aiagents4pharma 1.20.1__py3-none-any.whl → 1.22.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. aiagents4pharma/talk2knowledgegraphs/configs/__init__.py +1 -0
  2. aiagents4pharma/talk2knowledgegraphs/configs/config.yaml +1 -0
  3. aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_nim_molmim.py +64 -0
  4. aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_pubchem.py +33 -0
  5. aiagents4pharma/talk2knowledgegraphs/tests/test_utils_pubchem_utils.py +16 -0
  6. aiagents4pharma/talk2knowledgegraphs/utils/__init__.py +1 -0
  7. aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py +1 -0
  8. aiagents4pharma/talk2knowledgegraphs/utils/embeddings/nim_molmim.py +54 -0
  9. aiagents4pharma/talk2knowledgegraphs/utils/enrichments/__init__.py +1 -0
  10. aiagents4pharma/talk2knowledgegraphs/utils/enrichments/pubchem_strings.py +49 -0
  11. aiagents4pharma/talk2knowledgegraphs/utils/pubchem_utils.py +42 -0
  12. aiagents4pharma/talk2scholars/agents/main_agent.py +90 -91
  13. aiagents4pharma/talk2scholars/agents/s2_agent.py +61 -17
  14. aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml +31 -10
  15. aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml +8 -16
  16. aiagents4pharma/talk2scholars/configs/app/frontend/default.yaml +11 -9
  17. aiagents4pharma/talk2scholars/configs/config.yaml +1 -0
  18. aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/default.yaml +2 -0
  19. aiagents4pharma/talk2scholars/configs/tools/retrieve_semantic_scholar_paper_id/__init__.py +3 -0
  20. aiagents4pharma/talk2scholars/configs/tools/search/default.yaml +1 -0
  21. aiagents4pharma/talk2scholars/configs/tools/single_paper_recommendation/default.yaml +1 -0
  22. aiagents4pharma/talk2scholars/state/state_talk2scholars.py +36 -7
  23. aiagents4pharma/talk2scholars/tests/test_llm_main_integration.py +58 -0
  24. aiagents4pharma/talk2scholars/tests/test_main_agent.py +98 -122
  25. aiagents4pharma/talk2scholars/tests/test_s2_agent.py +95 -29
  26. aiagents4pharma/talk2scholars/tests/test_s2_tools.py +158 -22
  27. aiagents4pharma/talk2scholars/tools/s2/__init__.py +4 -2
  28. aiagents4pharma/talk2scholars/tools/s2/display_results.py +60 -21
  29. aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py +35 -8
  30. aiagents4pharma/talk2scholars/tools/s2/query_results.py +61 -0
  31. aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py +79 -0
  32. aiagents4pharma/talk2scholars/tools/s2/search.py +34 -10
  33. aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py +39 -9
  34. {aiagents4pharma-1.20.1.dist-info → aiagents4pharma-1.22.0.dist-info}/METADATA +2 -1
  35. {aiagents4pharma-1.20.1.dist-info → aiagents4pharma-1.22.0.dist-info}/RECORD +38 -29
  36. aiagents4pharma/talk2scholars/tests/test_integration.py +0 -237
  37. {aiagents4pharma-1.20.1.dist-info → aiagents4pharma-1.22.0.dist-info}/LICENSE +0 -0
  38. {aiagents4pharma-1.20.1.dist-info → aiagents4pharma-1.22.0.dist-info}/WHEEL +0 -0
  39. {aiagents4pharma-1.20.1.dist-info → aiagents4pharma-1.22.0.dist-info}/top_level.txt +0 -0
@@ -5,37 +5,80 @@ Agent for interacting with Semantic Scholar
5
5
  """
6
6
 
7
7
  import logging
8
+ from typing import Any, Dict
8
9
  import hydra
9
10
  from langchain_openai import ChatOpenAI
11
+ from langchain_core.language_models.chat_models import BaseChatModel
10
12
  from langgraph.graph import START, StateGraph
11
13
  from langgraph.prebuilt import create_react_agent, ToolNode
12
14
  from langgraph.checkpoint.memory import MemorySaver
13
15
  from ..state.state_talk2scholars import Talk2Scholars
14
16
  from ..tools.s2.search import search_tool as s2_search
15
17
  from ..tools.s2.display_results import display_results as s2_display
18
+ from ..tools.s2.query_results import query_results as s2_query_results
19
+ from ..tools.s2.retrieve_semantic_scholar_paper_id import (
20
+ retrieve_semantic_scholar_paper_id as s2_retrieve_id,
21
+ )
16
22
  from ..tools.s2.single_paper_rec import (
17
23
  get_single_paper_recommendations as s2_single_rec,
18
24
  )
19
25
  from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations as s2_multi_rec
20
26
 
21
-
22
27
  # Initialize logger
23
28
  logging.basicConfig(level=logging.INFO)
24
29
  logger = logging.getLogger(__name__)
25
30
 
26
31
 
27
- def get_app(uniq_id, llm_model="gpt-4o-mini"):
32
+ def get_app(
33
+ uniq_id, llm_model: BaseChatModel = ChatOpenAI(model="gpt-4o-mini", temperature=0)
34
+ ):
28
35
  """
29
- This function returns the langraph app.
36
+ Initializes and returns the LangGraph application for the Semantic Scholar (S2) agent.
37
+
38
+ This function sets up the S2 agent, which integrates various tools to search, retrieve,
39
+ and display research papers from Semantic Scholar. The agent follows the ReAct pattern
40
+ for structured interaction.
41
+
42
+ Args:
43
+ uniq_id (str): Unique identifier for the current conversation session.
44
+ llm_model (BaseChatModel, optional): The language model to be used by the agent.
45
+ Defaults to `ChatOpenAI(model="gpt-4o-mini", temperature=0)`.
46
+
47
+ Returns:
48
+ StateGraph: A compiled LangGraph application that enables the S2 agent to process
49
+ user queries and retrieve research papers.
50
+
51
+ Example:
52
+ >>> app = get_app("thread_123")
53
+ >>> result = app.invoke(initial_state)
30
54
  """
31
55
 
32
- def agent_s2_node(state: Talk2Scholars):
56
+ # def agent_s2_node(state: Talk2Scholars) -> Command[Literal["supervisor"]]:
57
+ def agent_s2_node(state: Talk2Scholars) -> Dict[str, Any]:
33
58
  """
34
- This function calls the model.
59
+ Processes the user query and retrieves relevant research papers.
60
+
61
+ This function calls the language model using the configured `ReAct` agent to analyze
62
+ the state and generate an appropriate response. The function then returns control
63
+ to the main supervisor.
64
+
65
+ Args:
66
+ state (Talk2Scholars): The current conversation state, including messages exchanged
67
+ and any previously retrieved research papers.
68
+
69
+ Returns:
70
+ Dict[str, Any]: A dictionary containing the updated conversation state.
71
+
72
+ Example:
73
+ >>> result = agent_s2_node(current_state)
74
+ >>> papers = result.get("papers", [])
35
75
  """
36
76
  logger.log(logging.INFO, "Creating Agent_S2 node with thread_id %s", uniq_id)
37
- response = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
38
- return response
77
+ result = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
78
+
79
+ return result
80
+
81
+ logger.log(logging.INFO, "thread_id, llm_model: %s, %s", uniq_id, llm_model)
39
82
 
40
83
  # Load hydra configuration
41
84
  logger.log(logging.INFO, "Load Hydra configuration for Talk2Scholars S2 agent.")
@@ -46,30 +89,31 @@ def get_app(uniq_id, llm_model="gpt-4o-mini"):
46
89
  cfg = cfg.agents.talk2scholars.s2_agent
47
90
 
48
91
  # Define the tools
49
- tools = ToolNode([s2_search, s2_display, s2_single_rec, s2_multi_rec])
92
+ tools = ToolNode(
93
+ [
94
+ s2_search,
95
+ s2_display,
96
+ s2_query_results,
97
+ s2_retrieve_id,
98
+ s2_single_rec,
99
+ s2_multi_rec,
100
+ ]
101
+ )
50
102
 
51
103
  # Define the model
52
104
  logger.log(logging.INFO, "Using OpenAI model %s", llm_model)
53
- llm = ChatOpenAI(model=llm_model, temperature=cfg.temperature)
54
105
 
55
106
  # Create the agent
56
107
  model = create_react_agent(
57
- llm,
108
+ llm_model,
58
109
  tools=tools,
59
110
  state_schema=Talk2Scholars,
60
- # prompt=cfg.s2_agent,
61
111
  state_modifier=cfg.s2_agent,
62
112
  checkpointer=MemorySaver(),
63
113
  )
64
114
 
65
- # Define a new graph
66
115
  workflow = StateGraph(Talk2Scholars)
67
-
68
- # Define the two nodes we will cycle between
69
116
  workflow.add_node("agent_s2", agent_s2_node)
70
-
71
- # Set the entrypoint as `agent`
72
- # This means that this node is the first one called
73
117
  workflow.add_edge(START, "agent_s2")
74
118
 
75
119
  # Initialize memory to persist state between graph runs
@@ -5,14 +5,35 @@ openai_llms:
5
5
  - "gpt-4-turbo"
6
6
  - "gpt-3.5-turbo"
7
7
  temperature: 0
8
- main_agent: >
9
- You are an intelligent research assistant coordinating academic paper discovery and analysis.
8
+ system_prompt: >
9
+ You are the Talk2Scholars agent coordinating academic paper discovery and analysis.
10
10
 
11
- AVAILABLE TOOLS AND ROUTING:
12
- 1. semantic_scholar_agent:
13
- Access to tools:
14
- - search_tool: For paper discovery
15
- - display_results: For showing paper results
16
- - get_single_paper_recommendations: For single paper recommendations
17
- - get_multi_paper_recommendations: For multi-paper recommendations
18
- ROUTE TO THIS AGENT FOR: Any query about academic papers, research, or articles
11
+ You have access to the following agents:
12
+ 1. S2_agent: This agent can be used to search and recommend papers
13
+ from Semantic Scholar. Use this agent when the user asks for
14
+ general paper searches and recommendations. This agent can also
15
+ retrieve the Semantic Scholar ID of a paper.
16
+ router_prompt: >
17
+ You are a supervisor tasked with managing a conversation between the
18
+ following workers: {members}. Given the user request, respond with the
19
+ worker to act next. Each worker will perform a task and respond with
20
+ their results and status. When finished, respond with FINISH.
21
+
22
+ Here is a description of the workers:
23
+ 1. S2_agent: This agent can be used to search and recommend papers
24
+ from Semantic Scholar. Use this agent when the user asks for
25
+ general paper searches and recommendations. This agent can also
26
+ retrieve the Semantic Scholar ID of a paper. It can also be used to
27
+ provide more information about a paper.
28
+
29
+ Here are some instructions for the workers:
30
+ 1. Call the S2 agent for general paper searches and recommendations.
31
+ 2. The S2 agent has access to tools for querying and displaying papers.
32
+ 3. If the user wants suggestions for papers and you don’t have
33
+ a Semantic Scholar ID for it but do have the title from
34
+ the last displayed results, use the S2 agent to retrieve the
35
+ Semantic Scholar ID of the paper. Then, use the S2 agent again to display
36
+ recommendations for the paper.
37
+ 4. You can call the S2 agent to get more information about a paper based
38
+ on the context of the conversation.
39
+ 5. Respond with FINISH when all tasks are completed.
@@ -6,19 +6,11 @@ openai_llms:
6
6
  - "gpt-3.5-turbo"
7
7
  temperature: 0
8
8
  s2_agent: >
9
- You are a specialized academic research agent with access to tools for paper discovery and analysis.
10
-
11
- YOUR TOOLS:
12
- 1. search_tool:
13
- - Finds research papers based on user queries.
14
- - If no papers are found, it performs a new search.
15
-
16
- 2. display_results:
17
- - Shows the current research papers.
18
- - If no papers are found, it will instruct you to perform a search.
19
-
20
- 3. get_single_paper_recommendations:
21
- - Provides recommendations based on a single selected paper.
22
-
23
- 4. get_multi_paper_recommendations:
24
- - Provides recommendations based on multiple selected papers.
9
+ You are an academic research assistant with access to the
10
+ Semantic Scholar API for paper discovery and analysis.
11
+ You also have tools to gain more insights on the papers and
12
+ display them.
13
+ You must strictly rely on retrieved information and avoid
14
+ generating unsupported content. Do not generate hallucinations
15
+ or fabricate details of any article. Stay focused on accurate,
16
+ sourced academic insights.
@@ -1,14 +1,13 @@
1
- # # Page configuration
2
- # page:
3
- # title: "Talk2Scholars"
4
- # icon: "🤖"
5
- # layout: "wide"
1
+ # Page configuration
2
+ page:
3
+ title: "Talk2Scholars"
4
+ icon: "🤖"
5
+ layout: "wide"
6
6
 
7
7
  # Available LLM models
8
- llm_models:
9
- - "gpt-4o-mini"
10
- - "gpt-4-turbo"
11
- - "gpt-3.5-turbo"
8
+ llms:
9
+ available_models:
10
+ - "OpenAI/gpt-4o-mini"
12
11
  # # Chat UI configuration
13
12
  # chat:
14
13
  # assistant_avatar: "🤖"
@@ -16,6 +15,9 @@ llm_models:
16
15
  # input_placeholder: "Say something ..."
17
16
  # spinner_text: "Fetching response ..."
18
17
 
18
+ api_keys:
19
+ openai_key: "OPENAI_API_KEY"
20
+ nvidia_key: "NVIDIA_API_KEY"
19
21
  # # Feedback configuration
20
22
  # feedback:
21
23
  # type: "thumbs"
@@ -5,4 +5,5 @@ defaults:
5
5
  - tools/search: default
6
6
  - tools/single_paper_recommendation: default
7
7
  - tools/multi_paper_recommendation: default
8
+ - tools/retrieve_semantic_scholar_paper_id: default
8
9
  - app/frontend: default
@@ -9,6 +9,8 @@ api_fields:
9
9
  - "authors"
10
10
  - "citationCount"
11
11
  - "url"
12
+ # Commented fields that could be added later if needed
13
+ # - "externalIds"
12
14
 
13
15
  # Default headers and params
14
16
  headers:
@@ -0,0 +1,3 @@
1
+ """
2
+ Import all the modules in the package
3
+ """
@@ -10,6 +10,7 @@ api_fields:
10
10
  - "citationCount"
11
11
  - "url"
12
12
  # Commented fields that could be added later if needed
13
+ # - "externalIds"
13
14
  # - "publicationTypes"
14
15
  # - "openAccessPdf"
15
16
 
@@ -10,6 +10,7 @@ api_fields:
10
10
  - "citationCount"
11
11
  - "url"
12
12
  # Commented fields that could be added later if needed
13
+ # - "externalIds"
13
14
  # - "publicationTypes"
14
15
  # - "openAccessPdf"
15
16
 
@@ -1,9 +1,14 @@
1
1
  """
2
- This is the state file for the talk2scholars agent.
2
+ State management for the Talk2Scholars agent.
3
+
4
+ This module defines the state class `Talk2Scholars`, which maintains the conversation
5
+ context, retrieved papers, and other relevant metadata. The state ensures consistency
6
+ across agent interactions.
3
7
  """
4
8
 
5
9
  import logging
6
10
  from typing import Annotated, Any, Dict
11
+ from langchain_core.language_models import BaseChatModel
7
12
  from langgraph.prebuilt.chat_agent_executor import AgentState
8
13
 
9
14
  # Configure logging
@@ -12,22 +17,46 @@ logger = logging.getLogger(__name__)
12
17
 
13
18
 
14
19
  def replace_dict(existing: Dict[str, Any], new: Dict[str, Any]) -> Dict[str, Any]:
15
- """Replace the existing dict with the new one."""
20
+ """
21
+ Replaces the existing dictionary with a new dictionary.
22
+
23
+ This function logs the state update and ensures that the old state is replaced
24
+ with the new one.
25
+
26
+ Args:
27
+ existing (Dict[str, Any]): The current dictionary state.
28
+ new (Dict[str, Any]): The new dictionary state to replace the existing one.
29
+
30
+ Returns:
31
+ Dict[str, Any]: The updated dictionary state.
32
+
33
+ Example:
34
+ >>> old_state = {"papers": {"id1": "Paper 1"}}
35
+ >>> new_state = {"papers": {"id2": "Paper 2"}}
36
+ >>> updated_state = replace_dict(old_state, new_state)
37
+ >>> print(updated_state)
38
+ {"papers": {"id2": "Paper 2"}}
39
+ """
16
40
  logger.info("Updating existing state %s with the state dict: %s", existing, new)
17
41
  return new
18
42
 
19
43
 
20
44
  class Talk2Scholars(AgentState):
21
45
  """
22
- The state for the talk2scholars agent, inheriting from AgentState.
46
+ Represents the state of the Talk2Scholars agent.
47
+
48
+ This class extends `AgentState` to maintain conversation history, retrieved papers,
49
+ and interactions with the language model.
23
50
 
24
51
  Attributes:
25
- papers: Dictionary of papers from search results
26
- multi_papers: Dictionary of papers from multi-paper recommendations
27
- llm_model: Model being used
52
+ last_displayed_papers (Dict[str, Any]): Stores the most recently displayed papers.
53
+ papers (Dict[str, Any]): Stores the research papers retrieved from the agent's queries.
54
+ multi_papers (Dict[str, Any]): Stores multiple recommended papers from various sources.
55
+ llm_model (BaseChatModel): The language model instance used for generating responses.
28
56
  """
29
57
 
30
58
  # Agent state fields
59
+ last_displayed_papers: Annotated[Dict[str, Any], replace_dict]
31
60
  papers: Annotated[Dict[str, Any], replace_dict]
32
61
  multi_papers: Annotated[Dict[str, Any], replace_dict]
33
- llm_model: str
62
+ llm_model: BaseChatModel
@@ -0,0 +1,58 @@
1
+ """
2
+ Integration tests for talk2scholars system with OpenAI.
3
+ """
4
+
5
+ import os
6
+ import pytest
7
+ import hydra
8
+ from langchain_openai import ChatOpenAI
9
+ from langchain_core.messages import HumanMessage, AIMessage
10
+ from ..agents.main_agent import get_app
11
+ from ..state.state_talk2scholars import Talk2Scholars
12
+
13
+ # pylint: disable=redefined-outer-name
14
+
15
+
16
+ @pytest.mark.skipif(
17
+ not os.getenv("OPENAI_API_KEY"), reason="Requires OpenAI API key to run"
18
+ )
19
+ def test_main_agent_real_llm():
20
+ """
21
+ Test that the main agent invokes S2 agent correctly
22
+ and updates the state with real LLM execution.
23
+ """
24
+
25
+ # Load Hydra Configuration EXACTLY like in main_agent.py
26
+ with hydra.initialize(version_base=None, config_path="../configs"):
27
+ cfg = hydra.compose(
28
+ config_name="config", overrides=["agents/talk2scholars/main_agent=default"]
29
+ )
30
+ hydra_cfg = cfg.agents.talk2scholars.main_agent
31
+
32
+ assert hydra_cfg is not None, "Hydra config failed to load"
33
+
34
+ # Use the real OpenAI API (ensure env variable is set)
35
+ llm = ChatOpenAI(model="gpt-4o-mini", temperature=hydra_cfg.temperature)
36
+
37
+ # Initialize main agent workflow (WITH real Hydra config)
38
+ thread_id = "test_thread"
39
+ app = get_app(thread_id, llm)
40
+
41
+ # Provide an actual user query
42
+ initial_state = Talk2Scholars(
43
+ messages=[HumanMessage(content="Find AI papers on transformers")]
44
+ )
45
+
46
+ # Invoke the agent (triggers supervisor → s2_agent)
47
+ result = app.invoke(
48
+ initial_state,
49
+ {"configurable": {"config_id": thread_id, "thread_id": thread_id}},
50
+ )
51
+
52
+ # Assert that the supervisor routed correctly
53
+ assert "messages" in result, "Expected messages in response"
54
+
55
+ # Fix: Accept AIMessage as a valid response type
56
+ assert isinstance(
57
+ result["messages"][-1], (HumanMessage, AIMessage, str)
58
+ ), "Last message should be a valid response"