aiagents4pharma 1.24.0__py3-none-any.whl → 1.25.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/__init__.py +1 -0
- aiagents4pharma/talk2aiagents4pharma/__init__.py +6 -0
- aiagents4pharma/talk2aiagents4pharma/agents/__init__.py +5 -0
- aiagents4pharma/talk2aiagents4pharma/agents/main_agent.py +52 -0
- aiagents4pharma/talk2aiagents4pharma/configs/__init__.py +5 -0
- aiagents4pharma/talk2aiagents4pharma/configs/agents/__init__.py +5 -0
- aiagents4pharma/talk2aiagents4pharma/configs/agents/main_agent/default.yaml +12 -0
- aiagents4pharma/talk2aiagents4pharma/configs/config.yaml +3 -0
- aiagents4pharma/talk2aiagents4pharma/states/__init__.py +4 -0
- aiagents4pharma/talk2aiagents4pharma/states/state_talk2aiagents4pharma.py +16 -0
- aiagents4pharma/talk2aiagents4pharma/tests/__init__.py +3 -0
- aiagents4pharma/talk2aiagents4pharma/tests/test_main_agent.py +111 -0
- aiagents4pharma/talk2biomodels/agents/t2b_agent.py +2 -1
- aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py +2 -1
- {aiagents4pharma-1.24.0.dist-info → aiagents4pharma-1.25.0.dist-info}/METADATA +23 -24
- {aiagents4pharma-1.24.0.dist-info → aiagents4pharma-1.25.0.dist-info}/RECORD +19 -8
- {aiagents4pharma-1.24.0.dist-info → aiagents4pharma-1.25.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.24.0.dist-info → aiagents4pharma-1.25.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.24.0.dist-info → aiagents4pharma-1.25.0.dist-info}/top_level.txt +0 -0
aiagents4pharma/__init__.py
CHANGED
@@ -0,0 +1,52 @@
|
|
1
|
+
#/usr/bin/env python3
|
2
|
+
|
3
|
+
'''
|
4
|
+
This is the main agent file for the AIAgents4Pharma.
|
5
|
+
'''
|
6
|
+
|
7
|
+
import logging
|
8
|
+
import hydra
|
9
|
+
from langgraph_supervisor import create_supervisor
|
10
|
+
from langchain_openai import ChatOpenAI
|
11
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
12
|
+
from langgraph.checkpoint.memory import MemorySaver
|
13
|
+
from ...talk2biomodels.agents.t2b_agent import get_app as get_app_t2b
|
14
|
+
from ...talk2knowledgegraphs.agents.t2kg_agent import get_app as get_app_t2kg
|
15
|
+
from ..states.state_talk2aiagents4pharma import Talk2AIAgents4Pharma
|
16
|
+
|
17
|
+
# Initialize logger
|
18
|
+
logging.basicConfig(level=logging.INFO)
|
19
|
+
logger = logging.getLogger(__name__)
|
20
|
+
|
21
|
+
def get_app(uniq_id,
|
22
|
+
llm_model: BaseChatModel = ChatOpenAI(model='gpt-4o-mini', temperature=0)):
|
23
|
+
'''
|
24
|
+
This function returns the langraph app.
|
25
|
+
'''
|
26
|
+
# Load hydra configuration
|
27
|
+
logger.log(logging.INFO, "Launching AIAgents4Pharma_Agent with thread_id %s", uniq_id)
|
28
|
+
with hydra.initialize(version_base=None, config_path="../configs"):
|
29
|
+
cfg = hydra.compose(config_name='config',
|
30
|
+
overrides=['agents/main_agent=default'])
|
31
|
+
cfg = cfg.agents.main_agent
|
32
|
+
logger.log(logging.INFO, "System_prompt of T2AA4P: %s", cfg.system_prompt)
|
33
|
+
# Create supervisor workflow
|
34
|
+
workflow = create_supervisor(
|
35
|
+
[
|
36
|
+
get_app_t2b(uniq_id, llm_model), # Talk2BioModels
|
37
|
+
get_app_t2kg(uniq_id, llm_model) # Talk2KnowledgeGraphs
|
38
|
+
],
|
39
|
+
model=llm_model,
|
40
|
+
state_schema=Talk2AIAgents4Pharma,
|
41
|
+
# Full history is needed to extract
|
42
|
+
# the tool artifacts
|
43
|
+
output_mode="full_history",
|
44
|
+
add_handoff_back_messages=False,
|
45
|
+
prompt=cfg.system_prompt
|
46
|
+
)
|
47
|
+
|
48
|
+
# Compile and run
|
49
|
+
app = workflow.compile(checkpointer=MemorySaver(),
|
50
|
+
name="AIAgents4Pharma_Agent")
|
51
|
+
|
52
|
+
return app
|
@@ -0,0 +1,12 @@
|
|
1
|
+
_target_: agents.main_agent.get_app
|
2
|
+
system_prompt: >
|
3
|
+
You are Talk2AIAgents4Pharma agent.
|
4
|
+
You are managing a team of the following 2 agents:
|
5
|
+
|
6
|
+
1. Talk2Biomodels (T2B) agent: This agent can operate
|
7
|
+
on mathematical models of biological systems. This
|
8
|
+
agent can also query an uploaded document/pdf/article.
|
9
|
+
|
10
|
+
2. Talk2KnowledgeGraphs (T2KG) agent: This agent can
|
11
|
+
reason over a knowledge graph of biological entities
|
12
|
+
and their relationships.
|
@@ -0,0 +1,16 @@
|
|
1
|
+
"""
|
2
|
+
This is the state file for the Talk2AIAgents4Pharma agent.
|
3
|
+
"""
|
4
|
+
|
5
|
+
from ...talk2biomodels.states.state_talk2biomodels import Talk2Biomodels
|
6
|
+
from ...talk2knowledgegraphs.states.state_talk2knowledgegraphs import Talk2KnowledgeGraphs
|
7
|
+
|
8
|
+
class Talk2AIAgents4Pharma(Talk2Biomodels,
|
9
|
+
Talk2KnowledgeGraphs):
|
10
|
+
"""
|
11
|
+
The state for the Talk2AIAgents4Pharma agent.
|
12
|
+
|
13
|
+
This class inherits from the classes:
|
14
|
+
1. Talk2Biomodels
|
15
|
+
2. Talk2KnowledgeGraphs
|
16
|
+
"""
|
@@ -0,0 +1,111 @@
|
|
1
|
+
'''
|
2
|
+
Test Talk2AIAgents4Pharma supervisor agent.
|
3
|
+
'''
|
4
|
+
|
5
|
+
import pytest
|
6
|
+
from langchain_core.messages import HumanMessage
|
7
|
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
8
|
+
from ..agents.main_agent import get_app
|
9
|
+
|
10
|
+
# Define the data path for the test files of Talk2KnowledgeGraphs agent
|
11
|
+
DATA_PATH = "aiagents4pharma/talk2knowledgegraphs/tests/files"
|
12
|
+
|
13
|
+
@pytest.fixture(name="input_dict")
|
14
|
+
def input_dict_fixture():
|
15
|
+
"""
|
16
|
+
Input dictionary fixture for Talk2AIAgents4Pharma agent,
|
17
|
+
which is partly inherited from the Talk2KnowledgeGraphs agent.
|
18
|
+
"""
|
19
|
+
input_dict = {
|
20
|
+
"topk_nodes": 3,
|
21
|
+
"topk_edges": 3,
|
22
|
+
"uploaded_files": [],
|
23
|
+
"dic_source_graph": [
|
24
|
+
{
|
25
|
+
"name": "PrimeKG",
|
26
|
+
"kg_pyg_path": f"{DATA_PATH}/primekg_ibd_pyg_graph.pkl",
|
27
|
+
"kg_text_path": f"{DATA_PATH}/primekg_ibd_text_graph.pkl",
|
28
|
+
}
|
29
|
+
],
|
30
|
+
"dic_extracted_graph": []
|
31
|
+
}
|
32
|
+
|
33
|
+
return input_dict
|
34
|
+
|
35
|
+
def test_main_agent_invokes_t2kg(input_dict):
|
36
|
+
"""
|
37
|
+
In the following test, we will ask the main agent (supervisor)
|
38
|
+
to list drugs that target the gene Interleukin-6. We will check
|
39
|
+
if the Talk2KnowledgeGraphs agent is invoked. We will do so by
|
40
|
+
checking the state of the Talk2AIAgents4Pharma agent, which is
|
41
|
+
partly inherited from the Talk2KnowledgeGraphs agent
|
42
|
+
|
43
|
+
Args:
|
44
|
+
input_dict: Input dictionary
|
45
|
+
"""
|
46
|
+
# Prepare LLM and embedding model
|
47
|
+
input_dict["llm_model"] = ChatOpenAI(model="gpt-4o-mini", temperature=0.0)
|
48
|
+
input_dict["embedding_model"] = OpenAIEmbeddings(model="text-embedding-3-small")
|
49
|
+
|
50
|
+
# Setup the app
|
51
|
+
unique_id = 12345
|
52
|
+
app = get_app(unique_id, llm_model=input_dict["llm_model"])
|
53
|
+
config = {"configurable": {"thread_id": unique_id}}
|
54
|
+
# Update state
|
55
|
+
app.update_state(
|
56
|
+
config,
|
57
|
+
input_dict,
|
58
|
+
)
|
59
|
+
prompt = "List drugs that target the gene Interleukin-6"
|
60
|
+
|
61
|
+
# Invoke the agent
|
62
|
+
response = app.invoke({"messages": [HumanMessage(content=prompt)]}, config=config)
|
63
|
+
|
64
|
+
# Check assistant message
|
65
|
+
assistant_msg = response["messages"][-1].content
|
66
|
+
assert isinstance(assistant_msg, str)
|
67
|
+
|
68
|
+
# Check extracted subgraph dictionary
|
69
|
+
current_state = app.get_state(config)
|
70
|
+
dic_extracted_graph = current_state.values["dic_extracted_graph"][0]
|
71
|
+
assert isinstance(dic_extracted_graph, dict)
|
72
|
+
assert dic_extracted_graph["graph_source"] == "PrimeKG"
|
73
|
+
assert dic_extracted_graph["topk_nodes"] == 3
|
74
|
+
assert dic_extracted_graph["topk_edges"] == 3
|
75
|
+
assert isinstance(dic_extracted_graph["graph_dict"], dict)
|
76
|
+
assert len(dic_extracted_graph["graph_dict"]["nodes"]) > 0
|
77
|
+
assert len(dic_extracted_graph["graph_dict"]["edges"]) > 0
|
78
|
+
assert isinstance(dic_extracted_graph["graph_text"], str)
|
79
|
+
# Check summarized subgraph
|
80
|
+
assert isinstance(dic_extracted_graph["graph_summary"], str)
|
81
|
+
|
82
|
+
def test_main_agent_invokes_t2b():
|
83
|
+
'''
|
84
|
+
In the following test, we will ask the main agent (supervisor)
|
85
|
+
to simulate a model. And we will check if the Talk2BioModels
|
86
|
+
agent is invoked. We will do so by checking the state of the
|
87
|
+
Talk2AIAgents4Pharma agent, which is partly inherited from the
|
88
|
+
Talk2BioModels agent.
|
89
|
+
'''
|
90
|
+
unique_id = 123
|
91
|
+
app = get_app(unique_id)
|
92
|
+
config = {"configurable": {"thread_id": unique_id}}
|
93
|
+
prompt = "Simulate model 64"
|
94
|
+
# Invoke the agent
|
95
|
+
app.invoke(
|
96
|
+
{"messages": [HumanMessage(content=prompt)]},
|
97
|
+
config=config
|
98
|
+
)
|
99
|
+
# Get the state of the Talk2AIAgents4Pharma agent
|
100
|
+
current_state = app.get_state(config)
|
101
|
+
# Check if the dic_simulated_data is in the state
|
102
|
+
dic_simulated_data = current_state.values["dic_simulated_data"]
|
103
|
+
# Check if the dic_simulated_data is a list
|
104
|
+
assert isinstance(dic_simulated_data, list)
|
105
|
+
# Check if the length of the dic_simulated_data is 1
|
106
|
+
assert len(dic_simulated_data) == 1
|
107
|
+
# Check if the source of the model is 64
|
108
|
+
assert dic_simulated_data[0]['source'] == 64
|
109
|
+
# Check if the data of the model contains
|
110
|
+
# '1,3-bisphosphoglycerate'
|
111
|
+
assert '1,3-bisphosphoglycerate' in dic_simulated_data[0]['data']
|
@@ -87,7 +87,8 @@ def get_app(uniq_id,
|
|
87
87
|
# meaning you can use it as you would any other runnable.
|
88
88
|
# Note that we're (optionally) passing the memory
|
89
89
|
# when compiling the graph
|
90
|
-
app = workflow.compile(checkpointer=checkpointer
|
90
|
+
app = workflow.compile(checkpointer=checkpointer,
|
91
|
+
name="T2B_Agent")
|
91
92
|
logger.log(logging.INFO,
|
92
93
|
"Compiled the graph with thread_id %s and llm_model %s",
|
93
94
|
uniq_id,
|
@@ -76,7 +76,8 @@ def get_app(uniq_id, llm_model: BaseChatModel=ChatOllama(model='llama3.2:1b', te
|
|
76
76
|
# meaning you can use it as you would any other runnable.
|
77
77
|
# Note that we're (optionally) passing the memory
|
78
78
|
# when compiling the graph
|
79
|
-
app = workflow.compile(checkpointer=checkpointer
|
79
|
+
app = workflow.compile(checkpointer=checkpointer,
|
80
|
+
name="T2KG_Agent")
|
80
81
|
logger.log(logging.INFO,
|
81
82
|
"Compiled the graph with thread_id %s and llm_model %s",
|
82
83
|
uniq_id,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.25.0
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
@@ -23,7 +23,7 @@ Requires-Dist: langchain-experimental==0.3.3
|
|
23
23
|
Requires-Dist: langchain-nvidia-ai-endpoints==0.3.9
|
24
24
|
Requires-Dist: langchain-openai==0.2.5
|
25
25
|
Requires-Dist: langchain_ollama==0.2.3
|
26
|
-
Requires-Dist:
|
26
|
+
Requires-Dist: langgraph_supervisor==0.0.4
|
27
27
|
Requires-Dist: matplotlib==3.9.2
|
28
28
|
Requires-Dist: openai==1.59.4
|
29
29
|
Requires-Dist: ollama==0.4.7
|
@@ -83,6 +83,7 @@ Our toolkit currently consists of the following agents:
|
|
83
83
|
- **Talk2KnowledgeGraphs** _(v1 in progress)_: Access and explore complex biological knowledge graphs for insightful data connections.
|
84
84
|
- **Talk2Scholars** _(v1 in progress)_: Get recommendations for articles related to your choice. Download, query, and write/retrieve them to your reference manager (currently supporting Zotero).
|
85
85
|
- **Talk2Cells** _(v1 in progress)_: Query and analyze sequencing data with ease.
|
86
|
+
- **Talk2AIAgents4Pharma** _(v1 in progress)_: Converse with all the agents above (currently supports T2B and T2KG)
|
86
87
|
|
87
88
|

|
88
89
|
|
@@ -104,49 +105,47 @@ Check out the tutorials on each agent for detailed instrcutions.
|
|
104
105
|
|
105
106
|
_Both `Talk2Biomodels` and `Talk2Scholars` are now available on Docker Hub._
|
106
107
|
|
107
|
-
|
108
|
+
1. **Pull the Docker images**
|
108
109
|
|
109
|
-
1. **Pull the Docker image**
|
110
110
|
```bash
|
111
111
|
docker pull virtualpatientengine/talk2biomodels
|
112
112
|
```
|
113
|
-
|
113
|
+
|
114
|
+
```bash
|
115
|
+
docker pull virtualpatientengine/talk2scholars
|
116
|
+
```
|
117
|
+
|
118
|
+
2. **Run the containers**
|
119
|
+
|
114
120
|
```bash
|
115
121
|
docker run -d \
|
122
|
+
--name talk2biomodels \
|
116
123
|
-e OPENAI_API_KEY=<your_openai_api_key> \
|
117
124
|
-e NVIDIA_API_KEY=<your_nvidia_api_key> \
|
118
125
|
-p 8501:8501 \
|
119
126
|
virtualpatientengine/talk2biomodels
|
120
127
|
```
|
121
|
-
3. **Access the Web App**
|
122
|
-
Open your browser and go to:
|
123
|
-
```
|
124
|
-
http://localhost:8501
|
125
|
-
```
|
126
|
-
_You can create a free account at NVIDIA and apply for their
|
127
|
-
free credits [here](https://build.nvidia.com/explore/discover)._
|
128
|
-
|
129
|
-
#### **Running Talk2Scholars**
|
130
128
|
|
131
|
-
1. **Pull the Docker image**
|
132
|
-
```bash
|
133
|
-
docker pull virtualpatientengine/talk2scholars
|
134
|
-
```
|
135
|
-
2. **Run the container**
|
136
129
|
```bash
|
137
130
|
docker run -d \
|
131
|
+
--name talk2scholars \
|
138
132
|
-e OPENAI_API_KEY=<your_openai_api_key> \
|
139
133
|
-e ZOTERO_API_KEY=<your_zotero_api_key> \
|
140
134
|
-e ZOTERO_USER_ID=<your_zotero_user_id> \
|
141
135
|
-p 8501:8501 \
|
142
136
|
virtualpatientengine/talk2scholars
|
143
137
|
```
|
138
|
+
|
144
139
|
3. **Access the Web App**
|
145
|
-
|
140
|
+
Open your browser and go to:
|
141
|
+
|
146
142
|
```
|
147
143
|
http://localhost:8501
|
148
144
|
```
|
149
145
|
|
146
|
+
_You can create a free account at NVIDIA and apply for their
|
147
|
+
free credits [here](https://build.nvidia.com/explore/discover)._
|
148
|
+
|
150
149
|
#### **Notes**
|
151
150
|
|
152
151
|
- Ensure you **replace `<your_openai_api_key>`, `<your_nvidia_api_key>`, `<your_zotero_api_key>`, and `<your_zotero_user_id>`** with your actual credentials.
|
@@ -192,10 +191,10 @@ _Both `Talk2Biomodels` and `Talk2Scholars` are now available on Docker Hub._
|
|
192
191
|
```
|
193
192
|
|
194
193
|
_Please note that this will create a new tracing project in your Langsmith
|
195
|
-
account with the name `T2X-xxxx`, where `X` can be `
|
196
|
-
`KG` (KnowledgeGraphs), or `C` (Cells).
|
197
|
-
|
198
|
-
session._
|
194
|
+
account with the name `T2X-xxxx`, where `X` can be `AA4P` (Main Agent),
|
195
|
+
`B` (Biomodels), `S` (Scholars), `KG` (KnowledgeGraphs), or `C` (Cells).
|
196
|
+
If you skip the previous step, it will default to the name `default`.
|
197
|
+
`xxxx` will be the 4-digit ID created for the session._
|
199
198
|
|
200
199
|
6. **Launch the app:**
|
201
200
|
```bash
|
@@ -1,7 +1,18 @@
|
|
1
|
-
aiagents4pharma/__init__.py,sha256=
|
1
|
+
aiagents4pharma/__init__.py,sha256=7xnvthMuxYurECWvyb0_yaPJ18SsqvmkKPTCxgbQlNQ,186
|
2
|
+
aiagents4pharma/talk2aiagents4pharma/__init__.py,sha256=KOPe8cZ-ROQ6EGn8FeejRFUPokayKRMTgiXFyOpZGoA,122
|
3
|
+
aiagents4pharma/talk2aiagents4pharma/agents/__init__.py,sha256=Cc1RitlLGzJ5d_dCSUdguZH417nlJux1qVCVS2M9t30,129
|
4
|
+
aiagents4pharma/talk2aiagents4pharma/agents/main_agent.py,sha256=oVHYFXHmwq8y6e41JvmRYDXvCjItqY7setpcC2U2y6Q,1870
|
5
|
+
aiagents4pharma/talk2aiagents4pharma/configs/__init__.py,sha256=5ah__-8XyRblwT0U1ByRigNjt_GyCheu7zce4aM-eZE,68
|
6
|
+
aiagents4pharma/talk2aiagents4pharma/configs/config.yaml,sha256=VnbMbVSYfCh68cHZ0JLu00UjOUmapejN3EsN3lnBXtU,51
|
7
|
+
aiagents4pharma/talk2aiagents4pharma/configs/agents/__init__.py,sha256=zrJcq-4m0YUKfSlRGC8KzBmEooaASKuL_Y75yDp-ZoA,72
|
8
|
+
aiagents4pharma/talk2aiagents4pharma/configs/agents/main_agent/default.yaml,sha256=CRi4t2VGYfDouDYb6id5_qLm-6hLkp5WHCZJwsJlYM0,455
|
9
|
+
aiagents4pharma/talk2aiagents4pharma/states/__init__.py,sha256=3wSvCpM29oqvVjhbhabm7FNm9Zt0rHO5tEn63YW6doc,108
|
10
|
+
aiagents4pharma/talk2aiagents4pharma/states/state_talk2aiagents4pharma.py,sha256=NxujEBDKubvpV9UG7ERTDRB6psr0XnObCNHyztLAhgo,485
|
11
|
+
aiagents4pharma/talk2aiagents4pharma/tests/__init__.py,sha256=Jbw5tJxSrjGoaK5IX3pJWDCNzhrVQ10lkYq2oQ_KQD8,45
|
12
|
+
aiagents4pharma/talk2aiagents4pharma/tests/test_main_agent.py,sha256=H8jcSZlzyt0wkijF_hgX8p63moXejbdP_W2xrWGTu3g,4122
|
2
13
|
aiagents4pharma/talk2biomodels/__init__.py,sha256=1cq1HX2xoi_a0nDPuXYoSTrnL26OHQBW3zXNwwwjFO0,181
|
3
14
|
aiagents4pharma/talk2biomodels/agents/__init__.py,sha256=sn5-fREjMdEvb-OUan3iOqrgYGjplNx3J8hYOaW0Po8,128
|
4
|
-
aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=
|
15
|
+
aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=1NxSQbh5wbDpnap4mHwzSIjjHP1xakE2d1Pg5bHtDrE,3522
|
5
16
|
aiagents4pharma/talk2biomodels/api/__init__.py,sha256=_GmDQqDLYpsUPUeE1nBNlT5AI9oTXIcqgOfNfvmonqA,123
|
6
17
|
aiagents4pharma/talk2biomodels/api/kegg.py,sha256=QzYDAfJ16E7tbHGxP8ZNWRizMkMRS_HJuucueXEC1Gg,2943
|
7
18
|
aiagents4pharma/talk2biomodels/api/ols.py,sha256=qq0Qy-gJDxanQW-HfCChDsTQsY1M41ua8hMlTnfuzrA,2202
|
@@ -62,7 +73,7 @@ aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQai
|
|
62
73
|
aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
|
63
74
|
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=Z0Eo7LTiKk0STsr8VI7wkCLq7PHrK1vYlH4I1hSNLiA,165
|
64
75
|
aiagents4pharma/talk2knowledgegraphs/agents/__init__.py,sha256=iOAzuy_8A03tQDFtSBhC9dldUo62z5gfxcVtXAdLOJs,92
|
65
|
-
aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py,sha256=
|
76
|
+
aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py,sha256=GdogSyTJa0LlSWPqDWdO41EXcS-PThatblPWpuHih-M,3125
|
66
77
|
aiagents4pharma/talk2knowledgegraphs/configs/__init__.py,sha256=4_DVdpahaJ55yPl0aZotlFA_MYWLFF2cubWyKtBVI_Q,126
|
67
78
|
aiagents4pharma/talk2knowledgegraphs/configs/config.yaml,sha256=bag4w3JCSqaojG37MTksy3ZehAPe3qoVzjIN2uh3nrc,229
|
68
79
|
aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
@@ -175,8 +186,8 @@ aiagents4pharma/talk2scholars/tools/s2/search.py,sha256=i5KMFJWK31CjYtVT1McJpLzg
|
|
175
186
|
aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py,sha256=7PoZfcstxDThWX6NYOgxN_9M_nwgMPAALch8OmjraVY,5568
|
176
187
|
aiagents4pharma/talk2scholars/tools/zotero/__init__.py,sha256=1UW4r5ECvAwYpo1Fjf7lQPO--M8I85baYCHocFOAq4M,53
|
177
188
|
aiagents4pharma/talk2scholars/tools/zotero/zotero_read.py,sha256=NJ65fAJ4u2Zq15uvEajVOhI4QnNvyqA6FHPaEDqvMw0,4321
|
178
|
-
aiagents4pharma-1.
|
179
|
-
aiagents4pharma-1.
|
180
|
-
aiagents4pharma-1.
|
181
|
-
aiagents4pharma-1.
|
182
|
-
aiagents4pharma-1.
|
189
|
+
aiagents4pharma-1.25.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
190
|
+
aiagents4pharma-1.25.0.dist-info/METADATA,sha256=GcI8CTr7TUVIlC35PVwhhBi-5LEn6bTd2r3FVhtHCC4,9469
|
191
|
+
aiagents4pharma-1.25.0.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
192
|
+
aiagents4pharma-1.25.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
|
193
|
+
aiagents4pharma-1.25.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|