aiagents4pharma 1.17.1__py3-none-any.whl → 1.18.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,6 +8,7 @@ import logging
8
8
  from typing import Annotated
9
9
  import hydra
10
10
  from langchain_openai import ChatOpenAI
11
+ from langchain_core.language_models.chat_models import BaseChatModel
11
12
  from langgraph.checkpoint.memory import MemorySaver
12
13
  from langgraph.graph import START, StateGraph
13
14
  from langgraph.prebuilt import create_react_agent, ToolNode, InjectedState
@@ -26,7 +27,8 @@ from ..states.state_talk2biomodels import Talk2Biomodels
26
27
  logging.basicConfig(level=logging.INFO)
27
28
  logger = logging.getLogger(__name__)
28
29
 
29
- def get_app(uniq_id, llm_model='gpt-4o-mini'):
30
+ def get_app(uniq_id,
31
+ llm_model: BaseChatModel = ChatOpenAI(model='gpt-4o-mini', temperature=0)):
30
32
  '''
31
33
  This function returns the langraph app.
32
34
  '''
@@ -51,8 +53,6 @@ def get_app(uniq_id, llm_model='gpt-4o-mini'):
51
53
  QueryArticle()
52
54
  ])
53
55
 
54
- # Define the model
55
- llm = ChatOpenAI(model=llm_model, temperature=0)
56
56
  # Load hydra configuration
57
57
  logger.log(logging.INFO, "Load Hydra configuration for Talk2BioModels agent.")
58
58
  with hydra.initialize(version_base=None, config_path="../configs"):
@@ -62,7 +62,7 @@ def get_app(uniq_id, llm_model='gpt-4o-mini'):
62
62
  logger.log(logging.INFO, "state_modifier: %s", cfg.state_modifier)
63
63
  # Create the agent
64
64
  model = create_react_agent(
65
- llm,
65
+ llm_model,
66
66
  tools=tools,
67
67
  state_schema=Talk2Biomodels,
68
68
  state_modifier=cfg.state_modifier,
@@ -10,22 +10,14 @@ steady_state_prompt: >
10
10
 
11
11
  Here are some instructions to help you answer questions:
12
12
 
13
- 1. Before you answer any question, follow the plan and solve
14
- technique. Start by understanding the question, then plan your
15
- approach to solve the question, and finally solve the question
16
- by following the plan. Always give a brief explanation of your
17
- answer to the user.
13
+ 1. If the user wants to know the time taken by the model to reach
14
+ steady state, you should look at the `steady_state_transition_time`
15
+ column of the data for the model species.
16
+
17
+ 2. The highest value in the column `steady_state_transition_time`
18
+ is the time taken by the model to reach steady state.
18
19
 
19
- 2. If the user wants to know the time taken by the model to reach
20
- steady state, you should look at the steady_state_transition_time
21
- column of the data for the model species. The highest value in
22
- this column is the time taken by the model to reach steady state.
23
-
24
- 3. To get accurate results, trim the data to the relevant columns
25
- before performing any calculations. This will help you avoid
26
- errors in your calculations, and ignore irrelevant data.
27
-
28
- 4. Please use the units provided below to answer the questions.
20
+ 3. Please use the units provided below to answer the questions.
29
21
  simulation_prompt: >
30
22
  Following is the information about the data frame:
31
23
  1. First column is the time column, and the rest of the columns
@@ -7,6 +7,8 @@ This is the state file for the Talk2BioModels agent.
7
7
  from typing import Annotated
8
8
  import operator
9
9
  from langgraph.prebuilt.chat_agent_executor import AgentState
10
+ from langchain_core.language_models import BaseChatModel
11
+ from langchain_core.embeddings import Embeddings
10
12
 
11
13
  def add_data(data1: dict, data2: dict) -> dict:
12
14
  """
@@ -26,7 +28,8 @@ class Talk2Biomodels(AgentState):
26
28
  """
27
29
  The state for the Talk2BioModels agent.
28
30
  """
29
- llm_model: str
31
+ llm_model: BaseChatModel
32
+ text_embedding_model: Embeddings
30
33
  pdf_file_name: str
31
34
  # A StateGraph may receive a concurrent updates
32
35
  # which is not supported by the StateGraph. Hence,
@@ -3,6 +3,7 @@ Test cases for Talk2Biomodels.
3
3
  '''
4
4
 
5
5
  from langchain_core.messages import HumanMessage, ToolMessage
6
+ from langchain_openai import ChatOpenAI
6
7
  from ..agents.t2b_agent import get_app
7
8
 
8
9
  def test_ask_question_tool():
@@ -10,7 +11,7 @@ def test_ask_question_tool():
10
11
  Test the ask_question tool without the simulation results.
11
12
  '''
12
13
  unique_id = 12345
13
- app = get_app(unique_id, llm_model='gpt-4o-mini')
14
+ app = get_app(unique_id)
14
15
  config = {"configurable": {"thread_id": unique_id}}
15
16
 
16
17
  ##########################################
@@ -20,7 +21,8 @@ def test_ask_question_tool():
20
21
  # case, the tool should return an error
21
22
  ##########################################
22
23
  # Update state
23
- app.update_state(config, {"llm_model": "gpt-4o-mini"})
24
+ app.update_state(config,
25
+ {"llm_model": ChatOpenAI(model='gpt-4o-mini', temperature=0)})
24
26
  # Define the prompt
25
27
  prompt = "Call the ask_question tool to answer the "
26
28
  prompt += "question: What is the concentration of CRP "
@@ -5,6 +5,7 @@ Test cases for Talk2Biomodels get_annotation tool.
5
5
  import random
6
6
  import pytest
7
7
  from langchain_core.messages import HumanMessage, ToolMessage
8
+ from langchain_openai import ChatOpenAI
8
9
  from ..agents.t2b_agent import get_app
9
10
  from ..tools.get_annotation import prepare_content_msg
10
11
 
@@ -16,7 +17,9 @@ def make_graph_fixture():
16
17
  unique_id = random.randint(1000, 9999)
17
18
  graph = get_app(unique_id)
18
19
  config = {"configurable": {"thread_id": unique_id}}
19
- graph.update_state(config, {"llm_model": "gpt-4o-mini"})
20
+ graph.update_state(config, {"llm_model": ChatOpenAI(model='gpt-4o-mini',
21
+ temperature=0)
22
+ })
20
23
  return graph, config
21
24
 
22
25
  def test_no_model_provided(make_graph):
@@ -85,7 +88,6 @@ def test_invalid_species_provided(make_graph):
85
88
  # (likely due to an invalid species).
86
89
  test_condition = True
87
90
  break
88
- # assert test_condition
89
91
  assert test_condition
90
92
 
91
93
  def test_invalid_and_valid_species_provided(make_graph):
@@ -4,8 +4,11 @@ Test cases for Talk2Biomodels.
4
4
 
5
5
  import pandas as pd
6
6
  from langchain_core.messages import HumanMessage, ToolMessage
7
+ from langchain_openai import ChatOpenAI
7
8
  from ..agents.t2b_agent import get_app
8
9
 
10
+ LLM_MODEL = ChatOpenAI(model='gpt-4o-mini', temperature=0)
11
+
9
12
  def test_integration():
10
13
  '''
11
14
  Test the integration of the tools.
@@ -13,7 +16,7 @@ def test_integration():
13
16
  unique_id = 1234567
14
17
  app = get_app(unique_id)
15
18
  config = {"configurable": {"thread_id": unique_id}}
16
- app.update_state(config, {"llm_model": "gpt-4o-mini"})
19
+ app.update_state(config, {"llm_model": LLM_MODEL})
17
20
  # ##########################################
18
21
  # ## Test simulate_model tool
19
22
  # ##########################################
@@ -34,7 +37,7 @@ def test_integration():
34
37
  # results are available
35
38
  ##########################################
36
39
  # Update state
37
- app.update_state(config, {"llm_model": "gpt-4o-mini"})
40
+ app.update_state(config, {"llm_model": LLM_MODEL})
38
41
  prompt = """What is the concentration of CRP in serum after 100 hours?
39
42
  Round off the value to 2 decimal places."""
40
43
  # Test the tool get_modelinfo
@@ -49,12 +52,15 @@ def test_integration():
49
52
 
50
53
  ##########################################
51
54
  # Test custom_plotter tool when the
52
- # simulation results are available
55
+ # simulation results are available but
56
+ # the species is not available
53
57
  ##########################################
54
- prompt = "Plot only CRP related species."
55
-
58
+ prompt = """Call the custom_plotter tool to make a plot
59
+ showing only species `TP53` and `Pyruvate`. Let me
60
+ know if these species were not found. Do not
61
+ invoke any other tool."""
56
62
  # Update state
57
- app.update_state(config, {"llm_model": "gpt-4o-mini"}
63
+ app.update_state(config, {"llm_model": LLM_MODEL}
58
64
  )
59
65
  # Test the tool get_modelinfo
60
66
  response = app.invoke(
@@ -66,11 +72,8 @@ def test_integration():
66
72
  # Get the messages from the current state
67
73
  # and reverse the order
68
74
  reversed_messages = current_state.values["messages"][::-1]
69
- # Loop through the reversed messages
70
- # until a ToolMessage is found.
71
- expected_header = ['Time', 'CRP{serum}', 'CRPExtracellular']
72
- expected_header += ['CRP Suppression (%)', 'CRP (% of baseline)']
73
- expected_header += ['CRP{liver}']
75
+ # Loop through the reversed messages until a
76
+ # ToolMessage is found.
74
77
  predicted_artifact = []
75
78
  for msg in reversed_messages:
76
79
  if isinstance(msg, ToolMessage):
@@ -80,24 +83,17 @@ def test_integration():
80
83
  if msg.name == "custom_plotter":
81
84
  predicted_artifact = msg.artifact
82
85
  break
83
- # Convert the artifact into a pandas dataframe
84
- # for easy comparison
85
- df = pd.DataFrame(predicted_artifact)
86
- # Extract the headers from the dataframe
87
- predicted_header = df.columns.tolist()
88
- # Check if the header is in the expected_header
89
- # assert expected_header in predicted_artifact
90
- assert set(expected_header).issubset(set(predicted_header))
86
+ # Check if the the predicted artifact is `None`
87
+ assert predicted_artifact is None
88
+
91
89
  ##########################################
92
90
  # Test custom_plotter tool when the
93
- # simulation results are available but
94
- # the species is not available
91
+ # simulation results are available
95
92
  ##########################################
96
- prompt = """Make a custom plot showing the
97
- concentration of the species `TP53` over
98
- time. Do not show any other species."""
93
+ prompt = "Plot only CRP related species."
94
+
99
95
  # Update state
100
- app.update_state(config, {"llm_model": "gpt-4o-mini"}
96
+ app.update_state(config, {"llm_model": LLM_MODEL}
101
97
  )
102
98
  # Test the tool get_modelinfo
103
99
  response = app.invoke(
@@ -105,13 +101,15 @@ def test_integration():
105
101
  config=config
106
102
  )
107
103
  assistant_msg = response["messages"][-1].content
108
- # print (response["messages"])
109
104
  current_state = app.get_state(config)
110
105
  # Get the messages from the current state
111
106
  # and reverse the order
112
107
  reversed_messages = current_state.values["messages"][::-1]
113
- # Loop through the reversed messages until a
114
- # ToolMessage is found.
108
+ # Loop through the reversed messages
109
+ # until a ToolMessage is found.
110
+ expected_header = ['Time', 'CRP{serum}', 'CRPExtracellular']
111
+ expected_header += ['CRP Suppression (%)', 'CRP (% of baseline)']
112
+ expected_header += ['CRP{liver}']
115
113
  predicted_artifact = []
116
114
  for msg in reversed_messages:
117
115
  if isinstance(msg, ToolMessage):
@@ -121,5 +119,11 @@ def test_integration():
121
119
  if msg.name == "custom_plotter":
122
120
  predicted_artifact = msg.artifact
123
121
  break
124
- # Check if the the predicted artifact is `None`
125
- assert predicted_artifact is None
122
+ # Convert the artifact into a pandas dataframe
123
+ # for easy comparison
124
+ df = pd.DataFrame(predicted_artifact)
125
+ # Extract the headers from the dataframe
126
+ predicted_header = df.columns.tolist()
127
+ # Check if the header is in the expected_header
128
+ # assert expected_header in predicted_artifact
129
+ assert set(expected_header).issubset(set(predicted_header))
@@ -5,6 +5,7 @@ Test cases for Talk2Biomodels query_article tool.
5
5
  from pydantic import BaseModel, Field
6
6
  from langchain_core.messages import HumanMessage, ToolMessage
7
7
  from langchain_openai import ChatOpenAI
8
+ from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
8
9
  from ..agents.t2b_agent import get_app
9
10
 
10
11
  class Article(BaseModel):
@@ -21,8 +22,10 @@ def test_query_article_with_an_article():
21
22
  app = get_app(unique_id)
22
23
  config = {"configurable": {"thread_id": unique_id}}
23
24
  # Update state by providing the pdf file name
25
+ # and the text embedding model
24
26
  app.update_state(config,
25
- {"pdf_file_name": "aiagents4pharma/talk2biomodels/tests/article_on_model_537.pdf"})
27
+ {"pdf_file_name": "aiagents4pharma/talk2biomodels/tests/article_on_model_537.pdf",
28
+ "text_embedding_model": NVIDIAEmbeddings(model='nvidia/llama-3.2-nv-embedqa-1b-v2')})
26
29
  prompt = "What is the title of the article?"
27
30
  # Test the tool query_article
28
31
  response = app.invoke(
@@ -55,6 +58,9 @@ def test_query_article_without_an_article():
55
58
  app = get_app(unique_id)
56
59
  config = {"configurable": {"thread_id": unique_id}}
57
60
  prompt = "What is the title of the uploaded article?"
61
+ # Update state by providing the text embedding model
62
+ app.update_state(config,
63
+ {"text_embedding_model": NVIDIAEmbeddings(model='nvidia/llama-3.2-nv-embedqa-1b-v2')})
58
64
  # Test the tool query_article
59
65
  app.invoke(
60
66
  {"messages": [HumanMessage(content=prompt)]},
@@ -3,6 +3,7 @@ Test cases for Talk2Biomodels search models tool.
3
3
  '''
4
4
 
5
5
  from langchain_core.messages import HumanMessage
6
+ from langchain_nvidia_ai_endpoints import ChatNVIDIA
6
7
  from ..agents.t2b_agent import get_app
7
8
 
8
9
  def test_search_models_tool():
@@ -13,7 +14,8 @@ def test_search_models_tool():
13
14
  app = get_app(unique_id)
14
15
  config = {"configurable": {"thread_id": unique_id}}
15
16
  # Update state
16
- app.update_state(config, {"llm_model": "gpt-4o-mini"})
17
+ app.update_state(config,
18
+ {"llm_model": ChatNVIDIA(model="meta/llama-3.3-70b-instruct")})
17
19
  prompt = "Search for models on Crohn's disease."
18
20
  # Test the tool get_modelinfo
19
21
  response = app.invoke(
@@ -3,8 +3,11 @@ Test cases for Talk2Biomodels steady state tool.
3
3
  '''
4
4
 
5
5
  from langchain_core.messages import HumanMessage, ToolMessage
6
+ from langchain_openai import ChatOpenAI
6
7
  from ..agents.t2b_agent import get_app
7
8
 
9
+ LLM_MODEL = ChatOpenAI(model='gpt-4o-mini', temperature=0)
10
+
8
11
  def test_steady_state_tool():
9
12
  '''
10
13
  Test the steady_state tool.
@@ -12,7 +15,7 @@ def test_steady_state_tool():
12
15
  unique_id = 123
13
16
  app = get_app(unique_id)
14
17
  config = {"configurable": {"thread_id": unique_id}}
15
- app.update_state(config, {"llm_model": "gpt-4o-mini"})
18
+ app.update_state(config, {"llm_model": LLM_MODEL})
16
19
  #########################################################
17
20
  # In this case, we will test if the tool returns an error
18
21
  # when the model does not achieve a steady state. The tool
@@ -37,8 +40,8 @@ def test_steady_state_tool():
37
40
  #########################################################
38
41
  # In this case, we will test if the tool is indeed invoked
39
42
  # successfully
40
- prompt = """Run a steady state analysis of model 64.
41
- Set the initial concentration of `Pyruvate` to 0.2. The
43
+ prompt = """Bring model 64 to a steady state. Set the
44
+ initial concentration of `Pyruvate` to 0.2. The
42
45
  concentration of `NAD` resets to 100 every 2 time units."""
43
46
  # Invoke the agent
44
47
  app.invoke(
@@ -12,7 +12,6 @@ import pandas as pd
12
12
  from pydantic import BaseModel, Field
13
13
  from langchain_core.tools.base import BaseTool
14
14
  from langchain_experimental.agents import create_pandas_dataframe_agent
15
- from langchain_openai import ChatOpenAI
16
15
  from langgraph.prebuilt import InjectedState
17
16
 
18
17
  # Initialize logger
@@ -101,7 +100,7 @@ class AskQuestionTool(BaseTool):
101
100
  prompt_content += f"{basico.model_info.get_model_units()}\n\n"
102
101
  # Create a pandas dataframe agent
103
102
  df_agent = create_pandas_dataframe_agent(
104
- ChatOpenAI(model=state['llm_model']),
103
+ state['llm_model'],
105
104
  allow_dangerous_code=True,
106
105
  agent_type='tool-calling',
107
106
  df=df,
@@ -5,10 +5,9 @@ Tool for plotting a custom figure.
5
5
  """
6
6
 
7
7
  import logging
8
- from typing import Type, List, TypedDict, Annotated, Tuple, Union, Literal
8
+ from typing import Type, Annotated, List, Tuple, Union, Literal
9
9
  from pydantic import BaseModel, Field
10
10
  import pandas as pd
11
- from langchain_openai import ChatOpenAI
12
11
  from langchain_core.tools import BaseTool
13
12
  from langgraph.prebuilt import InjectedState
14
13
 
@@ -71,30 +70,44 @@ class CustomPlotterTool(BaseTool):
71
70
  species_names = df.columns.tolist()
72
71
  # Exclude the time column
73
72
  species_names.remove('Time')
73
+ logging.log(logging.INFO, "Species names: %s", species_names)
74
74
  # In the following code, we extract the species
75
75
  # from the user question. We use Literal to restrict
76
76
  # the species names to the ones available in the
77
77
  # simulation results.
78
- class CustomHeader(TypedDict):
78
+ class CustomHeader(BaseModel):
79
79
  """
80
80
  A list of species based on user question.
81
+
82
+ This is a Pydantic model that restricts the species
83
+ names to the ones available in the simulation results.
84
+
85
+ If no species is relevant, set the attribute
86
+ `relevant_species` to None.
81
87
  """
82
88
  relevant_species: Union[None, List[Literal[*species_names]]] = Field(
83
- description="""List of species based on user question.
84
- If no relevant species are found, it will be None.""")
89
+ description="This is a list of species based on the user question."
90
+ "It is restricted to the species available in the simulation results."
91
+ "If no species is relevant, set this attribute to None."
92
+ "If the user asks for very specific species (for example, using the"
93
+ "keyword `only` in the question), set this attribute to correspond "
94
+ "to the species available in the simulation results, otherwise set it to None."
95
+ )
85
96
  # Create an instance of the LLM model
86
- llm = ChatOpenAI(model=state['llm_model'], temperature=0)
97
+ logging.log(logging.INFO, "LLM model: %s", state['llm_model'])
98
+ llm = state['llm_model']
87
99
  llm_with_structured_output = llm.with_structured_output(CustomHeader)
88
100
  results = llm_with_structured_output.invoke(question)
101
+ if results.relevant_species is None:
102
+ raise ValueError("No species found in the simulation results \
103
+ that matches the user prompt.")
89
104
  extracted_species = []
90
105
  # Extract the species from the results
91
106
  # that are available in the simulation results
92
- for species in results['relevant_species']:
107
+ for species in results.relevant_species:
93
108
  if species in species_names:
94
109
  extracted_species.append(species)
95
- logger.info("Extracted species: %s", extracted_species)
96
- if len(extracted_species) == 0:
97
- return "No species found in the simulation results that matches the user prompt.", None
110
+ logging.info("Extracted species: %s", extracted_species)
98
111
  # Include the time column
99
112
  extracted_species.insert(0, 'Time')
100
113
  return f"Custom plot {simulation_name}", df[extracted_species].to_dict(orient='records')
@@ -5,7 +5,7 @@ This module contains the `GetAnnotationTool` for fetching species annotations
5
5
  based on the provided model and species names.
6
6
  """
7
7
  import math
8
- from typing import List, Annotated, Type, TypedDict, Union, Literal
8
+ from typing import List, Annotated, Type, Union, Literal
9
9
  import logging
10
10
  from dataclasses import dataclass
11
11
  import hydra
@@ -17,7 +17,7 @@ from langgraph.prebuilt import InjectedState
17
17
  from langchain_core.tools.base import BaseTool
18
18
  from langchain_core.tools.base import InjectedToolCallId
19
19
  from langchain_core.messages import ToolMessage
20
- from langchain_openai import ChatOpenAI
20
+ # from langchain_openai import ChatOpenAI
21
21
  from .load_biomodel import ModelData, load_biomodel
22
22
  from ..api.uniprot import search_uniprot_labels
23
23
  from ..api.ols import search_ols_labels
@@ -49,7 +49,7 @@ def extract_relevant_species_names(model_object, arg_data, state):
49
49
  all_species_names = df_species.index.tolist()
50
50
 
51
51
  # Define a structured output for the LLM model
52
- class CustomHeader(TypedDict):
52
+ class CustomHeader(BaseModel):
53
53
  """
54
54
  A list of species based on user question.
55
55
  """
@@ -58,17 +58,21 @@ def extract_relevant_species_names(model_object, arg_data, state):
58
58
  If no relevant species are found, it must be None.""")
59
59
 
60
60
  # Create an instance of the LLM model
61
- llm = ChatOpenAI(model=state['llm_model'], temperature=0)
61
+ llm = state['llm_model']
62
62
  # Get the structured output from the LLM model
63
63
  llm_with_structured_output = llm.with_structured_output(CustomHeader)
64
64
  # Define the question for the LLM model using the prompt
65
65
  question = cfg.prompt
66
66
  question += f'Here is the user question: {arg_data.user_question}'
67
67
  # Invoke the LLM model with the user question
68
- dic = llm_with_structured_output.invoke(question)
68
+ results = llm_with_structured_output.invoke(question)
69
+ logging.info("Results from the LLM model: %s", results)
70
+ # Check if the returned species names are empty
71
+ if not results.relevant_species:
72
+ raise ValueError("Model does not contain the requested species.")
69
73
  extracted_species = []
70
74
  # Extract all the species names from the model
71
- for species in dic['relevant_species']:
75
+ for species in results.relevant_species:
72
76
  if species in all_species_names:
73
77
  extracted_species.append(species)
74
78
  logger.info("Extracted species: %s", extracted_species)
@@ -136,10 +140,7 @@ class GetAnnotationTool(BaseTool):
136
140
 
137
141
  # Extract relevant species names based on the user question
138
142
  list_species_names = extract_relevant_species_names(model_object, arg_data, state)
139
-
140
- # Check if the returned species names are empty
141
- if not list_species_names:
142
- raise ValueError("Model does not contain the requested species.")
143
+ print (list_species_names)
143
144
 
144
145
  (annotations_df,
145
146
  species_without_description) = self._fetch_annotations(list_species_names)
@@ -9,7 +9,6 @@ from typing import Type, Annotated
9
9
  from pydantic import BaseModel, Field
10
10
  from langchain_core.tools import BaseTool
11
11
  from langchain_core.vectorstores import InMemoryVectorStore
12
- from langchain_openai.embeddings import OpenAIEmbeddings
13
12
  from langchain_community.document_loaders import PyPDFLoader
14
13
  from langgraph.prebuilt import InjectedState
15
14
 
@@ -51,8 +50,13 @@ class QueryArticle(BaseTool):
51
50
  pages = []
52
51
  for page in loader.lazy_load():
53
52
  pages.append(page)
53
+ # Set up text embedding model
54
+ text_embedding_model = state['text_embedding_model']
55
+ logging.info("Loaded text embedding model %s", text_embedding_model)
54
56
  # Create a vector store from the pages
55
- vector_store = InMemoryVectorStore.from_documents(pages, OpenAIEmbeddings())
57
+ vector_store = InMemoryVectorStore.from_documents(
58
+ pages,
59
+ text_embedding_model)
56
60
  # Search the article with the question
57
61
  docs = vector_store.similarity_search(question)
58
62
  # Return the content of the pages
@@ -5,14 +5,18 @@ Tool for searching models based on search query.
5
5
  """
6
6
 
7
7
  from typing import Type, Annotated
8
+ import logging
8
9
  from pydantic import BaseModel, Field
9
10
  from basico import biomodels
10
11
  from langchain_core.tools import BaseTool
11
12
  from langchain_core.output_parsers import StrOutputParser
12
13
  from langchain_core.prompts import ChatPromptTemplate
13
- from langchain_openai import ChatOpenAI
14
14
  from langgraph.prebuilt import InjectedState
15
15
 
16
+ # Initialize logger
17
+ logging.basicConfig(level=logging.INFO)
18
+ logger = logging.getLogger(__name__)
19
+
16
20
  class SearchModelsInput(BaseModel):
17
21
  """
18
22
  Input schema for the search models tool.
@@ -43,8 +47,10 @@ class SearchModelsTool(BaseTool):
43
47
  Returns:
44
48
  dict: The answer to the question in the form of a dictionary.
45
49
  """
50
+ logger.log(logging.INFO, "Searching models with the query and model: %s, %s",
51
+ query, state['llm_model'])
46
52
  search_results = biomodels.search_for_model(query)
47
- llm = ChatOpenAI(model=state['llm_model'])
53
+ llm = state['llm_model']
48
54
  # Check if run_manager's metadata has the key 'prompt_content'
49
55
  prompt_content = f'''
50
56
  Convert the input into a table.
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: aiagents4pharma
3
- Version: 1.17.1
4
- Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D
3
+ Version: 1.18.0
4
+ Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: MIT License
7
7
  Classifier: Operating System :: OS Independent
@@ -19,6 +19,7 @@ Requires-Dist: langchain==0.3.7
19
19
  Requires-Dist: langchain-community==0.3.5
20
20
  Requires-Dist: langchain-core==0.3.31
21
21
  Requires-Dist: langchain-experimental==0.3.3
22
+ Requires-Dist: langchain-nvidia-ai-endpoints==0.3.9
22
23
  Requires-Dist: langchain-openai==0.2.5
23
24
  Requires-Dist: langchain_ollama==0.2.2
24
25
  Requires-Dist: langgraph==0.2.66
@@ -93,10 +94,16 @@ Check out the tutorials on each agent for detailed instrcutions.
93
94
  ```bash
94
95
  pip install .
95
96
  ```
96
- 3. **Initialize OPENAI_API_KEY**
97
+ 3. **Initialize OPENAI_API_KEY and NVIDIA_API_KEY**
97
98
  ```bash
98
99
  export OPENAI_API_KEY=....
99
100
  ```
101
+ ```bash
102
+ export NVIDIA_API_KEY=....
103
+ ```
104
+ _You can create a free account at NVIDIA and apply for their
105
+ free credits [here](https://build.nvidia.com/explore/discover)._
106
+
100
107
  4. **[Optional] Initialize LANGSMITH_API_KEY**
101
108
  ```bash
102
109
  export LANGCHAIN_TRACING_V2=true
@@ -1,7 +1,7 @@
1
1
  aiagents4pharma/__init__.py,sha256=Ua9fqYW5gV1SZ0nOyOMd4T3wTlBui1-mrlJzFUQLFgY,161
2
2
  aiagents4pharma/talk2biomodels/__init__.py,sha256=1cq1HX2xoi_a0nDPuXYoSTrnL26OHQBW3zXNwwwjFO0,181
3
3
  aiagents4pharma/talk2biomodels/agents/__init__.py,sha256=sn5-fREjMdEvb-OUan3iOqrgYGjplNx3J8hYOaW0Po8,128
4
- aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=CXlqDRqG_cxb1TUEL6960s2ActFiXblYPraagDDGQpo,3416
4
+ aiagents4pharma/talk2biomodels/agents/t2b_agent.py,sha256=bbktkTinp5VHHmAZEs1yMPN3Bu7rnyxRq2Cb7xVe8Gw,3477
5
5
  aiagents4pharma/talk2biomodels/api/__init__.py,sha256=_GmDQqDLYpsUPUeE1nBNlT5AI9oTXIcqgOfNfvmonqA,123
6
6
  aiagents4pharma/talk2biomodels/api/kegg.py,sha256=QzYDAfJ16E7tbHGxP8ZNWRizMkMRS_HJuucueXEC1Gg,2943
7
7
  aiagents4pharma/talk2biomodels/api/ols.py,sha256=qq0Qy-gJDxanQW-HfCChDsTQsY1M41ua8hMlTnfuzrA,2202
@@ -12,37 +12,37 @@ aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/__init__.py,sha256=-fAOR
12
12
  aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/default.yaml,sha256=pSViMKwKyMQDm8LzbfIaGdxph73iHYaXMiv5YOuxM7k,536
13
13
  aiagents4pharma/talk2biomodels/configs/tools/__init__.py,sha256=B08KWjj7bpizuTETGnnngrEVK4nzdWGREdoCCSw1Sm4,102
14
14
  aiagents4pharma/talk2biomodels/configs/tools/ask_question/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
15
- aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml,sha256=pMjs-peecRl8xtIucbEM1Z8Mm_8KGZj0JBrKKD3cMxU,1732
15
+ aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml,sha256=7k49GkLbPy4v7w5-zfwkgBUPaH6R1IrRPCXvUiUiCKE,1300
16
16
  aiagents4pharma/talk2biomodels/configs/tools/get_annotation/__init__.py,sha256=-fAORvyFmG2iSvFOFDixmt9OTQRR58y89uhhu2EgbA8,46
17
17
  aiagents4pharma/talk2biomodels/configs/tools/get_annotation/default.yaml,sha256=o5kqLJ5QGJsLMUhAqotudIMhxxNfPUVcDVH1tdRIutU,304
18
18
  aiagents4pharma/talk2biomodels/models/__init__.py,sha256=5fTHHm3PVloYPNKXbgNlcPgv3-u28ZquxGydFYDfhJA,122
19
19
  aiagents4pharma/talk2biomodels/models/basico_model.py,sha256=PH25FTOuUjsmw_UUxoRb-4kptOYpicEn4GqS0phS3nk,4807
20
20
  aiagents4pharma/talk2biomodels/models/sys_bio_model.py,sha256=JeoiGQAvQABHnG0wKR2XBmmxqQdtgO6kxaLDUTUmr1s,2001
21
21
  aiagents4pharma/talk2biomodels/states/__init__.py,sha256=YLg1-N0D9qyRRLRqwqfLCLAqZYDtMVZTfI8Y0b_4tbA,139
22
- aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=d_tDh93ip36hlUpMh-KOkYfBZ2SQwZlaY8p-1ZWKPhY,1355
22
+ aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py,sha256=S1UtXvocWR8Y9OVUp6pIDFnmaCcjbwmUbW8u79TuGcg,1508
23
23
  aiagents4pharma/talk2biomodels/tests/__init__.py,sha256=Jbw5tJxSrjGoaK5IX3pJWDCNzhrVQ10lkYq2oQ_KQD8,45
24
24
  aiagents4pharma/talk2biomodels/tests/test_api.py,sha256=7Kz2r5F5tjmn3F0LoM33oP-21W633936YHiyf5toGg0,1716
25
- aiagents4pharma/talk2biomodels/tests/test_ask_question.py,sha256=yRkKK9HLB1bGGWm_WwOckwaUmmRfRAD9z2NFFGLIGTY,1560
25
+ aiagents4pharma/talk2biomodels/tests/test_ask_question.py,sha256=rdForKfj2zj2IXl6ntK9_I0AbgsCv8MXOZ2khBnaPms,1620
26
26
  aiagents4pharma/talk2biomodels/tests/test_basico_model.py,sha256=y82fpTJMPHwtXxlle1cGQ_2Bewwpxi0aJSVrVAYLhN0,2060
27
- aiagents4pharma/talk2biomodels/tests/test_get_annotation.py,sha256=GqS3kCxxTTMTJFjTnJhilrxT6jbNb7Yi0fbaKkadU4E,8159
27
+ aiagents4pharma/talk2biomodels/tests/test_get_annotation.py,sha256=GbobfjtCAOV0HddM4pb2o3c49Q05fKIM0Ubnf8BRxHM,8273
28
28
  aiagents4pharma/talk2biomodels/tests/test_getmodelinfo.py,sha256=Y1sFhoMF4mbvlag7D-dEvv6ytjmAqzMLPvSvaVEI_Qk,2045
29
- aiagents4pharma/talk2biomodels/tests/test_integration.py,sha256=QHGOKrKyd0kBGy1tOMmkNSqN2Jc2oIXoUrAMpv-elBc,5058
29
+ aiagents4pharma/talk2biomodels/tests/test_integration.py,sha256=XvQmnkIkAcgjmNwsW4FXiCwMMU7fpCpxfqhG2v2KyF4,5170
30
30
  aiagents4pharma/talk2biomodels/tests/test_param_scan.py,sha256=vRbnn4uVWFbfZbU4gVCjHi5WDCUrErut8ElzAPE5y84,2648
31
- aiagents4pharma/talk2biomodels/tests/test_query_article.py,sha256=HhFgU5HzCipecEYlfbpPxN-SCIPKep22gpXCutWXRb8,2820
32
- aiagents4pharma/talk2biomodels/tests/test_search_models.py,sha256=8ODFubLxWYD3I3KQWuUnJ2GZRzMjFpXInFBLxKxG_ME,929
31
+ aiagents4pharma/talk2biomodels/tests/test_query_article.py,sha256=lArISS111mQUZmjLY82PkRVPSTcN2h8KNF4gpTTvwL0,3185
32
+ aiagents4pharma/talk2biomodels/tests/test_search_models.py,sha256=ttOzN78b06ixYF_SbSyrhQSnmCgOMlSoeG9Q1FeRAis,1028
33
33
  aiagents4pharma/talk2biomodels/tests/test_simulate_model.py,sha256=GjLE1DZpcKUAFSmoHD86vkfK0b5LJPM8a4WYyraazig,1487
34
- aiagents4pharma/talk2biomodels/tests/test_steady_state.py,sha256=zt15KQoQku6jyzvpJXwINGTyhEnQl8wX81ueHlxnUCA,3467
34
+ aiagents4pharma/talk2biomodels/tests/test_steady_state.py,sha256=2bzxj74vekazgLG7hiMALRiqP_4sVmue9cN4zCZ42T8,3556
35
35
  aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py,sha256=HSmBBViMi0jYf4gWX21IbppAfDzG0nr_S3KtKS9fZVQ,2165
36
36
  aiagents4pharma/talk2biomodels/tools/__init__.py,sha256=6H2HWv5Q4NZYEmw-Ti5KZnJlEqhaC2HXSDZa6kiSl-U,350
37
- aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=ASkqT6VHUWcMdkVAlqqfbwq7_EBVAXdtmlkMFy7-XxI,4698
38
- aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=HWwKTX3o4dk0GcRVTO2hPrFSu98mtJ4TKC_hbHXOe1c,4018
39
- aiagents4pharma/talk2biomodels/tools/get_annotation.py,sha256=Cea0vid_KX1xjI6ZqDygREAcM7sC7wZXNLTkAN8Nk3Y,13387
37
+ aiagents4pharma/talk2biomodels/tools/ask_question.py,sha256=NZwKT7DHc4TW9e8LOkHaRG_nqUs_lEandvi89DTXilQ,4640
38
+ aiagents4pharma/talk2biomodels/tools/custom_plotter.py,sha256=DsnQIKebchy6tgzLZnY7VLVesu3Es-OdqLfW61kIn3A,4762
39
+ aiagents4pharma/talk2biomodels/tools/get_annotation.py,sha256=njxUmFuFwlzY3Doq-XlepGXJTMgnYfs88L4RkKSiptw,13438
40
40
  aiagents4pharma/talk2biomodels/tools/get_modelinfo.py,sha256=57dkXrBeRpyiaW3dYkoWIfr6zSsFHcWRhvUVNyLcvUs,6363
41
41
  aiagents4pharma/talk2biomodels/tools/load_arguments.py,sha256=bffNIlBDTCSFYiZprA73yi8Jbb8z3Oh2decVNh1UnZc,4162
42
42
  aiagents4pharma/talk2biomodels/tools/load_biomodel.py,sha256=pyVzLQoMnuJYEwsjeOlqcUrbU1F1Z-pNlgkhFaoKpy0,689
43
43
  aiagents4pharma/talk2biomodels/tools/parameter_scan.py,sha256=aNh94LgBgVXBIczuNkbSsOZ9j54YVEdZWmZbZr7Nk8k,12465
44
- aiagents4pharma/talk2biomodels/tools/query_article.py,sha256=1tpYiE69MYcqiNcRaBgNiYzkkNmuTnlxLuBL_FnRuBU,2058
45
- aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=b2OK-Z4ilddbEaJPSQlnZ6sHX3UAWXr_Hq-knoSbbAE,2654
44
+ aiagents4pharma/talk2biomodels/tools/query_article.py,sha256=6xfirRRMXN-wxqZxYYbKeEMXLMAHKl5IPShfpoOEBcc,2268
45
+ aiagents4pharma/talk2biomodels/tools/search_models.py,sha256=LdvfCNeiO8fU6lszd7UUzk4NXP6ETuMsCRb2SpXcztw,2841
46
46
  aiagents4pharma/talk2biomodels/tools/simulate_model.py,sha256=qXs9lg9XgA7EaRiX3wBS8w_ug8tI-G3pzhcRg6dTRio,5060
47
47
  aiagents4pharma/talk2biomodels/tools/steady_state.py,sha256=j3ckuNlUtv7lT922MbN0JhT9H0JpWAdx2mLPwao6uu8,7123
48
48
  aiagents4pharma/talk2cells/__init__.py,sha256=zmOP5RAhabgKIQP-W4P4qKME2tG3fhAXM3MeO5_H8kE,120
@@ -112,8 +112,8 @@ aiagents4pharma/talk2scholars/tools/s2/display_results.py,sha256=B8JJGohi1Eyx8C3
112
112
  aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py,sha256=0Y3q8TkF_Phng9L7g1kk9Fhyit9UNitWurp03H0GZv8,4455
113
113
  aiagents4pharma/talk2scholars/tools/s2/search.py,sha256=CcgFN7YuuQ9Vl1DJcldnnvPrswABKjNxeauK1rABps8,4176
114
114
  aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py,sha256=irS-igdG8BZbVb0Z4VlIjzsyBlUfREd0v0_RlUM-0_U,4994
115
- aiagents4pharma-1.17.1.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
116
- aiagents4pharma-1.17.1.dist-info/METADATA,sha256=6co2HtNzvTLVFczemaajMlZ-7RrM9lmbYwRD3zcfolw,6744
117
- aiagents4pharma-1.17.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
118
- aiagents4pharma-1.17.1.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
119
- aiagents4pharma-1.17.1.dist-info/RECORD,,
115
+ aiagents4pharma-1.18.0.dist-info/LICENSE,sha256=IcIbyB1Hyk5ZDah03VNQvJkbNk2hkBCDqQ8qtnCvB4Q,1077
116
+ aiagents4pharma-1.18.0.dist-info/METADATA,sha256=0DruGN7wacwsdocwdBJoIYnwqd6aGxii98DHkPkCu48,6991
117
+ aiagents4pharma-1.18.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
118
+ aiagents4pharma-1.18.0.dist-info/top_level.txt,sha256=-AH8rMmrSnJtq7HaAObS78UU-cTCwvX660dSxeM7a0A,16
119
+ aiagents4pharma-1.18.0.dist-info/RECORD,,