ai-pipeline-core 0.3.0__py3-none-any.whl → 0.3.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_pipeline_core/__init__.py +39 -2
- ai_pipeline_core/debug/__init__.py +26 -0
- ai_pipeline_core/debug/config.py +91 -0
- ai_pipeline_core/debug/content.py +706 -0
- ai_pipeline_core/debug/processor.py +99 -0
- ai_pipeline_core/debug/summary.py +236 -0
- ai_pipeline_core/debug/writer.py +913 -0
- ai_pipeline_core/documents/mime_type.py +28 -0
- ai_pipeline_core/flow/options.py +3 -3
- ai_pipeline_core/images/__init__.py +362 -0
- ai_pipeline_core/images/_processing.py +157 -0
- ai_pipeline_core/llm/ai_messages.py +41 -7
- ai_pipeline_core/llm/client.py +78 -17
- ai_pipeline_core/llm/model_response.py +5 -5
- ai_pipeline_core/llm/model_types.py +10 -12
- ai_pipeline_core/logging/logging_mixin.py +2 -2
- ai_pipeline_core/prompt_builder/prompt_builder.py +3 -3
- ai_pipeline_core/tracing.py +53 -1
- ai_pipeline_core/utils/deploy.py +214 -6
- {ai_pipeline_core-0.3.0.dist-info → ai_pipeline_core-0.3.4.dist-info}/METADATA +74 -8
- {ai_pipeline_core-0.3.0.dist-info → ai_pipeline_core-0.3.4.dist-info}/RECORD +23 -15
- {ai_pipeline_core-0.3.0.dist-info → ai_pipeline_core-0.3.4.dist-info}/WHEEL +0 -0
- {ai_pipeline_core-0.3.0.dist-info → ai_pipeline_core-0.3.4.dist-info}/licenses/LICENSE +0 -0
|
@@ -24,6 +24,8 @@ EXTENSION_MIME_MAP = {
|
|
|
24
24
|
"gif": "image/gif",
|
|
25
25
|
"bmp": "image/bmp",
|
|
26
26
|
"webp": "image/webp",
|
|
27
|
+
"heic": "image/heic",
|
|
28
|
+
"heif": "image/heif",
|
|
27
29
|
"json": "application/json",
|
|
28
30
|
"yaml": "application/yaml",
|
|
29
31
|
"yml": "application/yaml",
|
|
@@ -266,3 +268,29 @@ def is_image_mime_type(mime_type: str) -> bool:
|
|
|
266
268
|
False
|
|
267
269
|
"""
|
|
268
270
|
return mime_type.startswith("image/")
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
LLM_SUPPORTED_IMAGE_MIME_TYPES: frozenset[str] = frozenset({
|
|
274
|
+
"image/png",
|
|
275
|
+
"image/jpeg",
|
|
276
|
+
"image/webp",
|
|
277
|
+
"image/heic",
|
|
278
|
+
"image/heif",
|
|
279
|
+
})
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def is_llm_supported_image(mime_type: str) -> bool:
|
|
283
|
+
"""Check if MIME type is an image format directly supported by LLMs.
|
|
284
|
+
|
|
285
|
+
Unsupported image formats (gif, bmp, tiff, svg, etc.) need conversion
|
|
286
|
+
to PNG before sending to the LLM.
|
|
287
|
+
|
|
288
|
+
@public
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
mime_type: MIME type string to check.
|
|
292
|
+
|
|
293
|
+
Returns:
|
|
294
|
+
True if the image format is natively supported by LLMs.
|
|
295
|
+
"""
|
|
296
|
+
return mime_type in LLM_SUPPORTED_IMAGE_MIME_TYPES
|
ai_pipeline_core/flow/options.py
CHANGED
|
@@ -41,7 +41,7 @@ class FlowOptions(BaseSettings):
|
|
|
41
41
|
|
|
42
42
|
>>> # Or create programmatically:
|
|
43
43
|
>>> options = MyFlowOptions(
|
|
44
|
-
... core_model="gemini-
|
|
44
|
+
... core_model="gemini-3-pro",
|
|
45
45
|
... temperature=0.9
|
|
46
46
|
... )
|
|
47
47
|
|
|
@@ -61,11 +61,11 @@ class FlowOptions(BaseSettings):
|
|
|
61
61
|
"""
|
|
62
62
|
|
|
63
63
|
core_model: ModelName = Field(
|
|
64
|
-
default="gemini-
|
|
64
|
+
default="gemini-3-pro",
|
|
65
65
|
description="Primary model for complex analysis and generation tasks.",
|
|
66
66
|
)
|
|
67
67
|
small_model: ModelName = Field(
|
|
68
|
-
default="grok-4-fast",
|
|
68
|
+
default="grok-4.1-fast",
|
|
69
69
|
description="Fast, cost-effective model for simple tasks and orchestration.",
|
|
70
70
|
)
|
|
71
71
|
|
|
@@ -0,0 +1,362 @@
|
|
|
1
|
+
"""Image processing utilities for LLM vision models.
|
|
2
|
+
|
|
3
|
+
@public
|
|
4
|
+
|
|
5
|
+
Splits large images, compresses to JPEG, and respects model-specific constraints.
|
|
6
|
+
Designed for website screenshots, document pages, and other visual content
|
|
7
|
+
sent to vision-capable LLMs.
|
|
8
|
+
|
|
9
|
+
Quick Start:
|
|
10
|
+
>>> from ai_pipeline_core.images import process_image, ImagePreset
|
|
11
|
+
>>>
|
|
12
|
+
>>> result = process_image(screenshot_bytes)
|
|
13
|
+
>>> for part in result:
|
|
14
|
+
... send_to_llm(part.data, context=part.label)
|
|
15
|
+
>>>
|
|
16
|
+
>>> result = process_image(screenshot_bytes, preset=ImagePreset.GEMINI)
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
from enum import StrEnum
|
|
20
|
+
|
|
21
|
+
from pydantic import BaseModel, Field
|
|
22
|
+
|
|
23
|
+
from ai_pipeline_core.documents import Document, TemporaryDocument
|
|
24
|
+
|
|
25
|
+
from ._processing import execute_split, load_and_normalize, plan_split
|
|
26
|
+
|
|
27
|
+
__all__ = [
|
|
28
|
+
"ImagePreset",
|
|
29
|
+
"ImageProcessingConfig",
|
|
30
|
+
"ImagePart",
|
|
31
|
+
"ProcessedImage",
|
|
32
|
+
"ImageProcessingError",
|
|
33
|
+
"process_image",
|
|
34
|
+
"process_image_to_documents",
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
# ---------------------------------------------------------------------------
|
|
39
|
+
# Configuration
|
|
40
|
+
# ---------------------------------------------------------------------------
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class ImagePreset(StrEnum):
|
|
44
|
+
"""Presets for LLM vision model constraints.
|
|
45
|
+
|
|
46
|
+
@public
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
GEMINI = "gemini"
|
|
50
|
+
CLAUDE = "claude"
|
|
51
|
+
GPT4V = "gpt4v"
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class ImageProcessingConfig(BaseModel):
|
|
55
|
+
"""Configuration for image processing.
|
|
56
|
+
|
|
57
|
+
@public
|
|
58
|
+
|
|
59
|
+
Use ``for_preset`` for standard configurations or construct directly for
|
|
60
|
+
custom constraints.
|
|
61
|
+
|
|
62
|
+
Example:
|
|
63
|
+
>>> config = ImageProcessingConfig.for_preset(ImagePreset.GEMINI)
|
|
64
|
+
>>> config = ImageProcessingConfig(max_dimension=2000, jpeg_quality=80)
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
model_config = {"frozen": True}
|
|
68
|
+
|
|
69
|
+
max_dimension: int = Field(
|
|
70
|
+
default=3000,
|
|
71
|
+
ge=100,
|
|
72
|
+
le=8192,
|
|
73
|
+
description="Maximum width AND height in pixels",
|
|
74
|
+
)
|
|
75
|
+
max_pixels: int = Field(
|
|
76
|
+
default=9_000_000,
|
|
77
|
+
ge=10_000,
|
|
78
|
+
description="Maximum total pixels per output image part",
|
|
79
|
+
)
|
|
80
|
+
overlap_fraction: float = Field(
|
|
81
|
+
default=0.20,
|
|
82
|
+
ge=0.0,
|
|
83
|
+
le=0.5,
|
|
84
|
+
description="Overlap between adjacent vertical parts (0.0-0.5)",
|
|
85
|
+
)
|
|
86
|
+
max_parts: int = Field(
|
|
87
|
+
default=20,
|
|
88
|
+
ge=1,
|
|
89
|
+
le=100,
|
|
90
|
+
description="Maximum number of output image parts",
|
|
91
|
+
)
|
|
92
|
+
jpeg_quality: int = Field(
|
|
93
|
+
default=60,
|
|
94
|
+
ge=10,
|
|
95
|
+
le=95,
|
|
96
|
+
description="JPEG compression quality (10-95)",
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
@classmethod
|
|
100
|
+
def for_preset(cls, preset: ImagePreset) -> "ImageProcessingConfig":
|
|
101
|
+
"""Create configuration from a model preset.
|
|
102
|
+
|
|
103
|
+
@public
|
|
104
|
+
"""
|
|
105
|
+
return _PRESETS[preset]
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
_PRESETS: dict[ImagePreset, ImageProcessingConfig] = {
|
|
109
|
+
ImagePreset.GEMINI: ImageProcessingConfig(
|
|
110
|
+
max_dimension=3000,
|
|
111
|
+
max_pixels=9_000_000,
|
|
112
|
+
jpeg_quality=75,
|
|
113
|
+
),
|
|
114
|
+
ImagePreset.CLAUDE: ImageProcessingConfig(
|
|
115
|
+
max_dimension=1568,
|
|
116
|
+
max_pixels=1_150_000,
|
|
117
|
+
jpeg_quality=60,
|
|
118
|
+
),
|
|
119
|
+
ImagePreset.GPT4V: ImageProcessingConfig(
|
|
120
|
+
max_dimension=2048,
|
|
121
|
+
max_pixels=4_000_000,
|
|
122
|
+
jpeg_quality=70,
|
|
123
|
+
),
|
|
124
|
+
}
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
# ---------------------------------------------------------------------------
|
|
128
|
+
# Result models
|
|
129
|
+
# ---------------------------------------------------------------------------
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
class ImagePart(BaseModel):
|
|
133
|
+
"""A single processed image part.
|
|
134
|
+
|
|
135
|
+
@public
|
|
136
|
+
"""
|
|
137
|
+
|
|
138
|
+
model_config = {"frozen": True}
|
|
139
|
+
|
|
140
|
+
data: bytes = Field(repr=False)
|
|
141
|
+
width: int
|
|
142
|
+
height: int
|
|
143
|
+
index: int = Field(ge=0, description="0-indexed position")
|
|
144
|
+
total: int = Field(ge=1, description="Total number of parts")
|
|
145
|
+
source_y: int = Field(ge=0, description="Y offset in original image")
|
|
146
|
+
source_height: int = Field(ge=1, description="Height of region in original")
|
|
147
|
+
|
|
148
|
+
@property
|
|
149
|
+
def label(self) -> str:
|
|
150
|
+
"""Human-readable label for LLM context, 1-indexed.
|
|
151
|
+
|
|
152
|
+
@public
|
|
153
|
+
"""
|
|
154
|
+
if self.total == 1:
|
|
155
|
+
return "Full image"
|
|
156
|
+
return f"Part {self.index + 1}/{self.total}"
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
class ProcessedImage(BaseModel):
|
|
160
|
+
"""Result of image processing.
|
|
161
|
+
|
|
162
|
+
@public
|
|
163
|
+
|
|
164
|
+
Iterable: ``for part in result`` iterates over parts.
|
|
165
|
+
"""
|
|
166
|
+
|
|
167
|
+
model_config = {"frozen": True}
|
|
168
|
+
|
|
169
|
+
parts: list[ImagePart]
|
|
170
|
+
original_width: int
|
|
171
|
+
original_height: int
|
|
172
|
+
original_bytes: int
|
|
173
|
+
output_bytes: int
|
|
174
|
+
was_trimmed: bool = Field(description="True if width was trimmed to fit")
|
|
175
|
+
warnings: list[str] = Field(default_factory=list)
|
|
176
|
+
|
|
177
|
+
@property
|
|
178
|
+
def compression_ratio(self) -> float:
|
|
179
|
+
"""Output size / input size (lower means more compression).
|
|
180
|
+
|
|
181
|
+
@public
|
|
182
|
+
"""
|
|
183
|
+
if self.original_bytes <= 0:
|
|
184
|
+
return 1.0
|
|
185
|
+
return self.output_bytes / self.original_bytes
|
|
186
|
+
|
|
187
|
+
def __len__(self) -> int:
|
|
188
|
+
return len(self.parts)
|
|
189
|
+
|
|
190
|
+
def __iter__(self): # type: ignore[override]
|
|
191
|
+
return iter(self.parts)
|
|
192
|
+
|
|
193
|
+
def __getitem__(self, idx: int) -> ImagePart:
|
|
194
|
+
return self.parts[idx]
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
# ---------------------------------------------------------------------------
|
|
198
|
+
# Exceptions
|
|
199
|
+
# ---------------------------------------------------------------------------
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class ImageProcessingError(Exception):
|
|
203
|
+
"""Image processing failed.
|
|
204
|
+
|
|
205
|
+
@public
|
|
206
|
+
"""
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
# ---------------------------------------------------------------------------
|
|
210
|
+
# Public API
|
|
211
|
+
# ---------------------------------------------------------------------------
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
def process_image(
|
|
215
|
+
image: bytes | Document,
|
|
216
|
+
preset: ImagePreset = ImagePreset.GEMINI,
|
|
217
|
+
config: ImageProcessingConfig | None = None,
|
|
218
|
+
) -> ProcessedImage:
|
|
219
|
+
"""Process an image for LLM vision models.
|
|
220
|
+
|
|
221
|
+
@public
|
|
222
|
+
|
|
223
|
+
Splits tall images vertically with overlap, trims width if needed, and
|
|
224
|
+
compresses to JPEG. The default preset is **GEMINI** (3 000 px, 9 M pixels).
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
image: Raw image bytes or a Document whose content is an image.
|
|
228
|
+
preset: Model preset (ignored when *config* is provided).
|
|
229
|
+
config: Custom configuration that overrides the preset.
|
|
230
|
+
|
|
231
|
+
Returns:
|
|
232
|
+
A ``ProcessedImage`` containing one or more ``ImagePart`` objects.
|
|
233
|
+
|
|
234
|
+
Raises:
|
|
235
|
+
ImageProcessingError: If the image cannot be decoded or processed.
|
|
236
|
+
|
|
237
|
+
Example:
|
|
238
|
+
>>> result = process_image(screenshot_bytes)
|
|
239
|
+
>>> for part in result:
|
|
240
|
+
... print(part.label, len(part.data))
|
|
241
|
+
"""
|
|
242
|
+
effective = config if config is not None else ImageProcessingConfig.for_preset(preset)
|
|
243
|
+
|
|
244
|
+
# Resolve input bytes
|
|
245
|
+
raw: bytes
|
|
246
|
+
if isinstance(image, Document):
|
|
247
|
+
raw = image.content
|
|
248
|
+
elif isinstance(image, bytes): # type: ignore[reportUnnecessaryIsInstance]
|
|
249
|
+
raw = image
|
|
250
|
+
else:
|
|
251
|
+
raise ImageProcessingError(f"Unsupported image input type: {type(image)}")
|
|
252
|
+
|
|
253
|
+
if not raw:
|
|
254
|
+
raise ImageProcessingError("Empty image data")
|
|
255
|
+
|
|
256
|
+
original_bytes = len(raw)
|
|
257
|
+
|
|
258
|
+
# Load & normalise
|
|
259
|
+
try:
|
|
260
|
+
img = load_and_normalize(raw)
|
|
261
|
+
except Exception as exc:
|
|
262
|
+
raise ImageProcessingError(f"Failed to decode image: {exc}") from exc
|
|
263
|
+
|
|
264
|
+
original_width, original_height = img.size
|
|
265
|
+
|
|
266
|
+
# Plan
|
|
267
|
+
plan = plan_split(
|
|
268
|
+
width=original_width,
|
|
269
|
+
height=original_height,
|
|
270
|
+
max_dimension=effective.max_dimension,
|
|
271
|
+
max_pixels=effective.max_pixels,
|
|
272
|
+
overlap_fraction=effective.overlap_fraction,
|
|
273
|
+
max_parts=effective.max_parts,
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
# Execute
|
|
277
|
+
raw_parts = execute_split(img, plan, effective.jpeg_quality)
|
|
278
|
+
|
|
279
|
+
# Build result
|
|
280
|
+
parts: list[ImagePart] = []
|
|
281
|
+
total = len(raw_parts)
|
|
282
|
+
total_output = 0
|
|
283
|
+
|
|
284
|
+
for idx, (data, w, h, sy, sh) in enumerate(raw_parts):
|
|
285
|
+
total_output += len(data)
|
|
286
|
+
parts.append(
|
|
287
|
+
ImagePart(
|
|
288
|
+
data=data,
|
|
289
|
+
width=w,
|
|
290
|
+
height=h,
|
|
291
|
+
index=idx,
|
|
292
|
+
total=total,
|
|
293
|
+
source_y=sy,
|
|
294
|
+
source_height=sh,
|
|
295
|
+
)
|
|
296
|
+
)
|
|
297
|
+
|
|
298
|
+
return ProcessedImage(
|
|
299
|
+
parts=parts,
|
|
300
|
+
original_width=original_width,
|
|
301
|
+
original_height=original_height,
|
|
302
|
+
original_bytes=original_bytes,
|
|
303
|
+
output_bytes=total_output,
|
|
304
|
+
was_trimmed=plan.trim_width is not None,
|
|
305
|
+
warnings=plan.warnings,
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
def process_image_to_documents(
|
|
310
|
+
image: bytes | Document,
|
|
311
|
+
preset: ImagePreset = ImagePreset.GEMINI,
|
|
312
|
+
config: ImageProcessingConfig | None = None,
|
|
313
|
+
name_prefix: str = "image",
|
|
314
|
+
sources: list[str] | None = None,
|
|
315
|
+
) -> list[TemporaryDocument]:
|
|
316
|
+
"""Process an image and return parts as ``TemporaryDocument`` list.
|
|
317
|
+
|
|
318
|
+
@public
|
|
319
|
+
|
|
320
|
+
Convenience wrapper around ``process_image`` for direct integration
|
|
321
|
+
with ``AIMessages``.
|
|
322
|
+
|
|
323
|
+
Args:
|
|
324
|
+
image: Raw image bytes or a Document.
|
|
325
|
+
preset: Model preset (ignored when *config* is provided).
|
|
326
|
+
config: Custom configuration.
|
|
327
|
+
name_prefix: Prefix for generated document names.
|
|
328
|
+
sources: Optional provenance references attached to each document.
|
|
329
|
+
|
|
330
|
+
Returns:
|
|
331
|
+
List of ``TemporaryDocument`` instances with JPEG image data.
|
|
332
|
+
|
|
333
|
+
Example:
|
|
334
|
+
>>> docs = process_image_to_documents(screenshot_bytes)
|
|
335
|
+
>>> messages = AIMessages(docs)
|
|
336
|
+
"""
|
|
337
|
+
result = process_image(image, preset=preset, config=config)
|
|
338
|
+
|
|
339
|
+
# Resolve sources
|
|
340
|
+
doc_sources: list[str] = list(sources or [])
|
|
341
|
+
if isinstance(image, Document):
|
|
342
|
+
doc_sources.append(image.sha256)
|
|
343
|
+
|
|
344
|
+
documents: list[TemporaryDocument] = []
|
|
345
|
+
for part in result.parts:
|
|
346
|
+
if len(result.parts) == 1:
|
|
347
|
+
name = f"{name_prefix}.jpg"
|
|
348
|
+
desc = None
|
|
349
|
+
else:
|
|
350
|
+
name = f"{name_prefix}_{part.index + 1:02d}_of_{part.total:02d}.jpg"
|
|
351
|
+
desc = part.label
|
|
352
|
+
|
|
353
|
+
documents.append(
|
|
354
|
+
TemporaryDocument.create(
|
|
355
|
+
name=name,
|
|
356
|
+
content=part.data,
|
|
357
|
+
description=desc,
|
|
358
|
+
sources=doc_sources or None,
|
|
359
|
+
)
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
return documents
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
"""Internal image processing logic: planning, splitting, encoding."""
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from io import BytesIO
|
|
5
|
+
from math import ceil
|
|
6
|
+
|
|
7
|
+
from PIL import Image, ImageOps
|
|
8
|
+
|
|
9
|
+
PIL_MAX_PIXELS = 100_000_000 # 100MP security limit
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@dataclass(frozen=True)
|
|
13
|
+
class SplitPlan:
|
|
14
|
+
"""Describes how to split an image into parts."""
|
|
15
|
+
|
|
16
|
+
tile_width: int
|
|
17
|
+
tile_height: int
|
|
18
|
+
step_y: int
|
|
19
|
+
num_parts: int
|
|
20
|
+
trim_width: int | None # None = no trim needed
|
|
21
|
+
warnings: list[str]
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def plan_split(
|
|
25
|
+
width: int,
|
|
26
|
+
height: int,
|
|
27
|
+
max_dimension: int,
|
|
28
|
+
max_pixels: int,
|
|
29
|
+
overlap_fraction: float,
|
|
30
|
+
max_parts: int,
|
|
31
|
+
) -> SplitPlan:
|
|
32
|
+
"""Calculate how to split an image. Pure function, no side effects.
|
|
33
|
+
|
|
34
|
+
Returns a SplitPlan describing tile size, step, and number of parts.
|
|
35
|
+
"""
|
|
36
|
+
warnings: list[str] = []
|
|
37
|
+
|
|
38
|
+
# Effective tile size respecting both max_dimension and max_pixels
|
|
39
|
+
tile_size = max_dimension
|
|
40
|
+
while tile_size * tile_size > max_pixels and tile_size > 100:
|
|
41
|
+
tile_size -= 10
|
|
42
|
+
|
|
43
|
+
# Width: trim if needed (left-aligned, web content is left-aligned)
|
|
44
|
+
trim_width = tile_size if width > tile_size else None
|
|
45
|
+
|
|
46
|
+
effective_width = min(width, tile_size)
|
|
47
|
+
|
|
48
|
+
# If single-tile pixel budget is still exceeded by width * tile_height, reduce tile_height
|
|
49
|
+
tile_h = tile_size
|
|
50
|
+
while effective_width * tile_h > max_pixels and tile_h > 100:
|
|
51
|
+
tile_h -= 10
|
|
52
|
+
|
|
53
|
+
# No vertical split needed
|
|
54
|
+
if height <= tile_h:
|
|
55
|
+
return SplitPlan(
|
|
56
|
+
tile_width=effective_width,
|
|
57
|
+
tile_height=height,
|
|
58
|
+
step_y=0,
|
|
59
|
+
num_parts=1,
|
|
60
|
+
trim_width=trim_width,
|
|
61
|
+
warnings=warnings,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# Vertical split with overlap
|
|
65
|
+
overlap_px = int(tile_h * overlap_fraction)
|
|
66
|
+
step = tile_h - overlap_px
|
|
67
|
+
if step <= 0:
|
|
68
|
+
step = 1
|
|
69
|
+
|
|
70
|
+
num_parts = 1 + ceil((height - tile_h) / step)
|
|
71
|
+
|
|
72
|
+
# Auto-reduce if exceeds max_parts
|
|
73
|
+
if num_parts > max_parts:
|
|
74
|
+
warnings.append(
|
|
75
|
+
f"Image requires {num_parts} parts but max is {max_parts}. "
|
|
76
|
+
f"Reducing to {max_parts} parts with larger step."
|
|
77
|
+
)
|
|
78
|
+
num_parts = max_parts
|
|
79
|
+
if num_parts > 1:
|
|
80
|
+
step = (height - tile_h) // (num_parts - 1)
|
|
81
|
+
else:
|
|
82
|
+
step = 0
|
|
83
|
+
|
|
84
|
+
return SplitPlan(
|
|
85
|
+
tile_width=effective_width,
|
|
86
|
+
tile_height=tile_h,
|
|
87
|
+
step_y=step,
|
|
88
|
+
num_parts=num_parts,
|
|
89
|
+
trim_width=trim_width,
|
|
90
|
+
warnings=warnings,
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def load_and_normalize(data: bytes) -> Image.Image:
|
|
95
|
+
"""Load image from bytes, apply EXIF orientation, validate size."""
|
|
96
|
+
img = Image.open(BytesIO(data))
|
|
97
|
+
img.load()
|
|
98
|
+
|
|
99
|
+
if img.width * img.height > PIL_MAX_PIXELS:
|
|
100
|
+
raise ValueError(
|
|
101
|
+
f"Image too large: {img.width}x{img.height} = {img.width * img.height:,} pixels "
|
|
102
|
+
f"(limit: {PIL_MAX_PIXELS:,})"
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
# Fix EXIF orientation (important for mobile photos)
|
|
106
|
+
img = ImageOps.exif_transpose(img)
|
|
107
|
+
return img
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def encode_jpeg(img: Image.Image, quality: int) -> bytes:
|
|
111
|
+
"""Encode PIL Image as JPEG bytes."""
|
|
112
|
+
# Convert to RGB if needed (JPEG doesn't support alpha)
|
|
113
|
+
if img.mode not in ("RGB", "L"):
|
|
114
|
+
img = img.convert("RGB")
|
|
115
|
+
|
|
116
|
+
buf = BytesIO()
|
|
117
|
+
img.save(buf, format="JPEG", quality=quality, optimize=True)
|
|
118
|
+
return buf.getvalue()
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def execute_split(
|
|
122
|
+
img: Image.Image,
|
|
123
|
+
plan: SplitPlan,
|
|
124
|
+
jpeg_quality: int,
|
|
125
|
+
) -> list[tuple[bytes, int, int, int, int]]:
|
|
126
|
+
"""Execute a split plan on an image.
|
|
127
|
+
|
|
128
|
+
Returns list of (data, width, height, source_y, source_height) tuples.
|
|
129
|
+
"""
|
|
130
|
+
width, height = img.size
|
|
131
|
+
|
|
132
|
+
# Trim width if needed (left-aligned crop)
|
|
133
|
+
if plan.trim_width is not None and width > plan.trim_width:
|
|
134
|
+
img = img.crop((0, 0, plan.trim_width, height))
|
|
135
|
+
width = plan.trim_width
|
|
136
|
+
|
|
137
|
+
# Convert to RGB once for JPEG
|
|
138
|
+
if img.mode not in ("RGB", "L"):
|
|
139
|
+
img = img.convert("RGB")
|
|
140
|
+
|
|
141
|
+
parts: list[tuple[bytes, int, int, int, int]] = []
|
|
142
|
+
|
|
143
|
+
for i in range(plan.num_parts):
|
|
144
|
+
if plan.num_parts == 1:
|
|
145
|
+
y = 0
|
|
146
|
+
else:
|
|
147
|
+
y = i * plan.step_y
|
|
148
|
+
# Clamp so last tile aligns to bottom
|
|
149
|
+
y = min(y, max(0, height - plan.tile_height))
|
|
150
|
+
|
|
151
|
+
h = min(plan.tile_height, height - y)
|
|
152
|
+
tile = img.crop((0, y, width, y + h))
|
|
153
|
+
|
|
154
|
+
data = encode_jpeg(tile, jpeg_quality)
|
|
155
|
+
parts.append((data, width, h, y, h))
|
|
156
|
+
|
|
157
|
+
return parts
|
|
@@ -8,6 +8,7 @@ including text, documents, and model responses.
|
|
|
8
8
|
|
|
9
9
|
import base64
|
|
10
10
|
import hashlib
|
|
11
|
+
import io
|
|
11
12
|
import json
|
|
12
13
|
from copy import deepcopy
|
|
13
14
|
from typing import Any, Callable, Iterable, SupportsIndex, Union
|
|
@@ -17,9 +18,11 @@ from openai.types.chat import (
|
|
|
17
18
|
ChatCompletionContentPartParam,
|
|
18
19
|
ChatCompletionMessageParam,
|
|
19
20
|
)
|
|
21
|
+
from PIL import Image
|
|
20
22
|
from prefect.logging import get_logger
|
|
21
23
|
|
|
22
24
|
from ai_pipeline_core.documents import Document
|
|
25
|
+
from ai_pipeline_core.documents.mime_type import is_llm_supported_image
|
|
23
26
|
|
|
24
27
|
from .model_response import ModelResponse
|
|
25
28
|
|
|
@@ -53,7 +56,7 @@ class AIMessages(list[AIMessageType]):
|
|
|
53
56
|
Note: Document conversion is automatic. Text content becomes user text messages.
|
|
54
57
|
|
|
55
58
|
VISION/PDF MODEL COMPATIBILITY WARNING:
|
|
56
|
-
Images require vision-capable models (e.g., gpt-
|
|
59
|
+
Images require vision-capable models (e.g., gpt-5.1, gemini-3-flash, gemini-3-pro).
|
|
57
60
|
Non-vision models will raise ValueError when encountering image documents.
|
|
58
61
|
PDFs require models with document processing support - check your model's capabilities
|
|
59
62
|
before including PDF documents in messages. Unsupported models may fall back to
|
|
@@ -74,7 +77,7 @@ class AIMessages(list[AIMessageType]):
|
|
|
74
77
|
>>> from ai_pipeline_core import llm
|
|
75
78
|
>>> messages = AIMessages()
|
|
76
79
|
>>> messages.append("What is the capital of France?")
|
|
77
|
-
>>> response = await llm.generate("gpt-5", messages=messages)
|
|
80
|
+
>>> response = await llm.generate("gpt-5.1", messages=messages)
|
|
78
81
|
>>> messages.append(response) # Add the actual response
|
|
79
82
|
"""
|
|
80
83
|
|
|
@@ -264,10 +267,31 @@ class AIMessages(list[AIMessageType]):
|
|
|
264
267
|
elif isinstance(message, Document):
|
|
265
268
|
messages.append({"role": "user", "content": AIMessages.document_to_prompt(message)})
|
|
266
269
|
elif isinstance(message, ModelResponse): # type: ignore
|
|
267
|
-
|
|
270
|
+
# Build base assistant message
|
|
271
|
+
assistant_message: ChatCompletionMessageParam = {
|
|
268
272
|
"role": "assistant",
|
|
269
273
|
"content": [{"type": "text", "text": message.content}],
|
|
270
|
-
}
|
|
274
|
+
}
|
|
275
|
+
|
|
276
|
+
# Preserve reasoning_content (Gemini Flash 3+, O1, O3, GPT-5)
|
|
277
|
+
if reasoning_content := message.reasoning_content:
|
|
278
|
+
assistant_message["reasoning_content"] = reasoning_content # type: ignore[typeddict-item]
|
|
279
|
+
|
|
280
|
+
# Preserve thinking_blocks (structured thinking)
|
|
281
|
+
if hasattr(message.choices[0].message, "thinking_blocks"):
|
|
282
|
+
thinking_blocks = getattr(message.choices[0].message, "thinking_blocks", None)
|
|
283
|
+
if thinking_blocks:
|
|
284
|
+
assistant_message["thinking_blocks"] = thinking_blocks # type: ignore[typeddict-item]
|
|
285
|
+
|
|
286
|
+
# Preserve provider_specific_fields (thought_signatures for Gemini multi-turn)
|
|
287
|
+
if hasattr(message.choices[0].message, "provider_specific_fields"):
|
|
288
|
+
provider_fields = getattr(
|
|
289
|
+
message.choices[0].message, "provider_specific_fields", None
|
|
290
|
+
)
|
|
291
|
+
if provider_fields:
|
|
292
|
+
assistant_message["provider_specific_fields"] = provider_fields # type: ignore[typeddict-item]
|
|
293
|
+
|
|
294
|
+
messages.append(assistant_message)
|
|
271
295
|
else:
|
|
272
296
|
raise ValueError(f"Unsupported message type: {type(message)}")
|
|
273
297
|
|
|
@@ -376,9 +400,19 @@ class AIMessages(list[AIMessageType]):
|
|
|
376
400
|
"text": f"{header_text}<content>\n",
|
|
377
401
|
})
|
|
378
402
|
|
|
379
|
-
# Encode binary content
|
|
380
|
-
|
|
381
|
-
|
|
403
|
+
# Encode binary content, converting unsupported image formats to PNG
|
|
404
|
+
if document.is_image and not is_llm_supported_image(document.mime_type):
|
|
405
|
+
img = Image.open(io.BytesIO(document.content))
|
|
406
|
+
buf = io.BytesIO()
|
|
407
|
+
img.save(buf, format="PNG")
|
|
408
|
+
content_bytes = buf.getvalue()
|
|
409
|
+
mime_type = "image/png"
|
|
410
|
+
else:
|
|
411
|
+
content_bytes = document.content
|
|
412
|
+
mime_type = document.mime_type
|
|
413
|
+
|
|
414
|
+
base64_content = base64.b64encode(content_bytes).decode("utf-8")
|
|
415
|
+
data_uri = f"data:{mime_type};base64,{base64_content}"
|
|
382
416
|
|
|
383
417
|
# Add appropriate content type
|
|
384
418
|
if document.is_pdf:
|