aiagents4pharma 1.17.1__py3-none-any.whl → 1.19.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiagents4pharma/talk2biomodels/agents/t2b_agent.py +4 -4
- aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml +7 -15
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +4 -1
- aiagents4pharma/talk2biomodels/tests/test_ask_question.py +4 -2
- aiagents4pharma/talk2biomodels/tests/test_get_annotation.py +4 -2
- aiagents4pharma/talk2biomodels/tests/test_integration.py +34 -30
- aiagents4pharma/talk2biomodels/tests/test_query_article.py +7 -1
- aiagents4pharma/talk2biomodels/tests/test_search_models.py +3 -1
- aiagents4pharma/talk2biomodels/tests/test_steady_state.py +6 -3
- aiagents4pharma/talk2biomodels/tools/ask_question.py +1 -2
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py +23 -10
- aiagents4pharma/talk2biomodels/tools/get_annotation.py +11 -10
- aiagents4pharma/talk2biomodels/tools/query_article.py +6 -2
- aiagents4pharma/talk2biomodels/tools/search_models.py +8 -2
- aiagents4pharma/talk2knowledgegraphs/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/agents/__init__.py +4 -0
- aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py +85 -0
- aiagents4pharma/talk2knowledgegraphs/configs/__init__.py +7 -0
- aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/default.yaml +62 -0
- aiagents4pharma/talk2knowledgegraphs/configs/app/__init__.py +4 -0
- aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml +31 -0
- aiagents4pharma/talk2knowledgegraphs/configs/config.yaml +7 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/__init__.py +6 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/default.yaml +24 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/default.yaml +43 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/__init__.py +3 -0
- aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/default.yaml +9 -0
- aiagents4pharma/talk2knowledgegraphs/states/__init__.py +4 -0
- aiagents4pharma/talk2knowledgegraphs/states/state_talk2knowledgegraphs.py +38 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_agents_t2kg_agent.py +110 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_tools_graphrag_reasoning.py +210 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_extraction.py +174 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_summarization.py +154 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py +0 -1
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_ollama.py +56 -0
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py +18 -42
- aiagents4pharma/talk2knowledgegraphs/tests/test_utils_kg_utils.py +79 -0
- aiagents4pharma/talk2knowledgegraphs/tools/__init__.py +6 -0
- aiagents4pharma/talk2knowledgegraphs/tools/graphrag_reasoning.py +143 -0
- aiagents4pharma/talk2knowledgegraphs/tools/load_arguments.py +22 -0
- aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py +305 -0
- aiagents4pharma/talk2knowledgegraphs/tools/subgraph_summarization.py +126 -0
- aiagents4pharma/talk2knowledgegraphs/utils/__init__.py +4 -2
- aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py +1 -0
- aiagents4pharma/talk2knowledgegraphs/utils/embeddings/ollama.py +81 -0
- aiagents4pharma/talk2knowledgegraphs/utils/extractions/__init__.py +4 -0
- aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py +225 -0
- {aiagents4pharma-1.17.1.dist-info → aiagents4pharma-1.19.0.dist-info}/METADATA +12 -3
- {aiagents4pharma-1.17.1.dist-info → aiagents4pharma-1.19.0.dist-info}/RECORD +56 -24
- {aiagents4pharma-1.17.1.dist-info → aiagents4pharma-1.19.0.dist-info}/LICENSE +0 -0
- {aiagents4pharma-1.17.1.dist-info → aiagents4pharma-1.19.0.dist-info}/WHEEL +0 -0
- {aiagents4pharma-1.17.1.dist-info → aiagents4pharma-1.19.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,225 @@
|
|
1
|
+
"""
|
2
|
+
Exctraction of subgraph using Prize-Collecting Steiner Tree (PCST) algorithm.
|
3
|
+
"""
|
4
|
+
|
5
|
+
from typing import Tuple, NamedTuple
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
import pcst_fast
|
9
|
+
from torch_geometric.data.data import Data
|
10
|
+
|
11
|
+
class PCSTPruning(NamedTuple):
|
12
|
+
"""
|
13
|
+
Prize-Collecting Steiner Tree (PCST) pruning algorithm implementation inspired by G-Retriever
|
14
|
+
(He et al., 'G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and
|
15
|
+
Question Answering', NeurIPS 2024) paper.
|
16
|
+
https://arxiv.org/abs/2402.07630
|
17
|
+
https://github.com/XiaoxinHe/G-Retriever/blob/main/src/dataset/utils/retrieval.py
|
18
|
+
|
19
|
+
Args:
|
20
|
+
topk: The number of top nodes to consider.
|
21
|
+
topk_e: The number of top edges to consider.
|
22
|
+
cost_e: The cost of the edges.
|
23
|
+
c_const: The constant value for the cost of the edges computation.
|
24
|
+
root: The root node of the subgraph, -1 for unrooted.
|
25
|
+
num_clusters: The number of clusters.
|
26
|
+
pruning: The pruning strategy to use.
|
27
|
+
verbosity_level: The verbosity level.
|
28
|
+
"""
|
29
|
+
topk: int = 3
|
30
|
+
topk_e: int = 3
|
31
|
+
cost_e: float = 0.5
|
32
|
+
c_const: float = 0.01
|
33
|
+
root: int = -1
|
34
|
+
num_clusters: int = 1
|
35
|
+
pruning: str = "gw"
|
36
|
+
verbosity_level: int = 0
|
37
|
+
|
38
|
+
def compute_prizes(self, graph: Data, query_emb: torch.Tensor) -> np.ndarray:
|
39
|
+
"""
|
40
|
+
Compute the node prizes based on the cosine similarity between the query and nodes,
|
41
|
+
as well as the edge prizes based on the cosine similarity between the query and edges.
|
42
|
+
Note that the node and edge embeddings shall use the same embedding model and dimensions
|
43
|
+
with the query.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
graph: The knowledge graph in PyTorch Geometric Data format.
|
47
|
+
query_emb: The query embedding in PyTorch Tensor format.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The prizes of the nodes and edges.
|
51
|
+
"""
|
52
|
+
# Compute prizes for nodes
|
53
|
+
n_prizes = torch.nn.CosineSimilarity(dim=-1)(query_emb, graph.x)
|
54
|
+
topk = min(self.topk, graph.num_nodes)
|
55
|
+
_, topk_n_indices = torch.topk(n_prizes, topk, largest=True)
|
56
|
+
n_prizes = torch.zeros_like(n_prizes)
|
57
|
+
n_prizes[topk_n_indices] = torch.arange(topk, 0, -1).float()
|
58
|
+
|
59
|
+
# Compute prizes for edges
|
60
|
+
# e_prizes = torch.nn.CosineSimilarity(dim=-1)(query_emb, graph.edge_attr)
|
61
|
+
# topk_e = min(self.topk_e, e_prizes.unique().size(0))
|
62
|
+
# topk_e_values, _ = torch.topk(e_prizes.unique(), topk_e, largest=True)
|
63
|
+
# e_prizes[e_prizes < topk_e_values[-1]] = 0.0
|
64
|
+
# last_topk_e_value = topk_e
|
65
|
+
# for k in range(topk_e):
|
66
|
+
# indices = e_prizes == topk_e_values[k]
|
67
|
+
# value = min((topk_e - k) / sum(indices), last_topk_e_value)
|
68
|
+
# e_prizes[indices] = value
|
69
|
+
# last_topk_e_value = value * (1 - self.c_const)
|
70
|
+
|
71
|
+
# Optimized version of the above code
|
72
|
+
e_prizes = torch.nn.CosineSimilarity(dim=-1)(query_emb, graph.edge_attr)
|
73
|
+
unique_prizes, inverse_indices = e_prizes.unique(return_inverse=True)
|
74
|
+
topk_e = min(self.topk_e, unique_prizes.size(0))
|
75
|
+
topk_e_values, _ = torch.topk(unique_prizes, topk_e, largest=True)
|
76
|
+
e_prizes[e_prizes < topk_e_values[-1]] = 0.0
|
77
|
+
last_topk_e_value = topk_e
|
78
|
+
for k in range(topk_e):
|
79
|
+
indices = inverse_indices == (
|
80
|
+
unique_prizes == topk_e_values[k]
|
81
|
+
).nonzero(as_tuple=True)[0]
|
82
|
+
value = min((topk_e - k) / indices.sum().item(), last_topk_e_value)
|
83
|
+
e_prizes[indices] = value
|
84
|
+
last_topk_e_value = value * (1 - self.c_const)
|
85
|
+
|
86
|
+
return {"nodes": n_prizes, "edges": e_prizes}
|
87
|
+
|
88
|
+
def compute_subgraph_costs(
|
89
|
+
self, graph: Data, prizes: dict
|
90
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
91
|
+
"""
|
92
|
+
Compute the costs in constructing the subgraph proposed by G-Retriever paper.
|
93
|
+
|
94
|
+
Args:
|
95
|
+
graph: The knowledge graph in PyTorch Geometric Data format.
|
96
|
+
prizes: The prizes of the nodes and the edges.
|
97
|
+
|
98
|
+
Returns:
|
99
|
+
edges: The edges of the subgraph, consisting of edges and number of edges without
|
100
|
+
virtual edges.
|
101
|
+
prizes: The prizes of the subgraph.
|
102
|
+
costs: The costs of the subgraph.
|
103
|
+
"""
|
104
|
+
# Logic to reduce the cost of the edges such that at least one edge is selected
|
105
|
+
updated_cost_e = min(
|
106
|
+
self.cost_e,
|
107
|
+
prizes["edges"].max().item() * (1 - self.c_const / 2),
|
108
|
+
)
|
109
|
+
|
110
|
+
# Initialize variables
|
111
|
+
edges = []
|
112
|
+
costs = []
|
113
|
+
virtual = {
|
114
|
+
"n_prizes": [],
|
115
|
+
"edges": [],
|
116
|
+
"costs": [],
|
117
|
+
}
|
118
|
+
mapping = {"nodes": {}, "edges": {}}
|
119
|
+
|
120
|
+
# Compute the costs, edges, and virtual variables based on the prizes
|
121
|
+
for i, (src, dst) in enumerate(graph.edge_index.T.numpy()):
|
122
|
+
prize_e = prizes["edges"][i]
|
123
|
+
if prize_e <= updated_cost_e:
|
124
|
+
mapping["edges"][len(edges)] = i
|
125
|
+
edges.append((src, dst))
|
126
|
+
costs.append(updated_cost_e - prize_e)
|
127
|
+
else:
|
128
|
+
virtual_node_id = graph.num_nodes + len(virtual["n_prizes"])
|
129
|
+
mapping["nodes"][virtual_node_id] = i
|
130
|
+
virtual["edges"].append((src, virtual_node_id))
|
131
|
+
virtual["edges"].append((virtual_node_id, dst))
|
132
|
+
virtual["costs"].append(0)
|
133
|
+
virtual["costs"].append(0)
|
134
|
+
virtual["n_prizes"].append(prize_e - updated_cost_e)
|
135
|
+
prizes = np.concatenate([prizes["nodes"], np.array(virtual["n_prizes"])])
|
136
|
+
edges_dict = {}
|
137
|
+
edges_dict["edges"] = edges
|
138
|
+
edges_dict["num_prior_edges"] = len(edges)
|
139
|
+
# Final computation of the costs and edges based on the virtual costs and virtual edges
|
140
|
+
if len(virtual["costs"]) > 0:
|
141
|
+
costs = np.array(costs + virtual["costs"])
|
142
|
+
edges = np.array(edges + virtual["edges"])
|
143
|
+
edges_dict["edges"] = edges
|
144
|
+
|
145
|
+
return edges_dict, prizes, costs, mapping
|
146
|
+
|
147
|
+
def get_subgraph_nodes_edges(
|
148
|
+
self, graph: Data, vertices: np.ndarray, edges_dict: dict, mapping: dict,
|
149
|
+
) -> dict:
|
150
|
+
"""
|
151
|
+
Get the selected nodes and edges of the subgraph based on the vertices and edges computed
|
152
|
+
by the PCST algorithm.
|
153
|
+
|
154
|
+
Args:
|
155
|
+
graph: The knowledge graph in PyTorch Geometric Data format.
|
156
|
+
vertices: The vertices of the subgraph computed by the PCST algorithm.
|
157
|
+
edges_dict: The dictionary of edges of the subgraph computed by the PCST algorithm,
|
158
|
+
and the number of prior edges (without virtual edges).
|
159
|
+
mapping: The mapping dictionary of the nodes and edges.
|
160
|
+
num_prior_edges: The number of edges before adding virtual edges.
|
161
|
+
|
162
|
+
Returns:
|
163
|
+
The selected nodes and edges of the extracted subgraph.
|
164
|
+
"""
|
165
|
+
# Get edges information
|
166
|
+
edges = edges_dict["edges"]
|
167
|
+
num_prior_edges = edges_dict["num_prior_edges"]
|
168
|
+
# Retrieve the selected nodes and edges based on the given vertices and edges
|
169
|
+
subgraph_nodes = vertices[vertices < graph.num_nodes]
|
170
|
+
subgraph_edges = [mapping["edges"][e] for e in edges if e < num_prior_edges]
|
171
|
+
virtual_vertices = vertices[vertices >= graph.num_nodes]
|
172
|
+
if len(virtual_vertices) > 0:
|
173
|
+
virtual_vertices = vertices[vertices >= graph.num_nodes]
|
174
|
+
virtual_edges = [mapping["nodes"][i] for i in virtual_vertices]
|
175
|
+
subgraph_edges = np.array(subgraph_edges + virtual_edges)
|
176
|
+
edge_index = graph.edge_index[:, subgraph_edges]
|
177
|
+
subgraph_nodes = np.unique(
|
178
|
+
np.concatenate(
|
179
|
+
[subgraph_nodes, edge_index[0].numpy(), edge_index[1].numpy()]
|
180
|
+
)
|
181
|
+
)
|
182
|
+
|
183
|
+
return {"nodes": subgraph_nodes, "edges": subgraph_edges}
|
184
|
+
|
185
|
+
def extract_subgraph(self, graph: Data, query_emb: torch.Tensor) -> dict:
|
186
|
+
"""
|
187
|
+
Perform the Prize-Collecting Steiner Tree (PCST) algorithm to extract the subgraph.
|
188
|
+
|
189
|
+
Args:
|
190
|
+
graph: The knowledge graph in PyTorch Geometric Data format.
|
191
|
+
query_emb: The query embedding.
|
192
|
+
|
193
|
+
Returns:
|
194
|
+
The selected nodes and edges of the subgraph.
|
195
|
+
"""
|
196
|
+
# Assert the topk and topk_e values for subgraph retrieval
|
197
|
+
assert self.topk > 0, "topk must be greater than or equal to 0"
|
198
|
+
assert self.topk_e > 0, "topk_e must be greater than or equal to 0"
|
199
|
+
|
200
|
+
# Retrieve the top-k nodes and edges based on the query embedding
|
201
|
+
prizes = self.compute_prizes(graph, query_emb)
|
202
|
+
|
203
|
+
# Compute costs in constructing the subgraph
|
204
|
+
edges_dict, prizes, costs, mapping = self.compute_subgraph_costs(
|
205
|
+
graph, prizes
|
206
|
+
)
|
207
|
+
|
208
|
+
# Retrieve the subgraph using the PCST algorithm
|
209
|
+
result_vertices, result_edges = pcst_fast.pcst_fast(
|
210
|
+
edges_dict["edges"],
|
211
|
+
prizes,
|
212
|
+
costs,
|
213
|
+
self.root,
|
214
|
+
self.num_clusters,
|
215
|
+
self.pruning,
|
216
|
+
self.verbosity_level,
|
217
|
+
)
|
218
|
+
|
219
|
+
subgraph = self.get_subgraph_nodes_edges(
|
220
|
+
graph,
|
221
|
+
result_vertices,
|
222
|
+
{"edges": result_edges, "num_prior_edges": edges_dict["num_prior_edges"]},
|
223
|
+
mapping)
|
224
|
+
|
225
|
+
return subgraph
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
4
|
-
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D
|
3
|
+
Version: 1.19.0
|
4
|
+
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
7
7
|
Classifier: Operating System :: OS Independent
|
@@ -12,6 +12,7 @@ Requires-Dist: copasi_basico==0.78
|
|
12
12
|
Requires-Dist: coverage==7.6.4
|
13
13
|
Requires-Dist: einops==0.8.0
|
14
14
|
Requires-Dist: gdown==5.2.0
|
15
|
+
Requires-Dist: gravis==0.1.0
|
15
16
|
Requires-Dist: huggingface_hub==0.26.5
|
16
17
|
Requires-Dist: hydra-core==1.3.2
|
17
18
|
Requires-Dist: joblib==1.4.2
|
@@ -19,6 +20,7 @@ Requires-Dist: langchain==0.3.7
|
|
19
20
|
Requires-Dist: langchain-community==0.3.5
|
20
21
|
Requires-Dist: langchain-core==0.3.31
|
21
22
|
Requires-Dist: langchain-experimental==0.3.3
|
23
|
+
Requires-Dist: langchain-nvidia-ai-endpoints==0.3.9
|
22
24
|
Requires-Dist: langchain-openai==0.2.5
|
23
25
|
Requires-Dist: langchain_ollama==0.2.2
|
24
26
|
Requires-Dist: langgraph==0.2.66
|
@@ -26,6 +28,7 @@ Requires-Dist: matplotlib==3.9.2
|
|
26
28
|
Requires-Dist: openai==1.59.4
|
27
29
|
Requires-Dist: ollama==0.4.6
|
28
30
|
Requires-Dist: pandas==2.2.3
|
31
|
+
Requires-Dist: pcst_fast==1.0.10
|
29
32
|
Requires-Dist: plotly==5.24.1
|
30
33
|
Requires-Dist: pydantic==2.9.2
|
31
34
|
Requires-Dist: pylint==3.3.1
|
@@ -93,10 +96,16 @@ Check out the tutorials on each agent for detailed instrcutions.
|
|
93
96
|
```bash
|
94
97
|
pip install .
|
95
98
|
```
|
96
|
-
3. **Initialize OPENAI_API_KEY**
|
99
|
+
3. **Initialize OPENAI_API_KEY and NVIDIA_API_KEY**
|
97
100
|
```bash
|
98
101
|
export OPENAI_API_KEY=....
|
99
102
|
```
|
103
|
+
```bash
|
104
|
+
export NVIDIA_API_KEY=....
|
105
|
+
```
|
106
|
+
_You can create a free account at NVIDIA and apply for their
|
107
|
+
free credits [here](https://build.nvidia.com/explore/discover)._
|
108
|
+
|
100
109
|
4. **[Optional] Initialize LANGSMITH_API_KEY**
|
101
110
|
```bash
|
102
111
|
export LANGCHAIN_TRACING_V2=true
|
@@ -1,7 +1,7 @@
|
|
1
1
|
aiagents4pharma/__init__.py,sha256=Ua9fqYW5gV1SZ0nOyOMd4T3wTlBui1-mrlJzFUQLFgY,161
|
2
2
|
aiagents4pharma/talk2biomodels/__init__.py,sha256=1cq1HX2xoi_a0nDPuXYoSTrnL26OHQBW3zXNwwwjFO0,181
|
3
3
|
aiagents4pharma/talk2biomodels/agents/__init__.py,sha256=sn5-fREjMdEvb-OUan3iOqrgYGjplNx3J8hYOaW0Po8,128
|
4
|
-
aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=
|
4
|
+
aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=bbktkTinp5VHHmAZEs1yMPN3Bu7rnyxRq2Cb7xVe8Gw,3477
|
5
5
|
aiagents4pharma/talk2biomodels/api/__init__.py,sha256=_GmDQqDLYpsUPUeE1nBNlT5AI9oTXIcqgOfNfvmonqA,123
|
6
6
|
aiagents4pharma/talk2biomodels/api/kegg.py,sha256=QzYDAfJ16E7tbHGxP8ZNWRizMkMRS_HJuucueXEC1Gg,2943
|
7
7
|
aiagents4pharma/talk2biomodels/api/ols.py,sha256=qq0Qy-gJDxanQW-HfCChDsTQsY1M41ua8hMlTnfuzrA,2202
|
@@ -12,37 +12,37 @@ aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/__init__.py,sha256=-fAOR
|
|
12
12
|
aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/default.yaml,sha256=pSViMKwKyMQDm8LzbfIaGdxph73iHYaXMiv5YOuxM7k,536
|
13
13
|
aiagents4pharma/talk2biomodels/configs/tools/__init__.py,sha256=B08KWjj7bpizuTETGnnngrEVK4nzdWGREdoCCSw1Sm4,102
|
14
14
|
aiagents4pharma/talk2biomodels/configs/tools/ask_question/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
15
|
-
aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml,sha256=
|
15
|
+
aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml,sha256=7k49GkLbPy4v7w5-zfwkgBUPaH6R1IrRPCXvUiUiCKE,1300
|
16
16
|
aiagents4pharma/talk2biomodels/configs/tools/get_annotation/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
17
17
|
aiagents4pharma/talk2biomodels/configs/tools/get_annotation/default.yaml,sha256=o5kqLJ5QGJsLMUhAqotudIMhxxNfPUVcDVH1tdRIutU,304
|
18
18
|
aiagents4pharma/talk2biomodels/models/__init__.py,sha256=5fTHHm3PVloYPNKXbgNlcPgv3-u28ZquxGydFYDfhJA,122
|
19
19
|
aiagents4pharma/talk2biomodels/models/basico_model.py,sha256=PH25FTOuUjsmw_UUxoRb-4kptOYpicEn4GqS0phS3nk,4807
|
20
20
|
aiagents4pharma/talk2biomodels/models/sys_bio_model.py,sha256=JeoiGQAvQABHnG0wKR2XBmmxqQdtgO6kxaLDUTUmr1s,2001
|
21
21
|
aiagents4pharma/talk2biomodels/states/__init__.py,sha256=YLg1-N0D9qyRRLRqwqfLCLAqZYDtMVZTfI8Y0b_4tbA,139
|
22
|
-
aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=
|
22
|
+
aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=S1UtXvocWR8Y9OVUp6pIDFnmaCcjbwmUbW8u79TuGcg,1508
|
23
23
|
aiagents4pharma/talk2biomodels/tests/__init__.py,sha256=Jbw5tJxSrjGoaK5IX3pJWDCNzhrVQ10lkYq2oQ_KQD8,45
|
24
24
|
aiagents4pharma/talk2biomodels/tests/test_api.py,sha256=7Kz2r5F5tjmn3F0LoM33oP-21W633936YHiyf5toGg0,1716
|
25
|
-
aiagents4pharma/talk2biomodels/tests/test_ask_question.py,sha256=
|
25
|
+
aiagents4pharma/talk2biomodels/tests/test_ask_question.py,sha256=rdForKfj2zj2IXl6ntK9_I0AbgsCv8MXOZ2khBnaPms,1620
|
26
26
|
aiagents4pharma/talk2biomodels/tests/test_basico_model.py,sha256=y82fpTJMPHwtXxlle1cGQ_2Bewwpxi0aJSVrVAYLhN0,2060
|
27
|
-
aiagents4pharma/talk2biomodels/tests/test_get_annotation.py,sha256=
|
27
|
+
aiagents4pharma/talk2biomodels/tests/test_get_annotation.py,sha256=GbobfjtCAOV0HddM4pb2o3c49Q05fKIM0Ubnf8BRxHM,8273
|
28
28
|
aiagents4pharma/talk2biomodels/tests/test_getmodelinfo.py,sha256=Y1sFhoMF4mbvlag7D-dEvv6ytjmAqzMLPvSvaVEI_Qk,2045
|
29
|
-
aiagents4pharma/talk2biomodels/tests/test_integration.py,sha256=
|
29
|
+
aiagents4pharma/talk2biomodels/tests/test_integration.py,sha256=XvQmnkIkAcgjmNwsW4FXiCwMMU7fpCpxfqhG2v2KyF4,5170
|
30
30
|
aiagents4pharma/talk2biomodels/tests/test_param_scan.py,sha256=vRbnn4uVWFbfZbU4gVCjHi5WDCUrErut8ElzAPE5y84,2648
|
31
|
-
aiagents4pharma/talk2biomodels/tests/test_query_article.py,sha256=
|
32
|
-
aiagents4pharma/talk2biomodels/tests/test_search_models.py,sha256=
|
31
|
+
aiagents4pharma/talk2biomodels/tests/test_query_article.py,sha256=lArISS111mQUZmjLY82PkRVPSTcN2h8KNF4gpTTvwL0,3185
|
32
|
+
aiagents4pharma/talk2biomodels/tests/test_search_models.py,sha256=ttOzN78b06ixYF_SbSyrhQSnmCgOMlSoeG9Q1FeRAis,1028
|
33
33
|
aiagents4pharma/talk2biomodels/tests/test_simulate_model.py,sha256=GjLE1DZpcKUAFSmoHD86vkfK0b5LJPM8a4WYyraazig,1487
|
34
|
-
aiagents4pharma/talk2biomodels/tests/test_steady_state.py,sha256=
|
34
|
+
aiagents4pharma/talk2biomodels/tests/test_steady_state.py,sha256=2bzxj74vekazgLG7hiMALRiqP_4sVmue9cN4zCZ42T8,3556
|
35
35
|
aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py,sha256=HSmBBViMi0jYf4gWX21IbppAfDzG0nr_S3KtKS9fZVQ,2165
|
36
36
|
aiagents4pharma/talk2biomodels/tools/__init__.py,sha256=6H2HWv5Q4NZYEmw-Ti5KZnJlEqhaC2HXSDZa6kiSl-U,350
|
37
|
-
aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=
|
38
|
-
aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=
|
39
|
-
aiagents4pharma/talk2biomodels/tools/get_annotation.py,sha256=
|
37
|
+
aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=NZwKT7DHc4TW9e8LOkHaRG_nqUs_lEandvi89DTXilQ,4640
|
38
|
+
aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=DsnQIKebchy6tgzLZnY7VLVesu3Es-OdqLfW61kIn3A,4762
|
39
|
+
aiagents4pharma/talk2biomodels/tools/get_annotation.py,sha256=njxUmFuFwlzY3Doq-XlepGXJTMgnYfs88L4RkKSiptw,13438
|
40
40
|
aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=57dkXrBeRpyiaW3dYkoWIfr6zSsFHcWRhvUVNyLcvUs,6363
|
41
41
|
aiagents4pharma/talk2biomodels/tools/load_arguments.py,sha256=bffNIlBDTCSFYiZprA73yi8Jbb8z3Oh2decVNh1UnZc,4162
|
42
42
|
aiagents4pharma/talk2biomodels/tools/load_biomodel.py,sha256=pyVzLQoMnuJYEwsjeOlqcUrbU1F1Z-pNlgkhFaoKpy0,689
|
43
43
|
aiagents4pharma/talk2biomodels/tools/parameter_scan.py,sha256=aNh94LgBgVXBIczuNkbSsOZ9j54YVEdZWmZbZr7Nk8k,12465
|
44
|
-
aiagents4pharma/talk2biomodels/tools/query_article.py,sha256=
|
45
|
-
aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=
|
44
|
+
aiagents4pharma/talk2biomodels/tools/query_article.py,sha256=6xfirRRMXN-wxqZxYYbKeEMXLMAHKl5IPShfpoOEBcc,2268
|
45
|
+
aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=LdvfCNeiO8fU6lszd7UUzk4NXP6ETuMsCRb2SpXcztw,2841
|
46
46
|
aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=qXs9lg9XgA7EaRiX3wBS8w_ug8tI-G3pzhcRg6dTRio,5060
|
47
47
|
aiagents4pharma/talk2biomodels/tools/steady_state.py,sha256=j3ckuNlUtv7lT922MbN0JhT9H0JpWAdx2mLPwao6uu8,7123
|
48
48
|
aiagents4pharma/talk2cells/__init__.py,sha256=zmOP5RAhabgKIQP-W4P4qKME2tG3fhAXM3MeO5_H8kE,120
|
@@ -55,31 +55,63 @@ aiagents4pharma/talk2cells/tools/__init__.py,sha256=38nK2a_lEFRjO3qD6Fo9a3983ZCY
|
|
55
55
|
aiagents4pharma/talk2cells/tools/scp_agent/__init__.py,sha256=s7g0lyH1lMD9pcWHLPtwRJRvzmTh2II7DrxyLulpjmQ,163
|
56
56
|
aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py,sha256=6q59gh_NQaiOU2rn55A3sIIFKlXi4SK3iKgySvUDrtQ,600
|
57
57
|
aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py,sha256=MLe-twtFnOu-P8P9diYq7jvHBHbWFRRCZLcfpUzqPMg,2806
|
58
|
-
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=
|
58
|
+
aiagents4pharma/talk2knowledgegraphs/__init__.py,sha256=Z0Eo7LTiKk0STsr8VI7wkCLq7PHrK1vYlH4I1hSNLiA,165
|
59
|
+
aiagents4pharma/talk2knowledgegraphs/agents/__init__.py,sha256=iOAzuy_8A03tQDFtSBhC9dldUo62z5gfxcVtXAdLOJs,92
|
60
|
+
aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py,sha256=j6MA1LB28mqpb6ZEmNLGcvDZvOnlGbJB9r7VXyEGask,3079
|
61
|
+
aiagents4pharma/talk2knowledgegraphs/configs/__init__.py,sha256=Y49ucO22v9oe9EwFiXN6MU2wvyB3_ZBpmHwHbeh-ZVQ,106
|
62
|
+
aiagents4pharma/talk2knowledgegraphs/configs/config.yaml,sha256=rwUIZ2t5j5hlFyre7VnV8zMsP0qpPTwvAFExgvQD6q0,196
|
63
|
+
aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
64
|
+
aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/default.yaml,sha256=ENCGROwYFpR6g4QD518h73sshdn3vPVpotBMk1QJcpU,4830
|
65
|
+
aiagents4pharma/talk2knowledgegraphs/configs/app/__init__.py,sha256=fKfc3FR7g5KjY9b6jzrU6cwKTVVpkoVZQS3dvUowu34,69
|
66
|
+
aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
67
|
+
aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml,sha256=4azC4cH-_-zt-bRVgNjkFM24mjNke6Rgn9pNl7XWrPQ,912
|
68
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/__init__.py,sha256=C1yyRZW8hqWw46p_bh1vAJp2z9aVvn4HpKjKkjlWIqY,150
|
69
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
70
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/default.yaml,sha256=Ua99yECXiwp4ZCUDgsDskYbKzcJrv7roQuLj31Zky4c,1037
|
71
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
72
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/default.yaml,sha256=U8HvMsYbaOwDwQPATj7EFvLtTy7XZEplE5WMoNjgYYc,1469
|
73
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
|
74
|
+
aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/default.yaml,sha256=OOSlPpJVwJK4_lu4lhA2E48yhFFbEYpyHsoi9Orgm00,561
|
59
75
|
aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py,sha256=L3gPuHskSegmtXskVrLIYr7FXe_ibKgJ2GGr1_Wok6k,173
|
60
76
|
aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py,sha256=QlzDXmXREoa9MA6-GwzqRjdzndQeGBAF11Td6NFk_9Y,23426
|
61
77
|
aiagents4pharma/talk2knowledgegraphs/datasets/dataset.py,sha256=-LaPLse8BkALqwFetNK7wch2dt9Dz6QKGKZKBKM6bIk,409
|
62
78
|
aiagents4pharma/talk2knowledgegraphs/datasets/primekg.py,sha256=KBMhCJ7yjMWqQJJctFYdpjYAlwv48Jl6i1dddXP4f08,7599
|
63
79
|
aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py,sha256=Y-6-nORsnBJlU6rH0skyfr9S9J4PfTWK-af_p5UuknQ,7483
|
80
|
+
aiagents4pharma/talk2knowledgegraphs/states/__init__.py,sha256=XaqorSvx634dWRRlXUdzlisHtYMyqgJ2q7TanzsKlhw,108
|
81
|
+
aiagents4pharma/talk2knowledgegraphs/states/state_talk2knowledgegraphs.py,sha256=6HqGo-awqoyNJG0igm5so5A4Tq8RPkCsjPg8Go38csE,1066
|
64
82
|
aiagents4pharma/talk2knowledgegraphs/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
83
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_agents_t2kg_agent.py,sha256=CCN6cyhEaiXSvIC-4y3ueDSzjDCBYDsmSmOor-DMeF4,3928
|
65
84
|
aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_biobridge_primekg.py,sha256=crH0eFA3P8P6IYzi1UWNa4YvRVrtlBzoScf9NaE1lDk,9827
|
66
85
|
aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_dataset.py,sha256=NFUlsZvhfIrkF4YenWfahrLK93Xhm5UYEGG_uYN2LVM,566
|
67
86
|
aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_primekg.py,sha256=Pvu0r93CpnhjkfMxc-EiVLpAJ04FdW9iTamCnetu654,2272
|
68
87
|
aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_starkqa_primekg.py,sha256=TuIsqcN1Mww3DTqGk6ebgJBWzUWdMWEq2yRQuYSFqvA,4416
|
88
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_tools_graphrag_reasoning.py,sha256=aOKHTber2Cg3mjNjfIa6RZU7XdFj5C2ps1YEUXw76CI,10650
|
89
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_extraction.py,sha256=zRi2j9Dm3VFywhhrPjVoJ7z_zJpAEM74MJRXapnhwVE,6246
|
90
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_summarization.py,sha256=oBqfspXXOxH04OQuPb8BCW0liIQTGKXtaPNSrPpQtFc,7597
|
69
91
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_embeddings.py,sha256=uYFoE_6zeU10_1mLLAHUr5c4S2XZMSc0Q_860o-KWEw,1517
|
70
|
-
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py,sha256=
|
92
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py,sha256=hzX84pheZdEsTtikF2KtBFiH44_xPjYXxLA6p4Ax1CY,1623
|
93
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_ollama.py,sha256=jn-TrPwF0aR9kVoerwkbMZa3U6Hc6HjV6Zoau4qSH4g,1834
|
71
94
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py,sha256=Qxo6WeIDRy8aLh1tNKw0kSlzmUj3MtTak63oW2YwB24,1327
|
72
95
|
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_enrichments.py,sha256=N6HRr4lWHXY7bTHe2uXJe4D_EG9WqZPibZne6qLl9_k,1447
|
73
|
-
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py,sha256=
|
74
|
-
aiagents4pharma/talk2knowledgegraphs/
|
96
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py,sha256=JhY7axvVULLywDJ2ctA-gob5YPeaJYWsaMNjHT6L9CU,3021
|
97
|
+
aiagents4pharma/talk2knowledgegraphs/tests/test_utils_kg_utils.py,sha256=pal76wi7WgQWUNk56BrzfFV8jKpbDaHHdbwtgx_gXLI,2410
|
98
|
+
aiagents4pharma/talk2knowledgegraphs/tools/__init__.py,sha256=zpD4h7EYtyq0QNOqLd6bkxrPlPb2XN64ceI9ncgESrA,171
|
99
|
+
aiagents4pharma/talk2knowledgegraphs/tools/graphrag_reasoning.py,sha256=OEuOFncDRdb7TQEGq4rkT5On-jI-R7Nt8K5EBzaND8w,5338
|
100
|
+
aiagents4pharma/talk2knowledgegraphs/tools/load_arguments.py,sha256=zhmsRp-8vjB5rRekqTA07d3yb-42HWqng9dDMkvK6hM,623
|
101
|
+
aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py,sha256=te06QMFQfgJWrjaGrqpcOYeaV38jwm0KY_rXVSMHkeI,11468
|
102
|
+
aiagents4pharma/talk2knowledgegraphs/tools/subgraph_summarization.py,sha256=mDSBOxopDfNhEJeU8fVI8b5lXTYrRzcc97aLbFgYSy4,4413
|
103
|
+
aiagents4pharma/talk2knowledgegraphs/utils/__init__.py,sha256=Q9mzcSmkmhdnOn13fxGh1fNECYoUR5Y5CCuEJTIxwAI,167
|
75
104
|
aiagents4pharma/talk2knowledgegraphs/utils/kg_utils.py,sha256=6vQnPkeOWae_8jePjhma3sJuMTngy0I0tqzdFt6OqKg,2507
|
76
|
-
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py,sha256=
|
105
|
+
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py,sha256=4TGK0XIVkkfGOyrSVwFQ-Lp-rzH9CCl-fWcqkFJKRLc,174
|
77
106
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/embeddings.py,sha256=1nGznrAj-xT0xuSMBGz2dOujJ7M_IwSR84njxtxsy9A,2523
|
78
107
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py,sha256=2vi_elf6EgzfagFAO5QnL3a_aXZyN7B1EBziu44MTfM,3806
|
108
|
+
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/ollama.py,sha256=8w0sjt3Ex5YJ_XvpKl9UbhdTiiaoMIarbPUxLBU-1Uw,2378
|
79
109
|
aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py,sha256=36iKlisOpMtGR5xfTAlSHXWvPqVC_Jbezod8kbBBMVg,2136
|
80
110
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/__init__.py,sha256=tW426knki2DBIHcWyF_K04iMMdbpIn_e_TpPmTgz2dI,113
|
81
111
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/enrichments.py,sha256=Bx8x6zzk5614ApWB90N_iv4_Y_Uq0-KwUeBwYSdQMU4,924
|
82
112
|
aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ollama.py,sha256=8eoxR-VHo0G7ReQIwje7xEhE-SJlHdef7_wJRpnvFIc,4116
|
113
|
+
aiagents4pharma/talk2knowledgegraphs/utils/extractions/__init__.py,sha256=7gwwtfzKhB8GuOBD47XRi0NprwEXkOzwNl5eeu-hDTI,86
|
114
|
+
aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py,sha256=m5p0yoJb7I19ua5yeQfXPf7c4r6S1XPwttsrM7Qoy94,9336
|
83
115
|
aiagents4pharma/talk2scholars/__init__.py,sha256=gphERyVKZHvOnMQsml7TIHlaIshHJ75R1J3FKExkfuY,120
|
84
116
|
aiagents4pharma/talk2scholars/agents/__init__.py,sha256=ykszlVGxz3egLHZAttlNoTPxIrnQJZYva_ssR8fwIFk,117
|
85
117
|
aiagents4pharma/talk2scholars/agents/main_agent.py,sha256=etPQUCjHtD-in-kD7Wg_UD6jRtCHj-mj41y03PYbAQM,4616
|
@@ -112,8 +144,8 @@ aiagents4pharma/talk2scholars/tools/s2/display_results.py,sha256=B8JJGohi1Eyx8C3
|
|
112
144
|
aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py,sha256=0Y3q8TkF_Phng9L7g1kk9Fhyit9UNitWurp03H0GZv8,4455
|
113
145
|
aiagents4pharma/talk2scholars/tools/s2/search.py,sha256=CcgFN7YuuQ9Vl1DJcldnnvPrswABKjNxeauK1rABps8,4176
|
114
146
|
aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py,sha256=irS-igdG8BZbVb0Z4VlIjzsyBlUfREd0v0_RlUM-0_U,4994
|
115
|
-
aiagents4pharma-1.
|
116
|
-
aiagents4pharma-1.
|
117
|
-
aiagents4pharma-1.
|
118
|
-
aiagents4pharma-1.
|
119
|
-
aiagents4pharma-1.
|
147
|
+
aiagents4pharma-1.19.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
|
148
|
+
aiagents4pharma-1.19.0.dist-info/METADATA,sha256=jMpgcCw7eRa0gUr_cCMCX38iit_D0LQE2VdzHliAk_M,7053
|
149
|
+
aiagents4pharma-1.19.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
150
|
+
aiagents4pharma-1.19.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
|
151
|
+
aiagents4pharma-1.19.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|