ai-pipeline-core 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_pipeline_core/__init__.py +1 -1
- ai_pipeline_core/llm/client.py +47 -2
- ai_pipeline_core/llm/model_response.py +12 -0
- ai_pipeline_core/settings.py +4 -2
- ai_pipeline_core/simple_runner/cli.py +0 -2
- ai_pipeline_core/tracing.py +0 -2
- ai_pipeline_core/utils/__init__.py +8 -0
- ai_pipeline_core/utils/deploy.py +373 -0
- ai_pipeline_core/utils/remote_deployment.py +269 -0
- {ai_pipeline_core-0.2.5.dist-info → ai_pipeline_core-0.2.6.dist-info}/METADATA +1 -1
- {ai_pipeline_core-0.2.5.dist-info → ai_pipeline_core-0.2.6.dist-info}/RECORD +13 -10
- {ai_pipeline_core-0.2.5.dist-info → ai_pipeline_core-0.2.6.dist-info}/WHEEL +0 -0
- {ai_pipeline_core-0.2.5.dist-info → ai_pipeline_core-0.2.6.dist-info}/licenses/LICENSE +0 -0
ai_pipeline_core/__init__.py
CHANGED
ai_pipeline_core/llm/client.py
CHANGED
|
@@ -17,7 +17,7 @@ from typing import Any, TypeVar
|
|
|
17
17
|
|
|
18
18
|
from lmnr import Laminar
|
|
19
19
|
from openai import AsyncOpenAI
|
|
20
|
-
from openai.lib.streaming.chat import ContentDeltaEvent, ContentDoneEvent
|
|
20
|
+
from openai.lib.streaming.chat import ChunkEvent, ContentDeltaEvent, ContentDoneEvent
|
|
21
21
|
from openai.types.chat import (
|
|
22
22
|
ChatCompletionMessageParam,
|
|
23
23
|
)
|
|
@@ -103,6 +103,42 @@ def _process_messages(
|
|
|
103
103
|
return processed_messages
|
|
104
104
|
|
|
105
105
|
|
|
106
|
+
def _model_name_to_openrouter_model(model: ModelName) -> str:
|
|
107
|
+
"""Convert a model name to an OpenRouter model name.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
model: Model name to convert.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
OpenRouter model name.
|
|
114
|
+
"""
|
|
115
|
+
if model == "gpt-4o-search":
|
|
116
|
+
return "openai/gpt-4o-search-preview"
|
|
117
|
+
if model == "gemini-2.5-flash-search":
|
|
118
|
+
return "google/gemini-2.5-flash:online"
|
|
119
|
+
if model == "grok-4-fast-search":
|
|
120
|
+
return "x-ai/grok-4-fast:online"
|
|
121
|
+
if model == "sonar-pro-search":
|
|
122
|
+
return "perplexity/sonar-reasoning-pro"
|
|
123
|
+
if model.startswith("gemini"):
|
|
124
|
+
return f"google/{model}"
|
|
125
|
+
elif model.startswith("gpt"):
|
|
126
|
+
return f"openai/{model}"
|
|
127
|
+
elif model.startswith("grok"):
|
|
128
|
+
return f"x-ai/{model}"
|
|
129
|
+
elif model.startswith("claude"):
|
|
130
|
+
return f"anthropic/{model}"
|
|
131
|
+
elif model.startswith("qwen3"):
|
|
132
|
+
return f"qwen/{model}"
|
|
133
|
+
elif model.startswith("deepseek-"):
|
|
134
|
+
return f"deepseek/{model}"
|
|
135
|
+
elif model.startswith("glm-"):
|
|
136
|
+
return f"z-ai/{model}"
|
|
137
|
+
elif model.startswith("kimi-"):
|
|
138
|
+
return f"moonshotai/{model}"
|
|
139
|
+
return model
|
|
140
|
+
|
|
141
|
+
|
|
106
142
|
async def _generate(
|
|
107
143
|
model: str, messages: list[ChatCompletionMessageParam], completion_kwargs: dict[str, Any]
|
|
108
144
|
) -> ModelResponse:
|
|
@@ -128,11 +164,16 @@ async def _generate(
|
|
|
128
164
|
- Captures response headers for cost tracking
|
|
129
165
|
- Response includes model options for debugging
|
|
130
166
|
"""
|
|
167
|
+
if "openrouter" in settings.openai_base_url.lower():
|
|
168
|
+
model = _model_name_to_openrouter_model(model)
|
|
169
|
+
|
|
131
170
|
async with AsyncOpenAI(
|
|
132
171
|
api_key=settings.openai_api_key,
|
|
133
172
|
base_url=settings.openai_base_url,
|
|
134
173
|
) as client:
|
|
135
|
-
start_time
|
|
174
|
+
start_time = time.time()
|
|
175
|
+
first_token_time = None
|
|
176
|
+
usage = None
|
|
136
177
|
async with client.chat.completions.stream(
|
|
137
178
|
model=model,
|
|
138
179
|
messages=messages,
|
|
@@ -144,6 +185,9 @@ async def _generate(
|
|
|
144
185
|
first_token_time = time.time()
|
|
145
186
|
elif isinstance(event, ContentDoneEvent):
|
|
146
187
|
pass
|
|
188
|
+
elif isinstance(event, ChunkEvent):
|
|
189
|
+
if event.chunk.usage: # used to fix a bug with missing usage data
|
|
190
|
+
usage = event.chunk.usage
|
|
147
191
|
if not first_token_time:
|
|
148
192
|
first_token_time = time.time()
|
|
149
193
|
raw_response = await stream.get_final_completion()
|
|
@@ -156,6 +200,7 @@ async def _generate(
|
|
|
156
200
|
raw_response,
|
|
157
201
|
model_options=completion_kwargs,
|
|
158
202
|
metadata=metadata,
|
|
203
|
+
usage=usage,
|
|
159
204
|
)
|
|
160
205
|
return response
|
|
161
206
|
|
|
@@ -11,6 +11,7 @@ from copy import deepcopy
|
|
|
11
11
|
from typing import Any, Generic, TypeVar
|
|
12
12
|
|
|
13
13
|
from openai.types.chat import ChatCompletion
|
|
14
|
+
from openai.types.completion_usage import CompletionUsage
|
|
14
15
|
from pydantic import BaseModel
|
|
15
16
|
|
|
16
17
|
T = TypeVar(
|
|
@@ -61,6 +62,7 @@ class ModelResponse(ChatCompletion):
|
|
|
61
62
|
chat_completion: ChatCompletion,
|
|
62
63
|
model_options: dict[str, Any],
|
|
63
64
|
metadata: dict[str, Any],
|
|
65
|
+
usage: CompletionUsage | None = None,
|
|
64
66
|
) -> None:
|
|
65
67
|
"""Initialize ModelResponse from ChatCompletion.
|
|
66
68
|
|
|
@@ -73,6 +75,7 @@ class ModelResponse(ChatCompletion):
|
|
|
73
75
|
Stored for metadata extraction and tracing.
|
|
74
76
|
metadata: Custom metadata for tracking (time_taken, first_token_time, etc.).
|
|
75
77
|
Includes timing information and custom tags.
|
|
78
|
+
usage: Optional usage information from streaming response.
|
|
76
79
|
|
|
77
80
|
Example:
|
|
78
81
|
>>> # Usually created internally by generate()
|
|
@@ -83,10 +86,19 @@ class ModelResponse(ChatCompletion):
|
|
|
83
86
|
... )
|
|
84
87
|
"""
|
|
85
88
|
data = chat_completion.model_dump()
|
|
89
|
+
|
|
90
|
+
# fixes issue where the role is "assistantassistant" instead of "assistant"
|
|
91
|
+
for i in range(len(data["choices"])):
|
|
92
|
+
if role := data["choices"][i]["message"].get("role"):
|
|
93
|
+
if role.startswith("assistant") and role != "assistant":
|
|
94
|
+
data["choices"][i]["message"]["role"] = "assistant"
|
|
95
|
+
|
|
86
96
|
super().__init__(**data)
|
|
87
97
|
|
|
88
98
|
self._model_options = model_options
|
|
89
99
|
self._metadata = metadata
|
|
100
|
+
if usage:
|
|
101
|
+
self.usage = usage
|
|
90
102
|
|
|
91
103
|
@property
|
|
92
104
|
def content(self) -> str:
|
ai_pipeline_core/settings.py
CHANGED
|
@@ -126,6 +126,10 @@ class Settings(BaseSettings):
|
|
|
126
126
|
# Prefect Configuration
|
|
127
127
|
prefect_api_url: str = ""
|
|
128
128
|
prefect_api_key: str = ""
|
|
129
|
+
prefect_api_auth_string: str = ""
|
|
130
|
+
prefect_work_pool_name: str = "default"
|
|
131
|
+
prefect_work_queue_name: str = "default"
|
|
132
|
+
prefect_gcs_bucket: str = ""
|
|
129
133
|
|
|
130
134
|
# Observability
|
|
131
135
|
lmnr_project_api_key: str = ""
|
|
@@ -135,6 +139,4 @@ class Settings(BaseSettings):
|
|
|
135
139
|
gcs_service_account_file: str = "" # Path to GCS service account JSON file
|
|
136
140
|
|
|
137
141
|
|
|
138
|
-
# Legacy: Module-level instance for backwards compatibility
|
|
139
|
-
# Applications should create their own settings instance
|
|
140
142
|
settings = Settings()
|
ai_pipeline_core/tracing.py
CHANGED
|
@@ -0,0 +1,373 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""Universal Prefect deployment script using Python API.
|
|
3
|
+
|
|
4
|
+
This script:
|
|
5
|
+
1. Builds a Python package from pyproject.toml
|
|
6
|
+
2. Uploads it to Google Cloud Storage
|
|
7
|
+
3. Creates/updates a Prefect deployment using the RunnerDeployment pattern
|
|
8
|
+
|
|
9
|
+
Requirements:
|
|
10
|
+
- .env file with PREFECT_API_URL and optionally PREFECT_API_KEY
|
|
11
|
+
- .env file with PREFECT_GCS_BUCKET
|
|
12
|
+
- pyproject.toml with project name and version
|
|
13
|
+
- Local package installed for flow metadata extraction
|
|
14
|
+
|
|
15
|
+
Usage:
|
|
16
|
+
python -m ai_pipeline_core.utils.deploy
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
import argparse
|
|
20
|
+
import asyncio
|
|
21
|
+
import os
|
|
22
|
+
import subprocess
|
|
23
|
+
import sys
|
|
24
|
+
import tomllib
|
|
25
|
+
import traceback
|
|
26
|
+
from pathlib import Path
|
|
27
|
+
from typing import Any, Optional
|
|
28
|
+
|
|
29
|
+
from prefect.cli.deploy._storage import _PullStepStorage # type: ignore
|
|
30
|
+
from prefect.client.orchestration import get_client
|
|
31
|
+
from prefect.deployments.runner import RunnerDeployment
|
|
32
|
+
from prefect.flows import load_flow_from_entrypoint
|
|
33
|
+
|
|
34
|
+
from ai_pipeline_core.settings import settings
|
|
35
|
+
from ai_pipeline_core.storage import Storage
|
|
36
|
+
|
|
37
|
+
# ============================================================================
|
|
38
|
+
# Configuration
|
|
39
|
+
# ============================================================================
|
|
40
|
+
|
|
41
|
+
WORK_POOL_NAME = settings.prefect_work_pool_name
|
|
42
|
+
DEFAULT_WORK_QUEUE = settings.prefect_work_queue_name
|
|
43
|
+
PREDEFINED_BUCKET = settings.prefect_gcs_bucket
|
|
44
|
+
|
|
45
|
+
# ============================================================================
|
|
46
|
+
# Deployer Class
|
|
47
|
+
# ============================================================================
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class Deployer:
|
|
51
|
+
"""Deploy Prefect flows using the RunnerDeployment pattern.
|
|
52
|
+
|
|
53
|
+
This is the official Prefect approach that handles flow registration,
|
|
54
|
+
deployment creation/updates, and all edge cases automatically.
|
|
55
|
+
"""
|
|
56
|
+
|
|
57
|
+
def __init__(self):
|
|
58
|
+
"""Initialize deployer."""
|
|
59
|
+
self.config = self._load_config()
|
|
60
|
+
self._setup_prefect_env()
|
|
61
|
+
|
|
62
|
+
def _load_config(self) -> dict[str, Any]:
|
|
63
|
+
"""Load and normalize project configuration from pyproject.toml.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
Configuration dictionary with project metadata and deployment settings.
|
|
67
|
+
"""
|
|
68
|
+
if not PREDEFINED_BUCKET:
|
|
69
|
+
self._die(
|
|
70
|
+
"PREFECT_GCS_BUCKET not found in .env file.\n"
|
|
71
|
+
"Create a .env file with:\n"
|
|
72
|
+
" PREFECT_GCS_BUCKET=your-bucket-name"
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
pyproject_path = Path("pyproject.toml")
|
|
76
|
+
if not pyproject_path.exists():
|
|
77
|
+
self._die("pyproject.toml not found. Run from project root.")
|
|
78
|
+
|
|
79
|
+
with open(pyproject_path, "rb") as f:
|
|
80
|
+
data = tomllib.load(f)
|
|
81
|
+
|
|
82
|
+
project = data.get("project", {})
|
|
83
|
+
name = project.get("name")
|
|
84
|
+
version = project.get("version")
|
|
85
|
+
|
|
86
|
+
if not name:
|
|
87
|
+
self._die("Project name not found in pyproject.toml")
|
|
88
|
+
if not version:
|
|
89
|
+
self._die("Project version not found in pyproject.toml")
|
|
90
|
+
|
|
91
|
+
# Normalize naming conventions
|
|
92
|
+
# Hyphens in package names become underscores in Python imports
|
|
93
|
+
package_name = name.replace("-", "_")
|
|
94
|
+
flow_folder = name.replace("_", "-")
|
|
95
|
+
|
|
96
|
+
return {
|
|
97
|
+
"name": name,
|
|
98
|
+
"package": package_name,
|
|
99
|
+
"version": version,
|
|
100
|
+
"bucket": PREDEFINED_BUCKET,
|
|
101
|
+
"folder": f"flows/{flow_folder}",
|
|
102
|
+
"tarball": f"{package_name}-{version}.tar.gz",
|
|
103
|
+
"work_pool": WORK_POOL_NAME,
|
|
104
|
+
"work_queue": DEFAULT_WORK_QUEUE,
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
def _setup_prefect_env(self):
|
|
108
|
+
"""Configure Prefect environment variables from .env file."""
|
|
109
|
+
self.api_url = os.getenv("PREFECT_API_URL")
|
|
110
|
+
if not self.api_url:
|
|
111
|
+
self._die(
|
|
112
|
+
"PREFECT_API_URL not found in .env file.\n"
|
|
113
|
+
"Create a .env file with:\n"
|
|
114
|
+
" PREFECT_API_URL=https://api.prefect.cloud/api/accounts/.../workspaces/..."
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
os.environ["PREFECT_API_URL"] = self.api_url
|
|
118
|
+
|
|
119
|
+
# Optional: API key for authentication
|
|
120
|
+
if api_key := os.getenv("PREFECT_API_KEY"):
|
|
121
|
+
os.environ["PREFECT_API_KEY"] = api_key
|
|
122
|
+
|
|
123
|
+
# Optional: Alternative auth method
|
|
124
|
+
if api_auth := os.getenv("PREFECT_API_AUTH_STRING"):
|
|
125
|
+
os.environ["PREFECT_API_AUTH_STRING"] = api_auth
|
|
126
|
+
|
|
127
|
+
def _run(self, cmd: str, check: bool = True) -> Optional[str]:
|
|
128
|
+
"""Execute shell command and return output.
|
|
129
|
+
|
|
130
|
+
Args:
|
|
131
|
+
cmd: Shell command to execute
|
|
132
|
+
check: Whether to raise on non-zero exit code
|
|
133
|
+
|
|
134
|
+
Returns:
|
|
135
|
+
Command stdout if successful, None if failed and check=False
|
|
136
|
+
"""
|
|
137
|
+
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
|
138
|
+
|
|
139
|
+
if check and result.returncode != 0:
|
|
140
|
+
self._die(f"Command failed: {cmd}\n{result.stderr}")
|
|
141
|
+
|
|
142
|
+
return result.stdout.strip() if result.returncode == 0 else None
|
|
143
|
+
|
|
144
|
+
def _info(self, msg: str):
|
|
145
|
+
"""Print info message."""
|
|
146
|
+
print(f"→ {msg}")
|
|
147
|
+
|
|
148
|
+
def _success(self, msg: str):
|
|
149
|
+
"""Print success message."""
|
|
150
|
+
print(f"✓ {msg}")
|
|
151
|
+
|
|
152
|
+
def _die(self, msg: str):
|
|
153
|
+
"""Print error and exit."""
|
|
154
|
+
print(f"✗ {msg}", file=sys.stderr)
|
|
155
|
+
sys.exit(1)
|
|
156
|
+
|
|
157
|
+
def _build_package(self) -> Path:
|
|
158
|
+
"""Build Python package using `python -m build`.
|
|
159
|
+
|
|
160
|
+
Returns:
|
|
161
|
+
Path to the built tarball
|
|
162
|
+
"""
|
|
163
|
+
self._info(f"Building {self.config['name']} v{self.config['version']}")
|
|
164
|
+
|
|
165
|
+
# Build sdist (source distribution)
|
|
166
|
+
build_cmd = "python -m build --sdist"
|
|
167
|
+
|
|
168
|
+
self._run(build_cmd)
|
|
169
|
+
|
|
170
|
+
# Verify tarball was created
|
|
171
|
+
tarball_path = Path("dist") / self.config["tarball"]
|
|
172
|
+
if not tarball_path.exists():
|
|
173
|
+
self._die(
|
|
174
|
+
f"Build artifact not found: {tarball_path}\n"
|
|
175
|
+
f"Expected tarball name: {self.config['tarball']}\n"
|
|
176
|
+
f"Check that pyproject.toml version matches."
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
self._success(f"Built {tarball_path.name} ({tarball_path.stat().st_size // 1024} KB)")
|
|
180
|
+
return tarball_path
|
|
181
|
+
|
|
182
|
+
async def _upload_package(self, tarball: Path):
|
|
183
|
+
"""Upload package tarball to Google Cloud Storage using Storage abstraction.
|
|
184
|
+
|
|
185
|
+
Args:
|
|
186
|
+
tarball: Path to the tarball to upload
|
|
187
|
+
"""
|
|
188
|
+
# Extract flow_folder from the config folder path
|
|
189
|
+
# e.g., "flows/ai-document-writer" -> "ai-document-writer"
|
|
190
|
+
flow_folder = self.config["folder"].split("/", 1)[1] if "/" in self.config["folder"] else ""
|
|
191
|
+
|
|
192
|
+
# Initialize storage with gs://bucket-name/flows and set subfolder to flow_folder
|
|
193
|
+
base_uri = f"gs://{self.config['bucket']}/flows"
|
|
194
|
+
storage = await Storage.from_uri(base_uri)
|
|
195
|
+
storage = storage.with_base(flow_folder)
|
|
196
|
+
|
|
197
|
+
dest_uri = storage.url_for(tarball.name)
|
|
198
|
+
self._info(f"Uploading to {dest_uri}")
|
|
199
|
+
|
|
200
|
+
# Read and upload the tarball
|
|
201
|
+
tarball_bytes = tarball.read_bytes()
|
|
202
|
+
await storage.write_bytes(tarball.name, tarball_bytes)
|
|
203
|
+
|
|
204
|
+
self._success(f"Package uploaded to {self.config['folder']}/{tarball.name}")
|
|
205
|
+
|
|
206
|
+
async def _deploy_via_api(self):
|
|
207
|
+
"""Create or update Prefect deployment using RunnerDeployment pattern.
|
|
208
|
+
|
|
209
|
+
This is the official Prefect approach that:
|
|
210
|
+
1. Automatically creates/updates the flow registration
|
|
211
|
+
2. Handles deployment create vs update logic
|
|
212
|
+
3. Properly formats all parameters for the API
|
|
213
|
+
"""
|
|
214
|
+
# Define entrypoint (assumes flow function has same name as package)
|
|
215
|
+
entrypoint = f"{self.config['package']}:{self.config['package']}"
|
|
216
|
+
|
|
217
|
+
# Load flow to get metadata
|
|
218
|
+
# This requires the package to be installed locally (typical dev workflow)
|
|
219
|
+
self._info(f"Loading flow from entrypoint: {entrypoint}")
|
|
220
|
+
try:
|
|
221
|
+
flow = load_flow_from_entrypoint(entrypoint)
|
|
222
|
+
self._success(f"Loaded flow: {flow.name}")
|
|
223
|
+
except ImportError as e:
|
|
224
|
+
self._die(
|
|
225
|
+
f"Failed to import flow: {e}\n\n"
|
|
226
|
+
f"The package must be installed locally to extract flow metadata.\n"
|
|
227
|
+
f"Install it with: pip install -e .\n\n"
|
|
228
|
+
f"Expected entrypoint: {entrypoint}\n"
|
|
229
|
+
f"This means: Python package '{self.config['package']}' "
|
|
230
|
+
f"with flow function '{self.config['package']}'"
|
|
231
|
+
)
|
|
232
|
+
except AttributeError as e:
|
|
233
|
+
self._die(
|
|
234
|
+
f"Flow function not found: {e}\n\n"
|
|
235
|
+
f"Expected flow function named '{self.config['package']}' "
|
|
236
|
+
f"in package '{self.config['package']}'.\n"
|
|
237
|
+
f"Check that your flow is decorated with @flow and named correctly."
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
# Define pull steps for workers
|
|
241
|
+
# These steps tell workers how to get and install the flow code
|
|
242
|
+
pull_steps = [
|
|
243
|
+
{
|
|
244
|
+
"prefect_gcp.deployments.steps.pull_from_gcs": {
|
|
245
|
+
"id": "pull_code",
|
|
246
|
+
"requires": "prefect-gcp>=0.6",
|
|
247
|
+
"bucket": self.config["bucket"],
|
|
248
|
+
"folder": self.config["folder"],
|
|
249
|
+
}
|
|
250
|
+
},
|
|
251
|
+
{
|
|
252
|
+
"prefect.deployments.steps.run_shell_script": {
|
|
253
|
+
"id": "install_project",
|
|
254
|
+
"stream_output": True,
|
|
255
|
+
"directory": "{{ pull_code.directory }}",
|
|
256
|
+
# Use uv for fast installation (worker has it installed)
|
|
257
|
+
"script": f"uv pip install --system ./{self.config['tarball']}",
|
|
258
|
+
}
|
|
259
|
+
},
|
|
260
|
+
]
|
|
261
|
+
|
|
262
|
+
# Create RunnerDeployment
|
|
263
|
+
# This is the official Prefect pattern that handles all the complexity
|
|
264
|
+
self._info(f"Creating deployment for flow '{flow.name}'")
|
|
265
|
+
|
|
266
|
+
deployment = RunnerDeployment(
|
|
267
|
+
name=self.config["package"],
|
|
268
|
+
flow_name=flow.name,
|
|
269
|
+
entrypoint=entrypoint,
|
|
270
|
+
work_pool_name=self.config["work_pool"],
|
|
271
|
+
work_queue_name=self.config["work_queue"],
|
|
272
|
+
tags=[self.config["name"]],
|
|
273
|
+
version=self.config["version"],
|
|
274
|
+
description=flow.description
|
|
275
|
+
or f"Deployment for {self.config['package']} v{self.config['version']}",
|
|
276
|
+
storage=_PullStepStorage(pull_steps),
|
|
277
|
+
parameters={},
|
|
278
|
+
job_variables={},
|
|
279
|
+
paused=False,
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
# Verify work pool exists before deploying
|
|
283
|
+
async with get_client() as client:
|
|
284
|
+
try:
|
|
285
|
+
work_pool = await client.read_work_pool(self.config["work_pool"])
|
|
286
|
+
self._success(
|
|
287
|
+
f"Work pool '{self.config['work_pool']}' verified (type: {work_pool.type})"
|
|
288
|
+
)
|
|
289
|
+
except Exception as e:
|
|
290
|
+
self._die(
|
|
291
|
+
f"Work pool '{self.config['work_pool']}' not accessible: {e}\n"
|
|
292
|
+
"Create it in the Prefect UI or with: prefect work-pool create"
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
# Apply deployment
|
|
296
|
+
# This automatically handles create vs update based on whether deployment exists
|
|
297
|
+
self._info("Applying deployment (create or update)...")
|
|
298
|
+
try:
|
|
299
|
+
deployment_id = await deployment.apply() # type: ignore
|
|
300
|
+
self._success(f"Deployment ID: {deployment_id}")
|
|
301
|
+
|
|
302
|
+
# Print helpful URLs
|
|
303
|
+
if self.api_url:
|
|
304
|
+
ui_url = self.api_url.replace("/api/", "/")
|
|
305
|
+
print(f"\n🌐 View deployment: {ui_url}/deployments/deployment/{deployment_id}")
|
|
306
|
+
print(f"🚀 Run now: prefect deployment run '{flow.name}/{self.config['package']}'")
|
|
307
|
+
except Exception as e:
|
|
308
|
+
self._die(f"Failed to apply deployment: {e}")
|
|
309
|
+
|
|
310
|
+
async def run(self):
|
|
311
|
+
"""Execute the complete deployment pipeline."""
|
|
312
|
+
print("=" * 70)
|
|
313
|
+
print(f"Prefect Deployment: {self.config['name']} v{self.config['version']}")
|
|
314
|
+
print(f"Target: gs://{self.config['bucket']}/{self.config['folder']}")
|
|
315
|
+
print("=" * 70)
|
|
316
|
+
print()
|
|
317
|
+
|
|
318
|
+
# Phase 1: Build
|
|
319
|
+
tarball = self._build_package()
|
|
320
|
+
|
|
321
|
+
# Phase 2: Upload
|
|
322
|
+
await self._upload_package(tarball)
|
|
323
|
+
|
|
324
|
+
# Phase 3: Deploy
|
|
325
|
+
await self._deploy_via_api()
|
|
326
|
+
|
|
327
|
+
print()
|
|
328
|
+
print("=" * 70)
|
|
329
|
+
self._success("Deployment complete!")
|
|
330
|
+
print("=" * 70)
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
# ============================================================================
|
|
334
|
+
# CLI Entry Point
|
|
335
|
+
# ============================================================================
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def main():
|
|
339
|
+
"""Command-line interface for deployment script."""
|
|
340
|
+
parser = argparse.ArgumentParser(
|
|
341
|
+
description="Deploy Prefect flows to GCP using the official RunnerDeployment pattern",
|
|
342
|
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
343
|
+
epilog="""
|
|
344
|
+
Example:
|
|
345
|
+
python -m ai_pipeline_core.utils.deploy
|
|
346
|
+
|
|
347
|
+
Prerequisites:
|
|
348
|
+
- .env file with PREFECT_API_URL (and optionally PREFECT_API_KEY)
|
|
349
|
+
- .env file with PREFECT_GCS_BUCKET
|
|
350
|
+
- pyproject.toml with project name and version
|
|
351
|
+
- Package installed locally: pip install -e .
|
|
352
|
+
- GCP authentication configured (via service account or default credentials)
|
|
353
|
+
- Work pool created in Prefect UI or CLI
|
|
354
|
+
""",
|
|
355
|
+
)
|
|
356
|
+
|
|
357
|
+
parser.parse_args()
|
|
358
|
+
|
|
359
|
+
try:
|
|
360
|
+
deployer = Deployer()
|
|
361
|
+
asyncio.run(deployer.run())
|
|
362
|
+
except KeyboardInterrupt:
|
|
363
|
+
print("\n✗ Deployment cancelled by user", file=sys.stderr)
|
|
364
|
+
sys.exit(1)
|
|
365
|
+
except Exception as e:
|
|
366
|
+
print(f"\n✗ Unexpected error: {e}", file=sys.stderr)
|
|
367
|
+
|
|
368
|
+
traceback.print_exc()
|
|
369
|
+
sys.exit(1)
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
if __name__ == "__main__":
|
|
373
|
+
main()
|
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
"""Experimental remote deployment utilities.
|
|
2
|
+
|
|
3
|
+
EXPERIMENTAL: This module provides utilities for calling remotely deployed Prefect flows.
|
|
4
|
+
Subject to change in future versions.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import inspect
|
|
8
|
+
from functools import wraps
|
|
9
|
+
from typing import Any, Callable, ParamSpec, Type, TypeVar
|
|
10
|
+
|
|
11
|
+
from prefect import get_client
|
|
12
|
+
from prefect.client.orchestration import PrefectClient
|
|
13
|
+
from prefect.client.schemas import FlowRun
|
|
14
|
+
from prefect.context import AsyncClientContext
|
|
15
|
+
from prefect.deployments.flow_runs import run_deployment
|
|
16
|
+
from prefect.exceptions import ObjectNotFound
|
|
17
|
+
|
|
18
|
+
from ai_pipeline_core import DocumentList, FlowDocument
|
|
19
|
+
from ai_pipeline_core.settings import settings
|
|
20
|
+
from ai_pipeline_core.tracing import TraceLevel, set_trace_cost, trace
|
|
21
|
+
|
|
22
|
+
# --------------------------------------------------------------------------- #
|
|
23
|
+
# Utility functions (copied from pipeline.py for consistency)
|
|
24
|
+
# --------------------------------------------------------------------------- #
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def _callable_name(obj: Any, fallback: str) -> str:
|
|
28
|
+
"""Safely extract callable's name for error messages.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
obj: Any object that might have a __name__ attribute.
|
|
32
|
+
fallback: Default name if extraction fails.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
The callable's __name__ if available, fallback otherwise.
|
|
36
|
+
|
|
37
|
+
Note:
|
|
38
|
+
Internal helper that never raises exceptions.
|
|
39
|
+
"""
|
|
40
|
+
try:
|
|
41
|
+
n = getattr(obj, "__name__", None)
|
|
42
|
+
return n if isinstance(n, str) else fallback
|
|
43
|
+
except Exception:
|
|
44
|
+
return fallback
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _is_already_traced(func: Callable[..., Any]) -> bool:
|
|
48
|
+
"""Check if a function has already been wrapped by the trace decorator.
|
|
49
|
+
|
|
50
|
+
This checks both for the explicit __is_traced__ marker and walks
|
|
51
|
+
the __wrapped__ chain to detect nested trace decorations.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
func: Function to check for existing trace decoration.
|
|
55
|
+
|
|
56
|
+
Returns:
|
|
57
|
+
True if the function is already traced, False otherwise.
|
|
58
|
+
"""
|
|
59
|
+
# Check for explicit marker
|
|
60
|
+
if hasattr(func, "__is_traced__") and func.__is_traced__: # type: ignore[attr-defined]
|
|
61
|
+
return True
|
|
62
|
+
|
|
63
|
+
# Walk the __wrapped__ chain to detect nested traces
|
|
64
|
+
current = func
|
|
65
|
+
depth = 0
|
|
66
|
+
max_depth = 10 # Prevent infinite loops
|
|
67
|
+
|
|
68
|
+
while hasattr(current, "__wrapped__") and depth < max_depth:
|
|
69
|
+
wrapped = current.__wrapped__ # type: ignore[attr-defined]
|
|
70
|
+
# Check if the wrapped function has the trace marker
|
|
71
|
+
if hasattr(wrapped, "__is_traced__") and wrapped.__is_traced__: # type: ignore[attr-defined]
|
|
72
|
+
return True
|
|
73
|
+
current = wrapped
|
|
74
|
+
depth += 1
|
|
75
|
+
|
|
76
|
+
return False
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
# --------------------------------------------------------------------------- #
|
|
80
|
+
# Remote deployment execution
|
|
81
|
+
# --------------------------------------------------------------------------- #
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
async def run_remote_deployment(deployment_name: str, parameters: dict[str, Any]) -> Any:
|
|
85
|
+
"""Run a remote Prefect deployment.
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
deployment_name: Name of the deployment to run.
|
|
89
|
+
parameters: Parameters to pass to the deployment.
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
Result from the deployment execution.
|
|
93
|
+
|
|
94
|
+
Raises:
|
|
95
|
+
ValueError: If deployment is not found in local or remote Prefect API.
|
|
96
|
+
"""
|
|
97
|
+
|
|
98
|
+
async def _run(client: PrefectClient, as_subflow: bool) -> Any:
|
|
99
|
+
fr: FlowRun = await run_deployment(
|
|
100
|
+
client=client, name=deployment_name, parameters=parameters, as_subflow=as_subflow
|
|
101
|
+
) # type: ignore
|
|
102
|
+
return await fr.state.result() # type: ignore
|
|
103
|
+
|
|
104
|
+
async with get_client() as client:
|
|
105
|
+
try:
|
|
106
|
+
await client.read_deployment_by_name(name=deployment_name)
|
|
107
|
+
return await _run(client, True)
|
|
108
|
+
except ObjectNotFound:
|
|
109
|
+
pass
|
|
110
|
+
|
|
111
|
+
if not settings.prefect_api_url:
|
|
112
|
+
raise ValueError(f"{deployment_name} deployment not found, PREFECT_API_URL is not set")
|
|
113
|
+
|
|
114
|
+
async with PrefectClient(
|
|
115
|
+
api=settings.prefect_api_url,
|
|
116
|
+
api_key=settings.prefect_api_key,
|
|
117
|
+
auth_string=settings.prefect_api_auth_string,
|
|
118
|
+
) as client:
|
|
119
|
+
try:
|
|
120
|
+
await client.read_deployment_by_name(name=deployment_name)
|
|
121
|
+
with AsyncClientContext.model_construct(
|
|
122
|
+
client=client, _httpx_settings=None, _context_stack=0
|
|
123
|
+
):
|
|
124
|
+
return await _run(client, False)
|
|
125
|
+
except ObjectNotFound:
|
|
126
|
+
pass
|
|
127
|
+
|
|
128
|
+
raise ValueError(f"{deployment_name} deployment not found")
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
P = ParamSpec("P")
|
|
132
|
+
T = TypeVar("T")
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def remote_deployment(
|
|
136
|
+
output_document_type: Type[FlowDocument],
|
|
137
|
+
*,
|
|
138
|
+
# tracing
|
|
139
|
+
name: str | None = None,
|
|
140
|
+
trace_level: TraceLevel = "always",
|
|
141
|
+
trace_ignore_input: bool = False,
|
|
142
|
+
trace_ignore_output: bool = False,
|
|
143
|
+
trace_ignore_inputs: list[str] | None = None,
|
|
144
|
+
trace_input_formatter: Callable[..., str] | None = None,
|
|
145
|
+
trace_output_formatter: Callable[..., str] | None = None,
|
|
146
|
+
trace_cost: float | None = None,
|
|
147
|
+
trace_trim_documents: bool = True,
|
|
148
|
+
) -> Callable[[Callable[P, T]], Callable[P, T]]:
|
|
149
|
+
"""Decorator for calling remote Prefect deployments with automatic tracing.
|
|
150
|
+
|
|
151
|
+
EXPERIMENTAL: Decorator for calling remote Prefect deployments with automatic
|
|
152
|
+
parameter serialization, result deserialization, and LMNR tracing.
|
|
153
|
+
|
|
154
|
+
IMPORTANT: Never combine with @trace decorator - this includes tracing automatically.
|
|
155
|
+
The framework will raise TypeError if you try to use both decorators together.
|
|
156
|
+
|
|
157
|
+
Best Practice - Use Defaults:
|
|
158
|
+
For most use cases, only specify output_document_type. The defaults provide
|
|
159
|
+
automatic tracing with optimal settings.
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
output_document_type: The FlowDocument type to deserialize results into.
|
|
163
|
+
name: Custom trace name (defaults to function name).
|
|
164
|
+
trace_level: When to trace ("always", "debug", "off").
|
|
165
|
+
- "always": Always trace (default)
|
|
166
|
+
- "debug": Only trace when LMNR_DEBUG="true"
|
|
167
|
+
- "off": Disable tracing
|
|
168
|
+
trace_ignore_input: Don't trace input arguments.
|
|
169
|
+
trace_ignore_output: Don't trace return value.
|
|
170
|
+
trace_ignore_inputs: List of parameter names to exclude from tracing.
|
|
171
|
+
trace_input_formatter: Custom formatter for input tracing.
|
|
172
|
+
trace_output_formatter: Custom formatter for output tracing.
|
|
173
|
+
trace_cost: Optional cost value to track in metadata. When provided and > 0,
|
|
174
|
+
sets gen_ai.usage.output_cost, gen_ai.usage.cost, and cost metadata.
|
|
175
|
+
trace_trim_documents: Trim document content in traces to first 100 chars (default True).
|
|
176
|
+
Reduces trace size with large documents.
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
Decorator function that wraps the target function.
|
|
180
|
+
|
|
181
|
+
Example:
|
|
182
|
+
>>> # RECOMMENDED - Minimal usage
|
|
183
|
+
>>> @remote_deployment(output_document_type=OutputDoc)
|
|
184
|
+
>>> async def process_remotely(
|
|
185
|
+
... project_name: str,
|
|
186
|
+
... documents: DocumentList,
|
|
187
|
+
... flow_options: FlowOptions
|
|
188
|
+
>>> ) -> DocumentList:
|
|
189
|
+
... pass # This stub is replaced by remote call
|
|
190
|
+
>>>
|
|
191
|
+
>>> # With custom tracing
|
|
192
|
+
>>> @remote_deployment(
|
|
193
|
+
... output_document_type=OutputDoc,
|
|
194
|
+
... trace_cost=0.05, # Track cost of remote execution
|
|
195
|
+
... trace_level="debug" # Only trace in debug mode
|
|
196
|
+
>>> )
|
|
197
|
+
>>> async def debug_remote_flow(...) -> DocumentList:
|
|
198
|
+
... pass
|
|
199
|
+
|
|
200
|
+
Note:
|
|
201
|
+
- Remote calls are automatically traced with LMNR
|
|
202
|
+
- The decorated function's body is never executed - it serves as a signature template
|
|
203
|
+
- Deployment name is auto-derived from function name
|
|
204
|
+
- DocumentList parameters are automatically serialized/deserialized
|
|
205
|
+
|
|
206
|
+
Raises:
|
|
207
|
+
TypeError: If function is already decorated with @trace.
|
|
208
|
+
ValueError: If deployment is not found.
|
|
209
|
+
"""
|
|
210
|
+
|
|
211
|
+
def decorator(func: Callable[P, T]) -> Callable[P, T]:
|
|
212
|
+
fname = _callable_name(func, "remote_deployment")
|
|
213
|
+
|
|
214
|
+
# Check if function is already traced
|
|
215
|
+
if _is_already_traced(func):
|
|
216
|
+
raise TypeError(
|
|
217
|
+
f"@remote_deployment target '{fname}' is already decorated "
|
|
218
|
+
f"with @trace. Remove the @trace decorator - @remote_deployment includes "
|
|
219
|
+
f"tracing automatically."
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
@wraps(func)
|
|
223
|
+
async def _wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
|
|
224
|
+
sig = inspect.signature(func)
|
|
225
|
+
bound = sig.bind(*args, **kwargs)
|
|
226
|
+
bound.apply_defaults()
|
|
227
|
+
|
|
228
|
+
# Serialize parameters, converting DocumentList to list[dict]
|
|
229
|
+
parameters = {}
|
|
230
|
+
for pname, value in bound.arguments.items():
|
|
231
|
+
if isinstance(value, DocumentList):
|
|
232
|
+
parameters[pname] = [doc for doc in value]
|
|
233
|
+
else:
|
|
234
|
+
parameters[pname] = value
|
|
235
|
+
|
|
236
|
+
# Auto-derive deployment name
|
|
237
|
+
deployment_name = f"{func.__name__.replace('_', '-')}/{func.__name__}"
|
|
238
|
+
|
|
239
|
+
result = await run_remote_deployment(
|
|
240
|
+
deployment_name=deployment_name, parameters=parameters
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
# Set trace cost if provided
|
|
244
|
+
if trace_cost is not None and trace_cost > 0:
|
|
245
|
+
set_trace_cost(trace_cost)
|
|
246
|
+
|
|
247
|
+
assert isinstance(result, list), "Result must be a list"
|
|
248
|
+
|
|
249
|
+
# Auto-handle return type conversion from list[dict] to DocumentList
|
|
250
|
+
return_type = sig.return_annotation
|
|
251
|
+
|
|
252
|
+
assert return_type is DocumentList, "Return type must be a DocumentList"
|
|
253
|
+
return DocumentList([output_document_type(**item) for item in result]) # type: ignore
|
|
254
|
+
|
|
255
|
+
# Apply trace decorator
|
|
256
|
+
traced_wrapper = trace(
|
|
257
|
+
level=trace_level,
|
|
258
|
+
name=name or fname,
|
|
259
|
+
ignore_input=trace_ignore_input,
|
|
260
|
+
ignore_output=trace_ignore_output,
|
|
261
|
+
ignore_inputs=trace_ignore_inputs,
|
|
262
|
+
input_formatter=trace_input_formatter,
|
|
263
|
+
output_formatter=trace_output_formatter,
|
|
264
|
+
trim_documents=trace_trim_documents,
|
|
265
|
+
)(_wrapper)
|
|
266
|
+
|
|
267
|
+
return traced_wrapper # type: ignore
|
|
268
|
+
|
|
269
|
+
return decorator
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ai-pipeline-core
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.6
|
|
4
4
|
Summary: Core utilities for AI-powered processing pipelines using prefect
|
|
5
5
|
Project-URL: Homepage, https://github.com/bbarwik/ai-pipeline-core
|
|
6
6
|
Project-URL: Repository, https://github.com/bbarwik/ai-pipeline-core
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
ai_pipeline_core/__init__.py,sha256=
|
|
1
|
+
ai_pipeline_core/__init__.py,sha256=BWdVF64no62Cg9b_6GLiRub7ytBQQPk1RC38V0FGoAA,5720
|
|
2
2
|
ai_pipeline_core/exceptions.py,sha256=vx-XLTw2fJSPs-vwtXVYtqoQUcOc0JeI7UmHqRqQYWU,1569
|
|
3
3
|
ai_pipeline_core/pipeline.py,sha256=fWTVmrnOEIFge6o2NUYW2ndGef5UurpL8_fK5tkXbzI,28700
|
|
4
4
|
ai_pipeline_core/prefect.py,sha256=91ZgLJHsDsRUW77CpNmkKxYs3RCJuucPM3pjKmNBeDg,2199
|
|
5
5
|
ai_pipeline_core/prompt_manager.py,sha256=FAtb1yK7bGuAeuIJ523LOX9bd7TrcHG-TqZ7Lz4RJC0,12087
|
|
6
6
|
ai_pipeline_core/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
-
ai_pipeline_core/settings.py,sha256
|
|
8
|
-
ai_pipeline_core/tracing.py,sha256=
|
|
7
|
+
ai_pipeline_core/settings.py,sha256=IMrFaX0i-WIlaOA5O53ipNSta6KQVSFHc1aJXmS3nSo,5078
|
|
8
|
+
ai_pipeline_core/tracing.py,sha256=HT8heSwsVot6D6u8dPi-BHVlaemkPsPs5aXtG-iIzNk,31494
|
|
9
9
|
ai_pipeline_core/documents/__init__.py,sha256=WHStvGZiSyybOcMTYxSV24U6MA3Am_0_Az5p-DuMFrk,738
|
|
10
10
|
ai_pipeline_core/documents/document.py,sha256=hdTh36KGEcrDollTnQmTI66DJIqYfe4X42Y0q7Cm4fY,68153
|
|
11
11
|
ai_pipeline_core/documents/document_list.py,sha256=Y_NCjfM_CjkIwHRD2iyGgYBuIykN8lT2IIH_uWOiGis,16254
|
|
@@ -19,20 +19,23 @@ ai_pipeline_core/flow/config.py,sha256=3PCDph2n8dj-txqAvd9Wflbi_6lmfXFR9rUhM-szG
|
|
|
19
19
|
ai_pipeline_core/flow/options.py,sha256=2rKR2GifhXcyw8avI_oiEDMLC2jm5Qzpw8z56pbxUMo,2285
|
|
20
20
|
ai_pipeline_core/llm/__init__.py,sha256=3B_vtEzxrzidP1qOUNQ4RxlUmxZ2MBKQcUhQiTybM9g,661
|
|
21
21
|
ai_pipeline_core/llm/ai_messages.py,sha256=tseyncD-T1IjaXKzUkzEgS3CGvz-WEDsA6v8wt9Emx0,14295
|
|
22
|
-
ai_pipeline_core/llm/client.py,sha256=
|
|
22
|
+
ai_pipeline_core/llm/client.py,sha256=Ojb0Ew2w88KlTfNP7VyRsIjjHh5Z8A1WhfHsNQwfeak,23673
|
|
23
23
|
ai_pipeline_core/llm/model_options.py,sha256=5XTBDdGZMxAo8JvhfEBIrtTOJC6piaMsgJ_J2cGiByo,11775
|
|
24
|
-
ai_pipeline_core/llm/model_response.py,sha256=
|
|
24
|
+
ai_pipeline_core/llm/model_response.py,sha256=VsuEp8tMbxWOkpZBFH1WIJisbZSvg7Z4JPqPejz7YM8,13273
|
|
25
25
|
ai_pipeline_core/llm/model_types.py,sha256=OCRdTbQ1ZZ95nT_2PgOm16n2et25QOQyBtB1zsqm_3U,2791
|
|
26
26
|
ai_pipeline_core/logging/__init__.py,sha256=Nz6-ghAoENsgNmLD2ma9TW9M0U2_QfxuQ5DDW6Vt6M0,651
|
|
27
27
|
ai_pipeline_core/logging/logging.yml,sha256=YTW48keO_K5bkkb-KXGM7ZuaYKiquLsjsURei8Ql0V4,1353
|
|
28
28
|
ai_pipeline_core/logging/logging_config.py,sha256=pV2x6GgMPXrzPH27sicCSXfw56beio4C2JKCJ3NsXrg,6207
|
|
29
29
|
ai_pipeline_core/logging/logging_mixin.py,sha256=OTye2pbUbG5oYZkI06TNkGCEa4y0ldePz5IAfdmNUPU,8090
|
|
30
30
|
ai_pipeline_core/simple_runner/__init__.py,sha256=9krT-CcDAZ0jB2MjWqFYhaK5qtUDMpB5qWzjRLa4Zhk,322
|
|
31
|
-
ai_pipeline_core/simple_runner/cli.py,sha256=
|
|
31
|
+
ai_pipeline_core/simple_runner/cli.py,sha256=p9Z1jtRMH10T5Bl3QfHPxyW6LL4qYvvXeOXbPGeeXeE,9308
|
|
32
32
|
ai_pipeline_core/simple_runner/simple_runner.py,sha256=f6cIodYkul-Apu1d63T6kR5DZpiaCWpphUcEPp5XjFo,9102
|
|
33
33
|
ai_pipeline_core/storage/__init__.py,sha256=tcIkjJ3zPBLCyetwiJDewBvS2sbRJrDlBh3gEsQm08E,184
|
|
34
34
|
ai_pipeline_core/storage/storage.py,sha256=ClMr419Y-eU2RuOjZYd51dC0stWQk28Vb56PvQaoUwc,20007
|
|
35
|
-
ai_pipeline_core
|
|
36
|
-
ai_pipeline_core
|
|
37
|
-
ai_pipeline_core
|
|
38
|
-
ai_pipeline_core-0.2.
|
|
35
|
+
ai_pipeline_core/utils/__init__.py,sha256=TJSmEm1Quf-gKwXrxM96u2IGzVolUyeNNfLMPoLstXI,254
|
|
36
|
+
ai_pipeline_core/utils/deploy.py,sha256=Y15-xoIWfs-HkEQeTobjq4UdTiXSTKzTghL0Jo8iMgU,13565
|
|
37
|
+
ai_pipeline_core/utils/remote_deployment.py,sha256=cPTgnS5InK08qiWnuPz3e8YKjoT3sPBloSaDfNTzghs,10137
|
|
38
|
+
ai_pipeline_core-0.2.6.dist-info/METADATA,sha256=rC6CVxTMsoL6iCIIw3b_Lr5zWdBBmzqCgboiS4vFXpY,15159
|
|
39
|
+
ai_pipeline_core-0.2.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
40
|
+
ai_pipeline_core-0.2.6.dist-info/licenses/LICENSE,sha256=kKj8mfbdWwkyG3U6n7ztB3bAZlEwShTkAsvaY657i3I,1074
|
|
41
|
+
ai_pipeline_core-0.2.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|