aiagents4pharma 1.35.0__py3-none-any.whl → 1.36.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,17 +2,23 @@
2
2
  Test cases for utils/embeddings/sentence_transformer.py
3
3
  """
4
4
 
5
- import pytest
6
5
  import numpy as np
6
+ import pytest
7
+
7
8
  from ..utils.embeddings.sentence_transformer import EmbeddingWithSentenceTransformer
8
9
 
10
+
9
11
  @pytest.fixture(name="embedding_model")
10
12
  def embedding_model_fixture():
11
13
  """
12
14
  Fixture for creating an instance of EmbeddingWithSentenceTransformer.
13
15
  """
14
16
  model_name = "sentence-transformers/all-MiniLM-L6-v1" # Small model for testing
15
- return EmbeddingWithSentenceTransformer(model_name=model_name)
17
+ embedding_model = EmbeddingWithSentenceTransformer(model_name=model_name)
18
+ # Move underlying model to CPU for testing
19
+ embedding_model.model.to("cpu")
20
+ return embedding_model
21
+
16
22
 
17
23
  def test_embed_documents(embedding_model):
18
24
  """
@@ -27,6 +33,7 @@ def test_embed_documents(embedding_model):
27
33
  assert len(embeddings[0]) == 384
28
34
  assert embeddings.dtype == np.float32
29
35
 
36
+
30
37
  def test_embed_query(embedding_model):
31
38
  """
32
39
  Test the embed_query method of EmbeddingWithSentenceTransformer class.
@@ -19,24 +19,28 @@ from ..utils.enrichments.ols_terms import EnrichmentWithOLS
19
19
  CL_DESC = "CD4-positive, alpha-beta T cell"
20
20
  GO_DESC = "Any process that activates or increases the frequency, rate or extent"
21
21
  UBERON_DESC = "The olfactory organ of vertebrates, consisting of nares"
22
- HP_DESC = "Hypoplasia of the antihelix"
22
+ HP_DESC = "Developmental hypoplasia of the antihelix"
23
23
  MONDO_DESC = "A gastrointestinal disorder characterized by chronic inflammation"
24
24
 
25
25
  # The expected description for the non-existing term is None
26
26
 
27
+
27
28
  @pytest.fixture(name="enrich_obj")
28
29
  def fixture_uniprot_config():
29
30
  """Return a dictionary with the configuration for OLS enrichment."""
30
31
  return EnrichmentWithOLS()
31
32
 
33
+
32
34
  def test_enrich_documents(enrich_obj):
33
35
  """Test the enrich_documents method."""
34
- ols_terms = ["CL_0000899",
35
- "GO_0046427",
36
- "UBERON_0000004",
37
- "HP_0009739",
38
- "MONDO_0005011",
39
- "XYZ_0000000"]
36
+ ols_terms = [
37
+ "CL_0000899",
38
+ "GO_0046427",
39
+ "UBERON_0000004",
40
+ "HP_0009739",
41
+ "MONDO_0005011",
42
+ "XYZ_0000000",
43
+ ]
40
44
  descriptions = enrich_obj.enrich_documents(ols_terms)
41
45
  assert descriptions[0].startswith(CL_DESC)
42
46
  assert descriptions[1].startswith(GO_DESC)
@@ -45,14 +49,17 @@ def test_enrich_documents(enrich_obj):
45
49
  assert descriptions[4].startswith(MONDO_DESC)
46
50
  assert descriptions[5] is None
47
51
 
52
+
48
53
  def test_enrich_documents_with_rag(enrich_obj):
49
54
  """Test the enrich_documents_with_rag method."""
50
- ols_terms = ["CL_0000899",
51
- "GO_0046427",
52
- "UBERON_0000004",
53
- "HP_0009739",
54
- "MONDO_0005011",
55
- "XYZ_0000000"]
55
+ ols_terms = [
56
+ "CL_0000899",
57
+ "GO_0046427",
58
+ "UBERON_0000004",
59
+ "HP_0009739",
60
+ "MONDO_0005011",
61
+ "XYZ_0000000",
62
+ ]
56
63
  descriptions = enrich_obj.enrich_documents_with_rag(ols_terms, None)
57
64
  assert descriptions[0].startswith(CL_DESC)
58
65
  assert descriptions[1].startswith(GO_DESC)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aiagents4pharma
3
- Version: 1.35.0
3
+ Version: 1.36.0
4
4
  Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: MIT License
@@ -90,6 +90,17 @@ Our toolkit currently consists of the following agents:
90
90
 
91
91
  ![AIAgents4Pharma](docs/assets/AIAgents4Pharma.png)
92
92
 
93
+ ## News
94
+
95
+ - T2B and T2KG accepted at the MLGenX workshop during ICLR #2025 in Singapore. [Read More](https://openreview.net/forum?id=av4QhBNeZo)
96
+
97
+ <div align="center">
98
+ <strong>Watch the presentation:</strong><br><br>
99
+ <a href="https://www.youtube.com/watch?v=3cU_OxY4HiE">
100
+ <img src="https://img.youtube.com/vi/3cU_OxY4HiE/0.jpg" alt="Watch the presentation" width="480">
101
+ </a>
102
+ </div>
103
+
93
104
  ## Getting Started
94
105
 
95
106
  ### Installation
@@ -250,15 +261,19 @@ If you are using docker on Windows, please follow these [Windows Setup Notes](#n
250
261
  ![Python Version from PEP 621 TOML](https://img.shields.io/python/required-version-toml?tomlFilePath=https%3A%2F%2Fraw.githubusercontent.com%2FVirtualPatientEngine%2FAIAgents4Pharma%2Frefs%2Fheads%2Fmain%2Fpyproject.toml)
251
262
 
252
263
  1. **Clone the repository:**
253
- ```sh
254
- git clone https://github.com/VirtualPatientEngine/AIAgents4Pharma
255
- cd AIAgents4Pharma
256
- ```
264
+
265
+ ```sh
266
+ git clone https://github.com/VirtualPatientEngine/AIAgents4Pharma
267
+ cd AIAgents4Pharma
268
+ ```
269
+
257
270
  2. **Install dependencies:**
258
271
 
259
- ```python
260
- pip install -r requirements.txt
261
- ```
272
+ We use Conda as our environment manager, Follow the official [Quickstart](https://www.anaconda.com/docs/getting-started/miniconda/install#quickstart-install-instructions) install instructions provided by anaconda/miniconda.
273
+
274
+ ```python
275
+ conda create --name AIAgents4Pharma python=3.12 -y && conda activate AIAgents4Pharma && pip install --upgrade pip && pip install -r requirements.txt
276
+ ```
262
277
 
263
278
  3. **Initialize API Keys**
264
279
 
@@ -108,10 +108,10 @@ aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_embeddings.py,s
108
108
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py,sha256=hzX84pheZdEsTtikF2KtBFiH44_xPjYXxLA6p4Ax1CY,1623
109
109
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_nim_molmim.py,sha256=LwtTZ-M7lHGxvRrGBXbyIT8AkA3T2OpeKqtNq3RK7Ik,2164
110
110
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_ollama.py,sha256=jn-TrPwF0aR9kVoerwkbMZa3U6Hc6HjV6Zoau4qSH4g,1834
111
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py,sha256=Qxo6WeIDRy8aLh1tNKw0kSlzmUj3MtTak63oW2YwB24,1327
111
+ aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py,sha256=Xkuf2UFGCXldj1zcsh6kqfQYLDf5i0B6KP3KcmNLSzQ,1452
112
112
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_enrichments.py,sha256=N6HRr4lWHXY7bTHe2uXJe4D_EG9WqZPibZne6qLl9_k,1447
113
113
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py,sha256=JhY7axvVULLywDJ2ctA-gob5YPeaJYWsaMNjHT6L9CU,3021
114
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ols.py,sha256=woSm723ns9fHieu-QWFiniLlm5h22v1qzO4v6n20K5g,2413
114
+ aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ols.py,sha256=5GTSkfKSDS5geR0YfilfnDyUsYli0hv7N8PiDwRvlIE,2370
115
115
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_pubchem.py,sha256=0SgYvqdvxseUYTHx2KuSNI2hnmQ3VVVz0F-79_-P41o,1769
116
116
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_reactome.py,sha256=r1D74mavsnSCm4xnWl0n0nM9PZqgm3doD2dulNrKNVQ,1754
117
117
  aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_uniprot.py,sha256=G13Diw7cA5TGINUNO1CDnN4rM6KbepxRXNjuzY578DI,1611
@@ -225,8 +225,8 @@ aiagents4pharma/talk2scholars/tools/zotero/utils/read_helper.py,sha256=lyrfpx8NH
225
225
  aiagents4pharma/talk2scholars/tools/zotero/utils/review_helper.py,sha256=IPD1V9yrBYaDnRe7sR6PrpwR82OBJbA2P_Tc6RbxAbM,2748
226
226
  aiagents4pharma/talk2scholars/tools/zotero/utils/write_helper.py,sha256=ALwLecy1QVebbsmXJiDj1GhGmyhq2R2tZlAyEl1vfhw,7410
227
227
  aiagents4pharma/talk2scholars/tools/zotero/utils/zotero_path.py,sha256=oIrfbOySgts50ksHKyjcWjRkPRIS88g3Lc0v9mBkU8w,6375
228
- aiagents4pharma-1.35.0.dist-info/licenses/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
229
- aiagents4pharma-1.35.0.dist-info/METADATA,sha256=hxxS-4rneg7sMK4zjMbPx2_ppuDP-OcKwVdKgu3Uf-M,16043
230
- aiagents4pharma-1.35.0.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
231
- aiagents4pharma-1.35.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
232
- aiagents4pharma-1.35.0.dist-info/RECORD,,
228
+ aiagents4pharma-1.36.0.dist-info/licenses/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
229
+ aiagents4pharma-1.36.0.dist-info/METADATA,sha256=4S4eCTvL7mAxQUmSDp4SIyn2WAYuOivLpcCdL-j5dGQ,16757
230
+ aiagents4pharma-1.36.0.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
231
+ aiagents4pharma-1.36.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
232
+ aiagents4pharma-1.36.0.dist-info/RECORD,,