+
@patch(
|
79
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.compose"
|
80
|
+
)
|
81
|
+
@patch(
|
82
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.requests.get"
|
83
|
+
)
|
84
|
+
def test_no_entry_found(self, mock_get, mock_compose, mock_initialize):
|
85
|
+
"""Test behavior when no 'entry' is in response."""
|
86
|
+
dummy_cfg = MagicMock()
|
87
|
+
dummy_cfg.tools.download_medrxiv_paper.api_url = "http://dummy.medrxiv.org/api"
|
88
|
+
dummy_cfg.tools.download_medrxiv_paper.request_timeout = 10
|
89
|
+
mock_compose.return_value = dummy_cfg
|
90
|
+
mock_initialize.return_value.__enter__.return_value = None
|
91
|
+
|
92
|
+
dummy_response = MagicMock()
|
93
|
+
dummy_response.status_code = 200
|
94
|
+
dummy_response.raise_for_status = MagicMock()
|
95
|
+
dummy_response.json.return_value = {} # No entry
|
96
|
+
mock_get.return_value = dummy_response
|
97
|
+
|
98
|
+
doi = "10.1101/2025.04.25.25326432"
|
99
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
100
|
+
|
101
|
+
with self.assertRaises(ValueError) as context:
|
102
|
+
download_medrxiv_paper.run(tool_input)
|
103
|
+
|
104
|
+
self.assertEqual(str(context.exception), f"No entry found for medRxiv ID {doi}")
|
105
|
+
|
106
|
+
@patch(
|
107
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.initialize"
|
108
|
+
)
|
109
|
+
@patch(
|
110
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.hydra.compose"
|
111
|
+
)
|
112
|
+
@patch(
|
113
|
+
"aiagents4pharma.talk2scholars.tools.paper_download.download_medrxiv_input.requests.get"
|
114
|
+
)
|
115
|
+
def test_no_pdf_url_found(self, mock_get, mock_compose, mock_initialize):
|
116
|
+
"""Test fallback to DOI-based PDF URL construction when 'link' is missing."""
|
117
|
+
dummy_cfg = MagicMock()
|
118
|
+
dummy_cfg.tools.download_medrxiv_paper.api_url = "http://dummy.medrxiv.org/api"
|
119
|
+
dummy_cfg.tools.download_medrxiv_paper.request_timeout = 10
|
120
|
+
mock_compose.return_value = dummy_cfg
|
121
|
+
mock_initialize.return_value.__enter__.return_value = None
|
122
|
+
|
123
|
+
doi = "10.1101/2025.04.25.25326432"
|
124
|
+
|
125
|
+
dummy_response = MagicMock()
|
126
|
+
dummy_response.status_code = 200
|
127
|
+
dummy_response.raise_for_status = MagicMock()
|
128
|
+
dummy_response.json.return_value = {
|
129
|
+
"collection": [
|
130
|
+
{
|
131
|
+
"title": "Sample Medrxiv Paper",
|
132
|
+
"authors": "Author One; Author Two",
|
133
|
+
"abstract": "This is a medRxiv abstract.",
|
134
|
+
"date": "2025-04-25",
|
135
|
+
"doi": doi
|
136
|
+
# 'link' is intentionally omitted
|
137
|
+
}
|
138
|
+
]
|
139
|
+
}
|
140
|
+
mock_get.return_value = dummy_response
|
141
|
+
|
142
|
+
tool_input = {"doi": doi, "tool_call_id": "test_tool_id"}
|
143
|
+
result = download_medrxiv_paper.run(tool_input)
|
144
|
+
update = result.update
|
145
|
+
metadata = update["article_data"][doi]
|
146
|
+
|
147
|
+
# Assert that the PDF URL was constructed from DOI
|
148
|
+
expected_suffix = doi.rsplit('/', maxsplit=1)[-1]
|
149
|
+
expected_url = f"https://www.medrxiv.org/content/10.1101/{expected_suffix}.full.pdf"
|
150
|
+
|
151
|
+
self.assertEqual(metadata["pdf_url"], expected_url)
|
@@ -1,6 +1,7 @@
|
|
1
1
|
#!/usr/bin/env python3
|
2
2
|
"""
|
3
|
-
This package provides modules for fetching and downloading academic papers from arXiv
|
3
|
+
This package provides modules for fetching and downloading academic papers from arXiv,
|
4
|
+
biorxiv and medrxiv.
|
4
5
|
"""
|
5
6
|
|
6
7
|
# Import modules
|
@@ -8,4 +9,6 @@ from . import download_arxiv_input
|
|
8
9
|
|
9
10
|
__all__ = [
|
10
11
|
"download_arxiv_input",
|
12
|
+
"download_biorxiv_input",
|
13
|
+
"download_medrxiv_input",
|
11
14
|
]
|
@@ -0,0 +1,112 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
"""
|
3
|
+
Tool for downloading bioRxiv paper metadata and retrieving the PDF URL.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from typing import Annotated, Any
|
8
|
+
|
9
|
+
import hydra
|
10
|
+
import requests
|
11
|
+
from langchain_core.messages import ToolMessage
|
12
|
+
from langchain_core.tools import tool
|
13
|
+
from langchain_core.tools.base import InjectedToolCallId
|
14
|
+
from langgraph.types import Command
|
15
|
+
from pydantic import BaseModel, Field
|
16
|
+
|
17
|
+
# Configure logging
|
18
|
+
logging.basicConfig(level=logging.INFO)
|
19
|
+
logger = logging.getLogger(__name__)
|
20
|
+
|
21
|
+
|
22
|
+
class DownloadBiorxivPaperInput(BaseModel):
|
23
|
+
"""Input schema for the bioRxiv paper download tool."""
|
24
|
+
|
25
|
+
doi: str = Field(description=
|
26
|
+
"""The bioRxiv DOI, from search_helper or multi_helper or single_helper,
|
27
|
+
used to retrieve the paper details and PDF URL."""
|
28
|
+
)
|
29
|
+
logger.info("DOI Received: %s", doi)
|
30
|
+
tool_call_id: Annotated[str, InjectedToolCallId]
|
31
|
+
|
32
|
+
def fetch_biorxiv_metadata(doi: str, api_url: str, request_timeout: int) -> dict:
|
33
|
+
"""
|
34
|
+
Fetch metadata for a bioRxiv paper using its DOI and extract relevant fields.
|
35
|
+
|
36
|
+
Parameters:
|
37
|
+
doi (str): The DOI of the bioRxiv paper.
|
38
|
+
|
39
|
+
Returns:
|
40
|
+
dict: A dictionary containing the title, authors, abstract, publication date, and URLs.
|
41
|
+
"""
|
42
|
+
# Strip any version suffix (e.g., v1) since bioRxiv's API is version-sensitive
|
43
|
+
clean_doi = doi.split("v")[0]
|
44
|
+
|
45
|
+
api_url = f"{api_url}{clean_doi}"
|
46
|
+
logger.info("Fetching metadata from api url: %s", api_url)
|
47
|
+
response = requests.get(api_url, timeout=request_timeout)
|
48
|
+
response.raise_for_status()
|
49
|
+
|
50
|
+
data = response.json()
|
51
|
+
if not data.get("collection"):
|
52
|
+
raise ValueError(f"No metadata found for DOI: {doi}")
|
53
|
+
|
54
|
+
data = response.json()
|
55
|
+
|
56
|
+
return data["collection"][0]
|
57
|
+
|
58
|
+
def extract_metadata(paper: dict, doi: str) -> dict:
|
59
|
+
"""
|
60
|
+
Extract relevant metadata fields from a bioRxiv paper entry.
|
61
|
+
"""
|
62
|
+
title = paper.get("title", "")
|
63
|
+
authors = paper.get("authors", "")
|
64
|
+
abstract = paper.get("abstract", "")
|
65
|
+
pub_date = paper.get("date", "")
|
66
|
+
doi_suffix = paper.get("doi", "").split("10.1101/")[-1]
|
67
|
+
pdf_url = f"https://www.biorxiv.org/content/10.1101/{doi_suffix}.full.pdf"
|
68
|
+
logger.info("PDF URL: %s", pdf_url)
|
69
|
+
return {
|
70
|
+
"Title": title,
|
71
|
+
"Authors": authors,
|
72
|
+
"Abstract": abstract,
|
73
|
+
"Publication Date": pub_date,
|
74
|
+
"URL": pdf_url,
|
75
|
+
"pdf_url": pdf_url,
|
76
|
+
"filename": f"{doi_suffix}.pdf",
|
77
|
+
"source": "biorxiv",
|
78
|
+
"biorxiv_id": doi
|
79
|
+
}
|
80
|
+
|
81
|
+
@tool(args_schema=DownloadBiorxivPaperInput, parse_docstring=True)
|
82
|
+
def download_biorxiv_paper(
|
83
|
+
doi: str,
|
84
|
+
tool_call_id: Annotated[str, InjectedToolCallId],
|
85
|
+
) -> Command[Any]:
|
86
|
+
"""
|
87
|
+
Get metadata and PDF URL for a bioRxiv paper using its DOI.
|
88
|
+
"""
|
89
|
+
logger.info("Fetching metadata from bioRxiv for DOI: %s", doi)
|
90
|
+
|
91
|
+
# Load configuration
|
92
|
+
with hydra.initialize(version_base=None, config_path="../../configs"):
|
93
|
+
cfg = hydra.compose(
|
94
|
+
config_name="config", overrides=["tools/download_biorxiv_paper=default"]
|
95
|
+
)
|
96
|
+
api_url = cfg.tools.download_biorxiv_paper.api_url
|
97
|
+
request_timeout = cfg.tools.download_biorxiv_paper.request_timeout
|
98
|
+
logger.info("API URL: %s", api_url)
|
99
|
+
logger.info("Request Timeout: %s", request_timeout)
|
100
|
+
|
101
|
+
# Fetch metadata
|
102
|
+
raw_data = fetch_biorxiv_metadata(doi, api_url, request_timeout)
|
103
|
+
metadata = extract_metadata(raw_data, doi)
|
104
|
+
article_data = {doi: metadata}
|
105
|
+
content = f"Successfully retrieved metadata and PDF URL for bioRxiv DOI {doi}"
|
106
|
+
|
107
|
+
return Command(
|
108
|
+
update={
|
109
|
+
"article_data": article_data,
|
110
|
+
"messages": [ToolMessage(content=content, tool_call_id=tool_call_id)],
|
111
|
+
}
|
112
|
+
)
|
@@ -0,0 +1,112 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
"""
|
3
|
+
Tool for downloading medRxiv paper metadata and retrieving the PDF URL.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from typing import Annotated, Any
|
8
|
+
|
9
|
+
import hydra
|
10
|
+
import requests
|
11
|
+
from langchain_core.messages import ToolMessage
|
12
|
+
from langchain_core.tools import tool
|
13
|
+
from langchain_core.tools.base import InjectedToolCallId
|
14
|
+
from langgraph.types import Command
|
15
|
+
from pydantic import BaseModel, Field
|
16
|
+
|
17
|
+
# Configure logging
|
18
|
+
logging.basicConfig(level=logging.INFO)
|
19
|
+
logger = logging.getLogger(__name__)
|
20
|
+
|
21
|
+
|
22
|
+
class DownloadMedrxivPaperInput(BaseModel):
|
23
|
+
"""Input schema for the medRxiv paper download tool."""
|
24
|
+
|
25
|
+
doi: str = Field(description=
|
26
|
+
"""The medRxiv DOI, from search_helper or multi_helper or single_helper,
|
27
|
+
used to retrieve the paper details and PDF URL."""
|
28
|
+
)
|
29
|
+
logger.info("DOI Received: %s", doi)
|
30
|
+
tool_call_id: Annotated[str, InjectedToolCallId]
|
31
|
+
|
32
|
+
# Fetching raw metadata from medRxiv API for a given DOI
|
33
|
+
def fetch_medrxiv_metadata(doi: str, api_url: str, request_timeout: int) -> dict:
|
34
|
+
"""
|
35
|
+
Fetch metadata for a medRxiv paper using its DOI and extract relevant fields.
|
36
|
+
|
37
|
+
Parameters:
|
38
|
+
doi (str): The DOI of the medRxiv paper.
|
39
|
+
|
40
|
+
Returns:
|
41
|
+
dict: A dictionary containing the title, authors, abstract, publication date, and URLs.
|
42
|
+
"""
|
43
|
+
# Strip any version suffix (e.g., v1) since bioRxiv's API is version-sensitive
|
44
|
+
clean_doi = doi.split("v")[0]
|
45
|
+
|
46
|
+
api_url = f"{api_url}{clean_doi}"
|
47
|
+
logger.info("Fetching metadata from api url: %s", api_url)
|
48
|
+
response = requests.get(api_url, timeout=request_timeout)
|
49
|
+
response.raise_for_status()
|
50
|
+
|
51
|
+
data = response.json()
|
52
|
+
if not data.get("collection"):
|
53
|
+
raise ValueError(f"No entry found for medRxiv ID {doi}")
|
54
|
+
|
55
|
+
return data["collection"][0]
|
56
|
+
|
57
|
+
# Extracting relevant metadata fields from the raw data
|
58
|
+
def extract_metadata(paper: dict, doi: str) -> dict:
|
59
|
+
"""
|
60
|
+
Extract relevant metadata fields from a medRxiv paper entry.
|
61
|
+
"""
|
62
|
+
title = paper.get("title", "")
|
63
|
+
authors = paper.get("authors", "")
|
64
|
+
abstract = paper.get("abstract", "")
|
65
|
+
pub_date = paper.get("date", "")
|
66
|
+
doi_suffix = paper.get("doi", "").split("10.1101/")[-1]
|
67
|
+
pdf_url = f"https://www.medrxiv.org/content/10.1101/{doi_suffix}.full.pdf"
|
68
|
+
logger.info("PDF URL: %s", pdf_url)
|
69
|
+
return {
|
70
|
+
"Title": title,
|
71
|
+
"Authors": authors,
|
72
|
+
"Abstract": abstract,
|
73
|
+
"Publication Date": pub_date,
|
74
|
+
"URL": pdf_url,
|
75
|
+
"pdf_url": pdf_url,
|
76
|
+
"filename": f"{doi_suffix}.pdf",
|
77
|
+
"source": "medrxiv",
|
78
|
+
"medrxiv_id": doi
|
79
|
+
}
|
80
|
+
|
81
|
+
# Tool to download medRxiv paper metadata and PDF URL
|
82
|
+
@tool(args_schema=DownloadMedrxivPaperInput, parse_docstring=True)
|
83
|
+
def download_medrxiv_paper(
|
84
|
+
doi: str,
|
85
|
+
tool_call_id: Annotated[str, InjectedToolCallId],
|
86
|
+
) -> Command[Any]:
|
87
|
+
"""
|
88
|
+
Get metadata and PDF URL for a medRxiv paper using its doi or medrxiv id.
|
89
|
+
"""
|
90
|
+
logger.info("Fetching metadata from medRxiv for DOI: %s", doi)
|
91
|
+
|
92
|
+
# Load configuration
|
93
|
+
with hydra.initialize(version_base=None, config_path="../../configs"):
|
94
|
+
cfg = hydra.compose(
|
95
|
+
config_name="config", overrides=["tools/download_medrxiv_paper=default"]
|
96
|
+
)
|
97
|
+
api_url = cfg.tools.download_medrxiv_paper.api_url
|
98
|
+
request_timeout = cfg.tools.download_medrxiv_paper.request_timeout
|
99
|
+
logger.info("API URL: %s", api_url)
|
100
|
+
|
101
|
+
raw_data = fetch_medrxiv_metadata(doi, api_url, request_timeout)
|
102
|
+
metadata = extract_metadata(raw_data, doi)
|
103
|
+
article_data = {doi: metadata}
|
104
|
+
|
105
|
+
content = f"Successfully retrieved metadata and PDF URL for medRxiv DOI {doi}"
|
106
|
+
|
107
|
+
return Command(
|
108
|
+
update={
|
109
|
+
"article_data": article_data,
|
110
|
+
"messages": [ToolMessage(content=content, tool_call_id=tool_call_id)],
|
111
|
+
}
|
112
|
+
)
|
@@ -500,8 +500,27 @@ def question_and_answer(
|
|
500
500
|
if isinstance(paper, dict)
|
501
501
|
)
|
502
502
|
|
503
|
+
has_biorxiv_papers = any(
|
504
|
+
paper.get("source") == "biorxiv"
|
505
|
+
for paper in article_data.values()
|
506
|
+
if isinstance(paper, dict)
|
507
|
+
)
|
508
|
+
|
509
|
+
has_medrxiv_papers = any(
|
510
|
+
paper.get("source") == "medrxiv"
|
511
|
+
for paper in article_data.values()
|
512
|
+
if isinstance(paper, dict)
|
513
|
+
)
|
514
|
+
|
503
515
|
# Choose papers to use
|
504
516
|
selected_paper_ids = []
|
517
|
+
has_combimed_papers = (
|
518
|
+
has_uploaded_papers
|
519
|
+
or has_zotero_papers
|
520
|
+
or has_arxiv_papers
|
521
|
+
or has_biorxiv_papers
|
522
|
+
or has_medrxiv_papers
|
523
|
+
)
|
505
524
|
|
506
525
|
if paper_ids:
|
507
526
|
# Use explicitly specified papers
|
@@ -515,7 +534,7 @@ def question_and_answer(
|
|
515
534
|
"%s: None of the provided paper_ids %s were found", call_id, paper_ids
|
516
535
|
)
|
517
536
|
|
518
|
-
elif use_all_papers or
|
537
|
+
elif use_all_papers or has_combimed_papers:
|
519
538
|
# Use all available papers if explicitly requested or if we have papers from any source
|
520
539
|
selected_paper_ids = list(article_data.keys())
|
521
540
|
logger.info(
|
@@ -143,6 +143,7 @@ class MultiPaperRecData:
|
|
143
143
|
],
|
144
144
|
"URL": paper.get("url", "N/A"),
|
145
145
|
"arxiv_id": paper.get("externalIds", {}).get("ArXiv", "N/A"),
|
146
|
+
"doi": paper.get("externalIds", {}).get("DOI", "N/A"),
|
146
147
|
}
|
147
148
|
for paper in self.recommendations
|
148
149
|
if paper.get("title") and paper.get("authors")
|
@@ -158,6 +159,7 @@ class MultiPaperRecData:
|
|
158
159
|
f"{i+1}. {paper['Title']} ({paper['Year']}; "
|
159
160
|
f"semantic_scholar_paper_id: {paper['semantic_scholar_paper_id']}; "
|
160
161
|
f"arXiv ID: {paper['arxiv_id']})"
|
162
|
+
f"doi: {paper['doi']})"
|
161
163
|
for i, paper in enumerate(top_papers)
|
162
164
|
]
|
163
165
|
)
|
@@ -125,6 +125,7 @@ class SearchData:
|
|
125
125
|
],
|
126
126
|
"URL": paper.get("url", "N/A"),
|
127
127
|
"arxiv_id": paper.get("externalIds", {}).get("ArXiv", "N/A"),
|
128
|
+
"doi": paper.get("externalIds", {}).get("DOI", "N/A"),
|
128
129
|
}
|
129
130
|
for paper in self.papers
|
130
131
|
if paper.get("title") and paper.get("authors")
|
@@ -140,6 +141,7 @@ class SearchData:
|
|
140
141
|
f"{i+1}. {paper['Title']} ({paper['Year']}; "
|
141
142
|
f"semantic_scholar_paper_id: {paper['semantic_scholar_paper_id']}; "
|
142
143
|
f"arXiv ID: {paper['arxiv_id']})"
|
144
|
+
f"doi: {paper['doi']})"
|
143
145
|
for i, paper in enumerate(top_papers)
|
144
146
|
]
|
145
147
|
)
|
@@ -136,6 +136,7 @@ class SinglePaperRecData:
|
|
136
136
|
],
|
137
137
|
"URL": paper.get("url", "N/A"),
|
138
138
|
"arxiv_id": paper.get("externalIds", {}).get("ArXiv", "N/A"),
|
139
|
+
"doi": paper.get("externalIds", {}).get("DOI", "N/A"),
|
139
140
|
}
|
140
141
|
for paper in self.recommendations
|
141
142
|
if paper.get("title") and paper.get("authors")
|
@@ -151,6 +152,7 @@ class SinglePaperRecData:
|
|
151
152
|
f"{i+1}. {paper['Title']} ({paper['Year']}; "
|
152
153
|
f"semantic_scholar_paper_id: {paper['semantic_scholar_paper_id']}; "
|
153
154
|
f"arXiv ID: {paper['arxiv_id']})"
|
155
|
+
f"doi: {paper['doi']})"
|
154
156
|
for i, paper in enumerate(top_papers)
|
155
157
|
]
|
156
158
|
)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.39.0
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
@@ -147,12 +147,12 @@ aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py,sha256=m5p0yoJb7I
|
|
147
147
|
aiagents4pharma/talk2scholars/__init__.py,sha256=NOZxTklAH1j1ggu97Ib8Xn9LCKudEWt-8dx8w7yxVD8,180
|
148
148
|
aiagents4pharma/talk2scholars/agents/__init__.py,sha256=c_0Pk85bt-RfK5RMyALM3MXo3qXVMoYS7BOqM9wuFME,317
|
149
149
|
aiagents4pharma/talk2scholars/agents/main_agent.py,sha256=oCSWPj3TUgTIERmYbBTYipNrU1g956LXJEUx-7-KAQ0,3354
|
150
|
-
aiagents4pharma/talk2scholars/agents/paper_download_agent.py,sha256=
|
150
|
+
aiagents4pharma/talk2scholars/agents/paper_download_agent.py,sha256=J_kEl8joQfM80211xlNLZA9RkN52fY58dbCisuiEft8,3687
|
151
151
|
aiagents4pharma/talk2scholars/agents/pdf_agent.py,sha256=GEXzJMQxIeZ7zLP-AlnTMU-n_KXZ7g22Qd9L3USIc_4,3626
|
152
152
|
aiagents4pharma/talk2scholars/agents/s2_agent.py,sha256=oui0CMSyXmBGBJ7LnYq8Ce0V8Qc3BS6GgH5Qx5wI6oM,4565
|
153
153
|
aiagents4pharma/talk2scholars/agents/zotero_agent.py,sha256=NAmEURIhH-sjXGO-dqAigUA10m-Re9Qe1hY8db4CIP0,4370
|
154
154
|
aiagents4pharma/talk2scholars/configs/__init__.py,sha256=Y9-4PxsNCMoxyyQgDSbPByJnO9wnyem5SYL3eOZt1HY,189
|
155
|
-
aiagents4pharma/talk2scholars/configs/config.yaml,sha256
|
155
|
+
aiagents4pharma/talk2scholars/configs/config.yaml,sha256=F7BCgmcnhfkyKT6qFL11E_iwTYPmF8W_0b1n4KAaSho,680
|
156
156
|
aiagents4pharma/talk2scholars/configs/agents/__init__.py,sha256=plv5Iw34gvbGZbRyJapvoOiiFXekRQIwjV_yy5AR_SI,104
|
157
157
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/__init__.py,sha256=D94LW4cXLmJe4dNl5qoR9QN0JnBqGLbQDgDLqhCNUE0,213
|
158
158
|
aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
@@ -168,6 +168,8 @@ aiagents4pharma/talk2scholars/configs/app/frontend/__init__.py,sha256=fqQQ-GlRcb
|
|
168
168
|
aiagents4pharma/talk2scholars/configs/app/frontend/default.yaml,sha256=A6nYjrgzEyRv5JYsGN7oqNX4-tufMBZ6mg-A7bMX6V4,906
|
169
169
|
aiagents4pharma/talk2scholars/configs/tools/__init__.py,sha256=6pHPF0ZGY78SD6KPMukd_xrfO1ocVXcyrsrB-kz-OnI,402
|
170
170
|
aiagents4pharma/talk2scholars/configs/tools/download_arxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
171
|
+
aiagents4pharma/talk2scholars/configs/tools/download_biorxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
172
|
+
aiagents4pharma/talk2scholars/configs/tools/download_medrxiv_paper/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
171
173
|
aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
172
174
|
aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/default.yaml,sha256=comNgL9hRpH--IWuEsrN6hV5WdrJmh-ZsRh7hbryVhg,631
|
173
175
|
aiagents4pharma/talk2scholars/configs/tools/question_and_answer/__init__.py,sha256=fqQQ-GlRcbzru2KmEk3oMma0R6_SzGM8dOXzYeU4oVA,46
|
@@ -187,6 +189,8 @@ aiagents4pharma/talk2scholars/tests/__init__.py,sha256=U3PsTiUZaUBD1IZanFGkDIOdF
|
|
187
189
|
aiagents4pharma/talk2scholars/tests/test_llm_main_integration.py,sha256=FBRqS06IKJYFOudQEHQr-9oJ4tftkH-gTCowTAqwWSg,3686
|
188
190
|
aiagents4pharma/talk2scholars/tests/test_main_agent.py,sha256=IZYSocYVwqPil2lF6L07mKm8PUq7vjopmqNiCm6IJEA,6876
|
189
191
|
aiagents4pharma/talk2scholars/tests/test_paper_download_agent.py,sha256=gKSQp-sw62FplNnGYW0wv2ZIUEefh3o0tFWbRzy9yLs,5068
|
192
|
+
aiagents4pharma/talk2scholars/tests/test_paper_download_biorxiv.py,sha256=gosuW4VBXyorQXbf0TpgAIT2hQjEeuvTTnT1jnoBYqM,6405
|
193
|
+
aiagents4pharma/talk2scholars/tests/test_paper_download_medrxiv.py,sha256=iNq9vEIVapmnUZTRJXCv_UoaWThGapW7Vt_2BmZG9NE,6414
|
190
194
|
aiagents4pharma/talk2scholars/tests/test_paper_download_tools.py,sha256=3mycLeEgH5XkwxuoXfTpQb8c8xFtIX2HjVnACPrSf60,7141
|
191
195
|
aiagents4pharma/talk2scholars/tests/test_pdf_agent.py,sha256=scGCTgka2JuoUhzZwzDn0OgIYihOLhXbwb5uGFR02aI,4302
|
192
196
|
aiagents4pharma/talk2scholars/tests/test_question_and_answer_tool.py,sha256=KR4GjjGgBjWXwEVzSh4ZpYjcWPq-EaZTT_fzRheb0uY,37286
|
@@ -207,10 +211,12 @@ aiagents4pharma/talk2scholars/tests/test_zotero_pdf_downloader_utils.py,sha256=N
|
|
207
211
|
aiagents4pharma/talk2scholars/tests/test_zotero_read.py,sha256=E7ncgspEzhJTvmZuKplugZJPPWsoiFU_xLUg-oz6qkI,29100
|
208
212
|
aiagents4pharma/talk2scholars/tests/test_zotero_write.py,sha256=qWlO0XoZJ6vxUxgisjYv9Np87CoTEDxiQBEOhdj9foo,6111
|
209
213
|
aiagents4pharma/talk2scholars/tools/__init__.py,sha256=c8pYHDqR9P0Frz2jWjbvyizfSTBMlMFzGsiQzx2KC9c,189
|
210
|
-
aiagents4pharma/talk2scholars/tools/paper_download/__init__.py,sha256=
|
214
|
+
aiagents4pharma/talk2scholars/tools/paper_download/__init__.py,sha256=Lu5FmBxDH8mIIYE41G8_BKYXUf-vHIYVwujidbeydl4,295
|
211
215
|
aiagents4pharma/talk2scholars/tools/paper_download/download_arxiv_input.py,sha256=WTWvXbh0C96OoMoPf8Bgu0AgorsdkWslac_WqlHc4bo,3900
|
216
|
+
aiagents4pharma/talk2scholars/tools/paper_download/download_biorxiv_input.py,sha256=R92OaR4Omilj-v-rT0Me_BhxN8-AF0sbDwhUxNCUTm4,3718
|
217
|
+
aiagents4pharma/talk2scholars/tools/paper_download/download_medrxiv_input.py,sha256=UaHsdZXseUMQfiIovD0kS8r9DZ6KJpRGtTZyOCTRYVs,3786
|
212
218
|
aiagents4pharma/talk2scholars/tools/pdf/__init__.py,sha256=DPpOfON3AySko5EBBAe_3udOoSaAdQWNyGeNvJyV5R8,138
|
213
|
-
aiagents4pharma/talk2scholars/tools/pdf/question_and_answer.py,sha256=
|
219
|
+
aiagents4pharma/talk2scholars/tools/pdf/question_and_answer.py,sha256=pzJhSOdchyS3J4Tzoh7aFMALJFCqEk4Xh4LCDa-5I1I,23406
|
214
220
|
aiagents4pharma/talk2scholars/tools/s2/__init__.py,sha256=w_eiw0pG8HNp79F9O_icXs_Yl_4odsmagYNKDTjIsvk,428
|
215
221
|
aiagents4pharma/talk2scholars/tools/s2/display_dataframe.py,sha256=wOZ7UJq4b8vl7NU9mU3BW_nRmCIkeBvc6nbGGegysek,3181
|
216
222
|
aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py,sha256=N7-6dzRI71bK7MG3-A4G505YnNvAMJW_Qjjtcoo4JYw,2799
|
@@ -219,9 +225,9 @@ aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py,sha
|
|
219
225
|
aiagents4pharma/talk2scholars/tools/s2/search.py,sha256=p86RLy_9bMxm3KTDL2L0Ilb3yeF4K6IIkZCgbt4CsiE,2529
|
220
226
|
aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py,sha256=rnl6Bb7mKXg_lsProAYaSEJNIzWgNVZuDHqD-dDe9EI,2763
|
221
227
|
aiagents4pharma/talk2scholars/tools/s2/utils/__init__.py,sha256=wBTPVgiXbmIJUMouOQRwojgk5PJXeEinDJzHzEToZbU,229
|
222
|
-
aiagents4pharma/talk2scholars/tools/s2/utils/multi_helper.py,sha256=
|
223
|
-
aiagents4pharma/talk2scholars/tools/s2/utils/search_helper.py,sha256=
|
224
|
-
aiagents4pharma/talk2scholars/tools/s2/utils/single_helper.py,sha256=
|
228
|
+
aiagents4pharma/talk2scholars/tools/s2/utils/multi_helper.py,sha256=kjzZ90Cd23hXBQ861Z2BEjE1VvI02zxc1mIj2S7YWFo,7379
|
229
|
+
aiagents4pharma/talk2scholars/tools/s2/utils/search_helper.py,sha256=AembYVndEOwgcDz_n1VWAydfL8ufQ5pEokTKkrx47jA,6474
|
230
|
+
aiagents4pharma/talk2scholars/tools/s2/utils/single_helper.py,sha256=zLENnFSyQIpXqmJKow1XHS9pWbf27tsSUEvzydNCj9I,7094
|
225
231
|
aiagents4pharma/talk2scholars/tools/zotero/__init__.py,sha256=wXiQILLq-utV35PkDUpm_F074mG9yRMyGQAFlr9UAOw,197
|
226
232
|
aiagents4pharma/talk2scholars/tools/zotero/zotero_read.py,sha256=Fgv7PIkIlRqfl8EprcXqr1S4wtbSG8itv7x-3nMf3Rc,3990
|
227
233
|
aiagents4pharma/talk2scholars/tools/zotero/zotero_review.py,sha256=iqwpolg7GWAjXizubLrPaAsgOpsOhKz-tFRyLOiBvC0,6325
|
@@ -232,8 +238,8 @@ aiagents4pharma/talk2scholars/tools/zotero/utils/review_helper.py,sha256=IPD1V9y
|
|
232
238
|
aiagents4pharma/talk2scholars/tools/zotero/utils/write_helper.py,sha256=ALwLecy1QVebbsmXJiDj1GhGmyhq2R2tZlAyEl1vfhw,7410
|
233
239
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_path.py,sha256=oIrfbOySgts50ksHKyjcWjRkPRIS88g3Lc0v9mBkU8w,6375
|
234
240
|
aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_pdf_downloader.py,sha256=ERBha8afU6Q1EaRBe9qB8tchOzZ4_KfFgDW6EElOJoU,4816
|
235
|
-
aiagents4pharma-1.
|
236
|
-
aiagents4pharma-1.
|
237
|
-
aiagents4pharma-1.
|
238
|
-
aiagents4pharma-1.
|
239
|
-
aiagents4pharma-1.
|
241
|
+
aiagents4pharma-1.39.0.dist-info/licenses/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
242
|
+
aiagents4pharma-1.39.0.dist-info/METADATA,sha256=ITwj9yujMnDVZtQM3n09ZxDv4ueGCGDlG2JZOvU3n7k,16788
|
243
|
+
aiagents4pharma-1.39.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
244
|
+
aiagents4pharma-1.39.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
|
245
|
+
aiagents4pharma-1.39.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|