aiagents4pharma 1.13.1__py3-none-any.whl → 1.14.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. aiagents4pharma/configs/config.yaml +2 -1
  2. aiagents4pharma/configs/talk2biomodels/__init__.py +1 -0
  3. aiagents4pharma/configs/talk2biomodels/agents/t2b_agent/default.yaml +2 -3
  4. aiagents4pharma/configs/talk2biomodels/tools/__init__.py +4 -0
  5. aiagents4pharma/configs/talk2biomodels/tools/ask_question/__init__.py +3 -0
  6. aiagents4pharma/talk2biomodels/__init__.py +1 -0
  7. aiagents4pharma/talk2biomodels/agents/t2b_agent.py +4 -2
  8. aiagents4pharma/talk2biomodels/api/__init__.py +6 -0
  9. aiagents4pharma/talk2biomodels/api/kegg.py +83 -0
  10. aiagents4pharma/talk2biomodels/api/ols.py +72 -0
  11. aiagents4pharma/talk2biomodels/api/uniprot.py +35 -0
  12. aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +21 -6
  13. aiagents4pharma/talk2biomodels/tests/test_api.py +57 -0
  14. aiagents4pharma/talk2biomodels/tests/test_ask_question.py +44 -0
  15. aiagents4pharma/talk2biomodels/tests/test_get_annotation.py +171 -0
  16. aiagents4pharma/talk2biomodels/tests/test_getmodelinfo.py +26 -0
  17. aiagents4pharma/talk2biomodels/tests/test_integration.py +126 -0
  18. aiagents4pharma/talk2biomodels/tests/test_param_scan.py +68 -0
  19. aiagents4pharma/talk2biomodels/tests/test_search_models.py +28 -0
  20. aiagents4pharma/talk2biomodels/tests/test_simulate_model.py +39 -0
  21. aiagents4pharma/talk2biomodels/tests/test_steady_state.py +90 -0
  22. aiagents4pharma/talk2biomodels/tools/__init__.py +1 -0
  23. aiagents4pharma/talk2biomodels/tools/ask_question.py +29 -8
  24. aiagents4pharma/talk2biomodels/tools/get_annotation.py +304 -0
  25. aiagents4pharma/talk2biomodels/tools/load_arguments.py +114 -0
  26. aiagents4pharma/talk2biomodels/tools/parameter_scan.py +91 -96
  27. aiagents4pharma/talk2biomodels/tools/simulate_model.py +14 -81
  28. aiagents4pharma/talk2biomodels/tools/steady_state.py +48 -89
  29. {aiagents4pharma-1.13.1.dist-info → aiagents4pharma-1.14.1.dist-info}/METADATA +1 -1
  30. {aiagents4pharma-1.13.1.dist-info → aiagents4pharma-1.14.1.dist-info}/RECORD +33 -17
  31. aiagents4pharma/talk2biomodels/tests/test_langgraph.py +0 -384
  32. {aiagents4pharma-1.13.1.dist-info → aiagents4pharma-1.14.1.dist-info}/LICENSE +0 -0
  33. {aiagents4pharma-1.13.1.dist-info → aiagents4pharma-1.14.1.dist-info}/WHEEL +0 -0
  34. {aiagents4pharma-1.13.1.dist-info → aiagents4pharma-1.14.1.dist-info}/top_level.txt +0 -0
@@ -1,3 +1,4 @@
1
1
  defaults:
2
2
  - _self_
3
- - talk2biomodels/agents/t2b_agent: default
3
+ - talk2biomodels/agents/t2b_agent: default
4
+ - talk2biomodels/tools/ask_question: default
@@ -3,3 +3,4 @@ Import all the modules in the package
3
3
  '''
4
4
 
5
5
  from . import agents
6
+ from . import tools
@@ -4,6 +4,5 @@ state_modifier: >
4
4
  If the user asks for the uploaded model,
5
5
  then pass the use_uploaded_model argument
6
6
  as True. If the user asks for simulation
7
- or steady state, suggest a value for the
8
- `simulation_name` or `steadystate_name`
9
- argument.
7
+ or param_scan or steady state, suggest a
8
+ value for the `experiment_name` argument.
@@ -0,0 +1,4 @@
1
+ '''
2
+ Import all the modules in the package
3
+ '''
4
+ from . import ask_question
@@ -0,0 +1,3 @@
1
+ '''
2
+ Import all the modules in the package
3
+ '''
@@ -5,3 +5,4 @@ from . import models
5
5
  from . import tools
6
6
  from . import agents
7
7
  from . import states
8
+ from . import api
@@ -15,6 +15,7 @@ from ..tools.search_models import SearchModelsTool
15
15
  from ..tools.get_modelinfo import GetModelInfoTool
16
16
  from ..tools.simulate_model import SimulateModelTool
17
17
  from ..tools.custom_plotter import CustomPlotterTool
18
+ from ..tools.get_annotation import GetAnnotationTool
18
19
  from ..tools.ask_question import AskQuestionTool
19
20
  from ..tools.parameter_scan import ParameterScanTool
20
21
  from ..tools.steady_state import SteadyStateTool
@@ -44,8 +45,9 @@ def get_app(uniq_id, llm_model='gpt-4o-mini'):
44
45
  SearchModelsTool(),
45
46
  GetModelInfoTool(),
46
47
  SteadyStateTool(),
47
- ParameterScanTool()
48
- ])
48
+ ParameterScanTool(),
49
+ GetAnnotationTool()
50
+ ])
49
51
 
50
52
  # Define the model
51
53
  llm = ChatOpenAI(model=llm_model, temperature=0)
@@ -0,0 +1,6 @@
1
+ '''
2
+ This file is used to import the modules in the package.
3
+ '''
4
+ from . import uniprot
5
+ from . import ols
6
+ from . import kegg
@@ -0,0 +1,83 @@
1
+ """
2
+ This module contains the API for fetching Kegg database
3
+ """
4
+ import re
5
+ from typing import List, Dict
6
+ import requests
7
+
8
+ def fetch_from_api(base_url: str, query: str) -> str:
9
+ """Fetch data from the given API endpoint."""
10
+ try:
11
+ response = requests.get(base_url + query, timeout=10)
12
+ response.raise_for_status()
13
+ return response.text
14
+ except requests.exceptions.RequestException as e:
15
+ print(f"Error fetching data for query {query}: {e}")
16
+ return ""
17
+
18
+ def fetch_kegg_names(ids: List[str], batch_size: int = 10) -> Dict[str, str]:
19
+ """
20
+ Fetch the names of multiple KEGG entries using the KEGG REST API in batches.
21
+
22
+ Args:
23
+ ids (List[str]): List of KEGG IDs.
24
+ batch_size (int): Maximum number of IDs to include in a single request.
25
+
26
+ Returns:
27
+ Dict[str, str]: A mapping of KEGG IDs to their names.
28
+ """
29
+ if not ids:
30
+ return {}
31
+
32
+ base_url = "https://rest.kegg.jp/get/"
33
+ entry_name_map = {}
34
+
35
+ # Process IDs in batches
36
+ for i in range(0, len(ids), batch_size):
37
+ batch = ids[i:i + batch_size]
38
+ query = "+".join(batch)
39
+ entry_data = fetch_from_api(base_url, query)
40
+
41
+ # if not entry_data:
42
+ # continue
43
+ entries = entry_data.split("///")
44
+ for entry in entries:
45
+ if not entry.strip():
46
+ continue
47
+ lines = entry.strip().split("\n")
48
+ entry_line = next((line for line in lines
49
+ if line.startswith("ENTRY")), None)
50
+ name_line = next((line for line in lines
51
+ if line.startswith("NAME")), None)
52
+
53
+ # if not entry_line and not name_line:
54
+ # continue
55
+ entry_id = entry_line.split()[1]
56
+ # Split multiple names in the NAME field and clean them
57
+ names = [
58
+ re.sub(r'[^a-zA-Z0-9\s]', '', name).strip()
59
+ for name in name_line.replace("NAME", "").strip().split(";")
60
+ ]
61
+ # Join cleaned names into a single string
62
+ entry_name_map[entry_id] = " ".join(names).strip()
63
+
64
+ return entry_name_map
65
+
66
+ def fetch_kegg_annotations(data: List[Dict[str, str]],
67
+ batch_size: int = 10) -> Dict[str, Dict[str, str]]:
68
+ """Fetch KEGG entry descriptions grouped by database type."""
69
+ grouped_data = {}
70
+ for entry in data:
71
+ db_type = entry["Database"].lower()
72
+ grouped_data.setdefault(db_type, []).append(entry["Id"])
73
+
74
+ results = {}
75
+ for db_type, ids in grouped_data.items():
76
+ results[db_type] = fetch_kegg_names(ids, batch_size=batch_size)
77
+
78
+ return results
79
+
80
+ # def get_protein_name_or_label(data: List[Dict[str, str]],
81
+ # batch_size: int = 10) -> Dict[str, Dict[str, str]]:
82
+ # """Fetch descriptions for KEGG-related identifiers."""
83
+ # return fetch_kegg_annotations(data, batch_size=batch_size)
@@ -0,0 +1,72 @@
1
+ """
2
+ This module contains the API for fetching ols database
3
+ """
4
+ from typing import List, Dict
5
+ import requests
6
+
7
+ def fetch_from_ols(term: str) -> str:
8
+ """
9
+ Fetch the label for a single term from OLS.
10
+
11
+ Args:
12
+ term (str): The term in the format "ONTOLOGY:TERM_ID".
13
+
14
+ Returns:
15
+ str: The label for the term or an error message.
16
+ """
17
+ try:
18
+ ontology, _ = term.split(":")
19
+ base_url = f"https://www.ebi.ac.uk/ols4/api/ontologies/{ontology.lower()}/terms"
20
+ params = {"obo_id": term}
21
+ response = requests.get(
22
+ base_url,
23
+ params=params,
24
+ headers={"Accept": "application/json"},
25
+ timeout=10
26
+ )
27
+ response.raise_for_status()
28
+ data = response.json()
29
+ label = '-'
30
+ # Extract and return the label
31
+ if "_embedded" in data and "terms" in data["_embedded"] \
32
+ and len(data["_embedded"]["terms"]) > 0:
33
+ label = data["_embedded"]["terms"][0].get("label", "Label not found")
34
+ return label
35
+ except (requests.exceptions.RequestException, KeyError, IndexError) as e:
36
+ return f"Error: {str(e)}"
37
+
38
+ def fetch_ols_labels(terms: List[str]) -> Dict[str, str]:
39
+ """
40
+ Fetch labels for multiple terms from OLS.
41
+
42
+ Args:
43
+ terms (List[str]): A list of terms in the format "ONTOLOGY:TERM_ID".
44
+
45
+ Returns:
46
+ Dict[str, str]: A mapping of term IDs to their labels or error messages.
47
+ """
48
+ results = {}
49
+ for term in terms:
50
+ results[term] = fetch_from_ols(term)
51
+ return results
52
+
53
+ def search_ols_labels(data: List[Dict[str, str]]) -> Dict[str, Dict[str, str]]:
54
+ """
55
+ Fetch OLS annotations grouped by ontology type.
56
+
57
+ Args:
58
+ data (List[Dict[str, str]]): A list of dictionaries containing 'Id' and 'Database'.
59
+
60
+ Returns:
61
+ Dict[str, Dict[str, str]]: A mapping of ontology type to term labels.
62
+ """
63
+ grouped_data = {}
64
+ for entry in data:
65
+ ontology = entry["Database"].lower()
66
+ grouped_data.setdefault(ontology, []).append(entry["Id"])
67
+
68
+ results = {}
69
+ for ontology, terms in grouped_data.items():
70
+ results[ontology] = fetch_ols_labels(terms)
71
+
72
+ return results
@@ -0,0 +1,35 @@
1
+ """
2
+ This module contains the API for fetching uniprot database
3
+ """
4
+ from typing import List, Dict
5
+ import requests
6
+
7
+ def search_uniprot_labels(identifiers: List[str]) -> Dict[str, str]:
8
+ """
9
+ Fetch protein names or labels for a list of UniProt identifiers by making sequential requests.
10
+
11
+ Args:
12
+ identifiers (List[str]): A list of UniProt identifiers.
13
+
14
+ Returns:
15
+ Dict[str, str]: A mapping of UniProt identifiers to their protein names or error messages.
16
+ """
17
+ results = {}
18
+ base_url = "https://www.uniprot.org/uniprot/"
19
+
20
+ for identifier in identifiers:
21
+ url = f"{base_url}{identifier}.json"
22
+ try:
23
+ response = requests.get(url, timeout=10)
24
+ response.raise_for_status()
25
+ data = response.json()
26
+ protein_name = (
27
+ data.get('proteinDescription', {})
28
+ .get('recommendedName', {})
29
+ .get('fullName', {})
30
+ .get('value', 'Name not found')
31
+ )
32
+ results[identifier] = protein_name
33
+ except requests.exceptions.RequestException as e:
34
+ results[identifier] = f"Error: {str(e)}"
35
+ return results
@@ -8,18 +8,33 @@ from typing import Annotated
8
8
  import operator
9
9
  from langgraph.prebuilt.chat_agent_executor import AgentState
10
10
 
11
+ def add_data(data1: dict, data2: dict) -> dict:
12
+ """
13
+ A reducer function to merge two dictionaries.
14
+ """
15
+ left_idx_by_name = {data['name']: idx for idx, data in enumerate(data1)}
16
+ merged = data1.copy()
17
+ for data in data2:
18
+ idx = left_idx_by_name.get(data['name'])
19
+ if idx is not None:
20
+ merged[idx] = data
21
+ else:
22
+ merged.append(data)
23
+ return merged
24
+
11
25
  class Talk2Biomodels(AgentState):
12
26
  """
13
27
  The state for the Talk2BioModels agent.
14
28
  """
15
29
  llm_model: str
16
30
  # A StateGraph may receive a concurrent updates
17
- # which is not supported by the StateGraph.
18
- # Therefore, we need to use Annotated to specify
19
- # the operator for the sbml_file_path field.
31
+ # which is not supported by the StateGraph. Hence,
32
+ # we need to add a reducer function to handle the
33
+ # concurrent updates.
20
34
  # https://langchain-ai.github.io/langgraph/troubleshooting/errors/INVALID_CONCURRENT_GRAPH_UPDATE/
21
35
  model_id: Annotated[list, operator.add]
22
36
  sbml_file_path: Annotated[list, operator.add]
23
- dic_simulated_data: Annotated[list[dict], operator.add]
24
- dic_scanned_data: Annotated[list[dict], operator.add]
25
- dic_steady_state_data: Annotated[list[dict], operator.add]
37
+ dic_simulated_data: Annotated[list[dict], add_data]
38
+ dic_scanned_data: Annotated[list[dict], add_data]
39
+ dic_steady_state_data: Annotated[list[dict], add_data]
40
+ dic_annotations_data : Annotated[list[dict], add_data]
@@ -0,0 +1,57 @@
1
+ '''
2
+ Test cases for Talk2Biomodels.
3
+ '''
4
+
5
+ from ..api.uniprot import search_uniprot_labels
6
+ from ..api.ols import fetch_from_ols
7
+ from ..api.kegg import fetch_kegg_names, fetch_from_api
8
+
9
+ def test_search_uniprot_labels():
10
+ '''
11
+ Test the search_uniprot_labels function.
12
+ '''
13
+ # "P61764" = Positive result, "P0000Q" = negative result
14
+ identifiers = ["P61764", "P0000Q"]
15
+ results = search_uniprot_labels(identifiers)
16
+ assert results["P61764"] == "Syntaxin-binding protein 1"
17
+ assert results["P0000Q"].startswith("Error: 400")
18
+
19
+ def test_fetch_from_ols():
20
+ '''
21
+ Test the fetch_from_ols function.
22
+ '''
23
+ term_1 = "GO:0005886" #Positive result
24
+ term_2 = "GO:ABC123" #Negative result
25
+ label_1 = fetch_from_ols(term_1)
26
+ label_2 = fetch_from_ols(term_2)
27
+ assert isinstance(label_1, str), f"Expected string, got {type(label_1)}"
28
+ assert isinstance(label_2, str), f"Expected string, got {type(label_2)}"
29
+ assert label_1 == "plasma membrane"
30
+ assert label_2.startswith("Error: 404")
31
+
32
+ def test_fetch_kegg_names():
33
+ '''
34
+ Test the fetch_kegg_names function.
35
+ '''
36
+ ids = ["C00001", "C00002"]
37
+ results = fetch_kegg_names(ids)
38
+ assert results["C00001"] == "H2O"
39
+ assert results["C00002"] == "ATP"
40
+
41
+ # Try with an empty list
42
+ results = fetch_kegg_names([])
43
+ assert not results
44
+
45
+ def test_fetch_from_api():
46
+ '''
47
+ Test the fetch_from_api function.
48
+ '''
49
+ base_url = "https://rest.kegg.jp/get/"
50
+ query = "C00001"
51
+ entry_data = fetch_from_api(base_url, query)
52
+ assert entry_data.startswith("ENTRY C00001")
53
+
54
+ # Try with an invalid query
55
+ query = "C0000Q"
56
+ entry_data = fetch_from_api(base_url, query)
57
+ assert not entry_data
@@ -0,0 +1,44 @@
1
+ '''
2
+ Test cases for Talk2Biomodels.
3
+ '''
4
+
5
+ from langchain_core.messages import HumanMessage, ToolMessage
6
+ from ..agents.t2b_agent import get_app
7
+
8
+ def test_ask_question_tool():
9
+ '''
10
+ Test the ask_question tool without the simulation results.
11
+ '''
12
+ unique_id = 12345
13
+ app = get_app(unique_id, llm_model='gpt-4o-mini')
14
+ config = {"configurable": {"thread_id": unique_id}}
15
+
16
+ ##########################################
17
+ # Test ask_question tool when simulation
18
+ # results are not available i.e. the
19
+ # simulation has not been run. In this
20
+ # case, the tool should return an error
21
+ ##########################################
22
+ # Update state
23
+ app.update_state(config, {"llm_model": "gpt-4o-mini"})
24
+ # Define the prompt
25
+ prompt = "Call the ask_question tool to answer the "
26
+ prompt += "question: What is the concentration of CRP "
27
+ prompt += "in serum at 1000 hours? The simulation name "
28
+ prompt += "is `simulation_name`."
29
+ # Invoke the tool
30
+ app.invoke(
31
+ {"messages": [HumanMessage(content=prompt)]},
32
+ config=config
33
+ )
34
+ # Get the messages from the current state
35
+ # and reverse the order
36
+ current_state = app.get_state(config)
37
+ reversed_messages = current_state.values["messages"][::-1]
38
+ # Loop through the reversed messages until a
39
+ # ToolMessage is found.
40
+ for msg in reversed_messages:
41
+ # Assert that the message is a ToolMessage
42
+ # and its status is "error"
43
+ if isinstance(msg, ToolMessage):
44
+ assert msg.status == "error"
@@ -0,0 +1,171 @@
1
+ '''
2
+ Test cases for Talk2Biomodels get_annotation tool.
3
+ '''
4
+
5
+ import random
6
+ import pytest
7
+ from langchain_core.messages import HumanMessage, ToolMessage
8
+ from ..agents.t2b_agent import get_app
9
+ from ..tools.get_annotation import prepare_content_msg
10
+
11
+ @pytest.fixture(name="make_graph")
12
+ def make_graph_fixture():
13
+ '''
14
+ Create an instance of the talk2biomodels agent.
15
+ '''
16
+ unique_id = random.randint(1000, 9999)
17
+ graph = get_app(unique_id)
18
+ config = {"configurable": {"thread_id": unique_id}}
19
+ return graph, config
20
+
21
+ def test_no_model_provided(make_graph):
22
+ '''
23
+ Test the tool by not specifying any model.
24
+ We are testing a condition where the user
25
+ asks for annotations of all species without
26
+ specifying a model.
27
+ '''
28
+ app, config = make_graph
29
+ prompt = "Extract annotations of all species. Call the tool get_annotation."
30
+ app.invoke({"messages": [HumanMessage(content=prompt)]},
31
+ config=config
32
+ )
33
+ current_state = app.get_state(config)
34
+ # Assert that the state key model_id is empty.
35
+ assert current_state.values["model_id"] == []
36
+
37
+ def test_specific_species_provided(make_graph):
38
+ '''
39
+ Test the tool by providing a specific species name.
40
+ We are testing a condition where the user asks for annotations
41
+ of a specific species in a specific model.
42
+ '''
43
+ # Test with a valid species name
44
+ app, config = make_graph
45
+ prompt = "Extract annotations of species IL6 in model 537."
46
+ app.invoke(
47
+ {"messages": [HumanMessage(content=prompt)]},
48
+ config=config
49
+ )
50
+ current_state = app.get_state(config)
51
+ # print (current_state.values["dic_annotations_data"])
52
+ dic_annotations_data = current_state.values["dic_annotations_data"]
53
+
54
+ # The assert statement checks if IL6 is present in the returned annotations.
55
+ assert dic_annotations_data[0]['data']["Species Name"][0] == "IL6"
56
+
57
+ # Test with an invalid species name
58
+ app, config = make_graph
59
+ prompt = "Extract annotations of species NADH in model 537."
60
+ app.invoke(
61
+ {"messages": [HumanMessage(content=prompt)]},
62
+ config=config
63
+ )
64
+ current_state = app.get_state(config)
65
+ reversed_messages = current_state.values["messages"][::-1]
66
+ # Loop through the reversed messages until a
67
+ # ToolMessage is found.
68
+
69
+ test_condition = False
70
+ for msg in reversed_messages:
71
+ # Assert that the one of the messages is a ToolMessage
72
+ # and its artifact is None.
73
+ if isinstance(msg, ToolMessage) and msg.name == "get_annotation":
74
+ #If a ToolMessage exists and artifact is None (meaning no valid annotation was found)
75
+ #and the rejected species (NADH) is mentioned, the test passes.
76
+ if msg.artifact is None and 'NADH' in msg.content:
77
+ #If artifact is None, it means no annotation was found
78
+ # (likely due to an invalid species).
79
+ #If artifact contains data, the tool successfully retrieved annotations.
80
+ test_condition = True
81
+ break
82
+ # assert test_condition
83
+ assert test_condition, "Expected rejection message for NADH but did not find it."
84
+
85
+ # Test with an invalid species name and a valid species name
86
+ app, config = make_graph
87
+ prompt = "Extract annotations of species NADH, NAD, and IL7 in model 64."
88
+ app.invoke(
89
+ {"messages": [HumanMessage(content=prompt)]},
90
+ config=config
91
+ )
92
+ current_state = app.get_state(config)
93
+ # dic_annotations_data = current_state.values["dic_annotations_data"]
94
+ reversed_messages = current_state.values["messages"][::-1]
95
+ # Loop through the reversed messages until a
96
+ # ToolMessage is found.
97
+ artifact_was_none = False
98
+ for msg in reversed_messages:
99
+ # Assert that the one of the messages is a ToolMessage
100
+ # and its artifact is None.
101
+ if isinstance(msg, ToolMessage) and msg.name == "get_annotation":
102
+ # print (msg.artifact, msg.content)
103
+
104
+ if msg.artifact is True and 'IL7' in msg.content:
105
+ artifact_was_none = True
106
+ break
107
+ assert artifact_was_none
108
+
109
+ def test_all_species_annotations(make_graph):
110
+ '''
111
+ Test the tool by asking for annotations of all species is specific models.
112
+ Here, we test the tool with three models since they have different use cases:
113
+ - model 12 contains a species with no URL provided.
114
+ - model 20 contains a species without description.
115
+ - model 56 contains a species with database outside of KEGG, UniProt, and OLS.
116
+
117
+ We are testing a condition where the user asks for annotations
118
+ of all species in a specific model.
119
+ '''
120
+ # Loop through the models and test the tool
121
+ # for each model's unique use case.
122
+ for model_id in [12, 20, 56]:
123
+ app, config = make_graph
124
+ prompt = f"Extract annotations of all species model {model_id}."
125
+ # Test the tool get_modelinfo
126
+ app.invoke({"messages": [HumanMessage(content=prompt)]},
127
+ config=config
128
+ )
129
+ current_state = app.get_state(config)
130
+
131
+ reversed_messages = current_state.values["messages"][::-1]
132
+ # Coveres all of the use cases for the expecetd sting on all the species
133
+ test_condition = False
134
+ for msg in reversed_messages:
135
+ # Skip messages that are not ToolMessages and those that are not
136
+ # from the get_annotation tool.
137
+ if not isinstance(msg, ToolMessage) or msg.name != "get_annotation":
138
+ continue
139
+ if model_id == 12:
140
+ # Extact the first and second description of the LacI protein
141
+ # We already know that the first or second description is missing ('-')
142
+ dic_annotations_data = current_state.values["dic_annotations_data"][0]
143
+ first_descp_laci_protein = dic_annotations_data['data']['Description'][0]
144
+ second_descp_laci_protein = dic_annotations_data['data']['Description'][1]
145
+
146
+ # Expect a successful extraction (artifact is True) and that the content
147
+ # matches what is returned by prepare_content_msg for species.
148
+ # And that the first or second description of the LacI protein is missing.
149
+ if (msg.artifact is True and msg.content == prepare_content_msg([],[])
150
+ and msg.status=="success" and (first_descp_laci_protein == '-' or
151
+ second_descp_laci_protein == '-')):
152
+ test_condition = True
153
+ break
154
+
155
+ if model_id == 20:
156
+ # Expect an error message containing a note
157
+ # that species extraction failed.
158
+ if ("Unable to extract species from the model"
159
+ in msg.content and msg.status == "error"):
160
+ test_condition = True
161
+ break
162
+
163
+ if model_id == 56:
164
+ # Expect a successful extraction (artifact is True) and that the content
165
+ # matches for for missing description ['ORI'].
166
+ if (msg.artifact is True and
167
+ msg.content == prepare_content_msg([],['ORI'])
168
+ and msg.status == "success"):
169
+ test_condition = True
170
+ break
171
+ assert test_condition # Expected output is validated
@@ -0,0 +1,26 @@
1
+ '''
2
+ Test cases for Talk2Biomodels get_modelinfo tool.
3
+ '''
4
+
5
+ from langchain_core.messages import HumanMessage
6
+ from ..agents.t2b_agent import get_app
7
+
8
+ def test_get_modelinfo_tool():
9
+ '''
10
+ Test the get_modelinfo tool.
11
+ '''
12
+ unique_id = 12345
13
+ app = get_app(unique_id)
14
+ config = {"configurable": {"thread_id": unique_id}}
15
+ # Update state
16
+ app.update_state(config,
17
+ {"sbml_file_path": ["aiagents4pharma/talk2biomodels/tests/BIOMD0000000449_url.xml"]})
18
+ prompt = "Extract all relevant information from the uploaded model."
19
+ # Test the tool get_modelinfo
20
+ response = app.invoke(
21
+ {"messages": [HumanMessage(content=prompt)]},
22
+ config=config
23
+ )
24
+ assistant_msg = response["messages"][-1].content
25
+ # Check if the assistant message is a string
26
+ assert isinstance(assistant_msg, str)