ai-edge-torch-nightly 0.6.0.dev20250602__py3-none-any.whl → 0.6.0.dev20250603__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +7 -15
  2. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +2 -1
  3. ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py +3 -1
  4. ai_edge_torch/generative/examples/deepseek/deepseek.py +7 -15
  5. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +2 -1
  6. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +2 -1
  7. ai_edge_torch/generative/examples/gemma/gemma1.py +8 -16
  8. ai_edge_torch/generative/examples/gemma/gemma2.py +24 -24
  9. ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py +2 -1
  10. ai_edge_torch/generative/examples/gemma3/decoder.py +34 -35
  11. ai_edge_torch/generative/examples/gemma3/gemma3.py +10 -8
  12. ai_edge_torch/generative/examples/hammer/convert_to_tflite.py +2 -1
  13. ai_edge_torch/generative/examples/hammer/hammer.py +23 -16
  14. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +2 -2
  15. ai_edge_torch/generative/examples/llama/llama.py +13 -26
  16. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +2 -1
  17. ai_edge_torch/generative/examples/openelm/openelm.py +8 -16
  18. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +2 -1
  19. ai_edge_torch/generative/examples/paligemma/decoder.py +12 -17
  20. ai_edge_torch/generative/examples/paligemma/decoder2.py +12 -17
  21. ai_edge_torch/generative/examples/paligemma/paligemma.py +14 -9
  22. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +2 -1
  23. ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py +2 -1
  24. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +2 -1
  25. ai_edge_torch/generative/examples/phi/phi2.py +8 -16
  26. ai_edge_torch/generative/examples/phi/phi3.py +8 -16
  27. ai_edge_torch/generative/examples/phi/phi4.py +8 -16
  28. ai_edge_torch/generative/examples/phi/verify_util.py +1 -3
  29. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +2 -1
  30. ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py +2 -1
  31. ai_edge_torch/generative/examples/qwen/qwen.py +29 -34
  32. ai_edge_torch/generative/examples/qwen/qwen3.py +29 -35
  33. ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py +2 -1
  34. ai_edge_torch/generative/examples/qwen_vl/decoder.py +11 -16
  35. ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py +8 -12
  36. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +2 -2
  37. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +2 -1
  38. ai_edge_torch/generative/examples/smollm/smollm.py +15 -30
  39. ai_edge_torch/generative/examples/t5/t5.py +23 -23
  40. ai_edge_torch/generative/examples/t5/t5_attention.py +2 -2
  41. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +2 -1
  42. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +7 -15
  43. ai_edge_torch/generative/layers/kv_cache.py +13 -1
  44. ai_edge_torch/generative/layers/model_config.py +0 -14
  45. ai_edge_torch/generative/test/test_kv_cache.py +14 -24
  46. ai_edge_torch/generative/test/test_lora.py +4 -21
  47. ai_edge_torch/generative/test/test_model_conversion.py +8 -4
  48. ai_edge_torch/generative/test/test_model_conversion_large.py +27 -19
  49. ai_edge_torch/generative/utilities/converter.py +15 -6
  50. ai_edge_torch/generative/utilities/model_builder.py +16 -6
  51. ai_edge_torch/generative/utilities/verifier.py +16 -6
  52. ai_edge_torch/version.py +1 -1
  53. {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/METADATA +1 -1
  54. {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/RECORD +57 -57
  55. {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/LICENSE +0 -0
  56. {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/WHEEL +0 -0
  57. {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/top_level.txt +0 -0
@@ -129,6 +129,11 @@ def define_conversion_flags(
129
129
  return flags
130
130
 
131
131
 
132
+ def get_mask_cache_size_from_flags() -> int:
133
+ """Returns the mask cache size according to the flags."""
134
+ return 0 if flags.FLAGS.mask_as_input else flags.FLAGS.kv_cache_max_len
135
+
136
+
132
137
  def get_quant_recipe_from_flag(
133
138
  quantize: str,
134
139
  model_config: cfg.ModelConfig,
@@ -211,6 +216,7 @@ def convert_to_tflite(
211
216
  output_path: str,
212
217
  output_name_prefix: str,
213
218
  prefill_seq_len: Union[int, list[int]],
219
+ kv_cache_max_len: int,
214
220
  pixel_values_size: torch.Size = None,
215
221
  pixel_seq_len: int = 0,
216
222
  quantize: str = 'dynamic_int8',
@@ -253,6 +259,8 @@ def convert_to_tflite(
253
259
  output_name_prefix (str): The prefix of the tflite model name.
254
260
  prefill_seq_len (Union[int, list[int]]): The prefill sequence length to
255
261
  use. If a list, the model will have multiple prefill signatures.
262
+ kv_cache_max_len (int): The maximum size of KV cache buffer, including
263
+ both prefill and decode.
256
264
  pixel_values_size (torch.Size, optional): The size of pixel values to pass
257
265
  to the model. If None, the model is not expected to take pixel values.
258
266
  pixel_seq_len (int, optional): The length of pixel tokens, or pixel
@@ -282,7 +290,7 @@ def convert_to_tflite(
282
290
  loras.append(lora)
283
291
 
284
292
  quant_suffix = create_quantize_suffix(quantize)
285
- kv_size = config.kv_cache_max_len
293
+ kv_size = kv_cache_max_len
286
294
  lora_suffix = (
287
295
  '' if not lora_ranks else f'_lora{",".join(map(str, lora_ranks))}'
288
296
  )
@@ -309,6 +317,7 @@ def convert_to_tflite(
309
317
  pytorch_model,
310
318
  output_file,
311
319
  prefill_seq_lens,
320
+ kv_cache_max_len,
312
321
  pixel_values_size,
313
322
  pixel_seq_len,
314
323
  quantize,
@@ -322,6 +331,7 @@ def _export_helper(
322
331
  pytorch_model: torch.nn.Module,
323
332
  output_file: str,
324
333
  prefill_seq_lens: list[int],
334
+ kv_cache_max_len: int,
325
335
  pixel_values_size: torch.Size,
326
336
  pixel_seq_len: int,
327
337
  quantize: str,
@@ -352,9 +362,7 @@ def _export_helper(
352
362
  prefill_masks = None
353
363
  if export_config.mask_as_input:
354
364
  prefill_masks = _build_mask(
355
- prefill_seq_lens,
356
- config.kv_cache_max_len,
357
- config.causal_mask_value,
365
+ prefill_seq_lens, kv_cache_max_len, config.causal_mask_value
358
366
  )
359
367
  if not isinstance(prefill_masks, list):
360
368
  prefill_masks = [prefill_masks]
@@ -365,9 +373,10 @@ def _export_helper(
365
373
  )
366
374
  decode_input_pos = torch.tensor([0], dtype=torch.int)
367
375
  prefill_kv = kv_utils.KVCache.from_model_config(
368
- config, kv_layout=export_config.kvcache_layout
376
+ kv_cache_max_len, config, kv_layout=export_config.kvcache_layout
369
377
  )
370
378
  decode_kv = kv_utils.KVCache.from_model_config(
379
+ kv_cache_max_len,
371
380
  config,
372
381
  batch_size=export_config.decode_batch_size,
373
382
  kv_layout=export_config.kvcache_layout,
@@ -433,7 +442,7 @@ def _export_helper(
433
442
  # torch.triu(mask, diagonal=decode_position).unsqueeze(0).unsqueeze(0)
434
443
  #
435
444
  sample_kwargs['mask'] = _build_mask(
436
- 1, config.kv_cache_max_len, config.causal_mask_value
445
+ 1, kv_cache_max_len, config.causal_mask_value
437
446
  )
438
447
  if lora is not None:
439
448
  sample_kwargs['lora'] = lora
@@ -59,7 +59,7 @@ class DecoderOnlyModel(nn.Module):
59
59
  and rotary_percentage are the same for all layers.
60
60
  """
61
61
 
62
- def __init__(self, config: cfg.ModelConfig):
62
+ def __init__(self, config: cfg.ModelConfig, mask_cache_size: int = 0):
63
63
  super().__init__()
64
64
 
65
65
  # Construct model layers.
@@ -78,10 +78,17 @@ class DecoderOnlyModel(nn.Module):
78
78
  self.final_norm = builder.build_norm(
79
79
  config.embedding_dim, config.final_norm_config
80
80
  )
81
- self.mask_cache = attn_utils.build_causal_mask_cache(
82
- size=config.kv_cache_max,
83
- )
84
81
  self.config = config
82
+ self.build_mask_cache(mask_cache_size)
83
+
84
+ def build_mask_cache(self, mask_cache_size: int):
85
+ assert (
86
+ mask_cache_size <= self.config.max_seq_len
87
+ ), "Mask cache size must be less than or equal to the max seq length."
88
+ if mask_cache_size <= 0:
89
+ self.mask_cache = None
90
+ else:
91
+ self.mask_cache = attn_utils.build_causal_mask_cache(mask_cache_size)
85
92
 
86
93
  @torch.inference_mode
87
94
  def forward(
@@ -108,8 +115,10 @@ class DecoderOnlyModel(nn.Module):
108
115
  rope = self.config.build_rope(input_pos, n_elem, attn_config.rotary_base)
109
116
 
110
117
  if mask is None:
118
+ assert self.mask_cache is not None, "Mask cache must be built."
119
+ assert kv_cache is not None, "KV cache must be provided."
111
120
  mask = self.mask_cache.index_select(2, input_pos)
112
- mask = mask[:, :, :, : self.config.kv_cache_max]
121
+ mask = mask[:, :, :, :kv_cache.get_max_seq_len()]
113
122
 
114
123
  return self._forward_with_embeds(
115
124
  input_embeds, rope, mask, input_pos, kv_cache, lora, export_config
@@ -162,8 +171,9 @@ def build_decoder_only_model(
162
171
  tensor_names: loading_utils.ModelLoader.TensorNames,
163
172
  model_class: type[nn.Module] = DecoderOnlyModel,
164
173
  custom_loader: Callable[[str], Dict[str, torch.Tensor]] = None,
174
+ mask_cache_size: int = 0,
165
175
  ) -> nn.Module:
166
- transformer = model_class(config)
176
+ transformer = model_class(config, mask_cache_size)
167
177
  loader = loading_utils.ModelLoader(
168
178
  checkpoint_path, tensor_names, custom_loader
169
179
  )
@@ -53,6 +53,7 @@ class ModelWrapper(torch.nn.Module):
53
53
  Args:
54
54
  tokens (torch.Tensor): The input tokens to forward. Its dimension is
55
55
  expected to be (batch_size=1, kv_cache_max_len).
56
+ pixel_values (torch.Tensor): Optional input pixel values to forward.
56
57
 
57
58
  Returns:
58
59
  The output logits.
@@ -74,6 +75,7 @@ class ModelWrapper(torch.nn.Module):
74
75
  expected to be (batch_size=1, input_ids_len).
75
76
  max_new_tokens (int): The maximum number of response token IDs to
76
77
  generate.
78
+ pixel_values (torch.Tensor): Optional input pixel values to generate with.
77
79
 
78
80
  Returns:
79
81
  The tensor of response token IDs with shape of (batch_size=1,
@@ -90,16 +92,18 @@ class ReauthoredModelWrapper(ModelWrapper):
90
92
  model: torch.nn.Module,
91
93
  mask_as_input: bool = False,
92
94
  kv_layout: kv_utils.KVLayout = kv_utils.KV_LAYOUT_DEFAULT,
95
+ kv_cache_max_len: int = 1280,
93
96
  ):
94
97
  """Wraps a reauthored model with some options."""
95
98
  super().__init__(model)
96
99
  self.mask_as_input = mask_as_input
97
100
  self.kv_layout = kv_layout
101
+ self.kv_cache_max_len = kv_cache_max_len
98
102
 
99
103
  def _init_kv_cache(self):
100
104
  """Returns an initialized KV cache."""
101
105
  return kv_utils.KVCache.from_model_config(
102
- self.model.config, kv_layout=self.kv_layout
106
+ self.kv_cache_max_len, self.model.config, kv_layout=self.kv_layout
103
107
  )
104
108
 
105
109
  def _get_extra_args_for_forward(self) -> dict[str, Any]:
@@ -108,9 +112,10 @@ class ReauthoredModelWrapper(ModelWrapper):
108
112
 
109
113
  def _build_mask(self, input_pos: torch.Tensor) -> torch.Tensor:
110
114
  """Builds a mask for the model."""
111
- kv_cache_max_len = self.model.config.kv_cache_max_len
112
115
  mask = torch.full(
113
- (len(input_pos), kv_cache_max_len), float("-inf"), dtype=torch.float32
116
+ (len(input_pos), self.kv_cache_max_len),
117
+ float("-inf"),
118
+ dtype=torch.float32,
114
119
  )
115
120
  return torch.triu(mask, diagonal=input_pos[0] + 1).unsqueeze(0).unsqueeze(0)
116
121
 
@@ -204,7 +209,7 @@ def verify_with_input_ids(
204
209
  original_model: ModelWrapper,
205
210
  reauthored_model: ReauthoredModelWrapper,
206
211
  input_ids: List[int],
207
- kv_cache_max_len: int = 128,
212
+ total_seq_len: int = 128,
208
213
  rtol: float = 1e-05,
209
214
  atol: float = 1e-05,
210
215
  ):
@@ -217,7 +222,7 @@ def verify_with_input_ids(
217
222
  reauthored_model (ReauthoredModelWrapper): The model reauthored with
218
223
  ai_edge_torch Generative API.
219
224
  input_ids (List[int]): The input token IDs to forward with.
220
- kv_cache_max_len (int): The maximum sequence length of the KV cache.
225
+ total_seq_len (int): The total sequence length of the input.
221
226
  rtol (float): The relative tolerance for the comparison.
222
227
  atol (float): The absolute tolerance for the comparison.
223
228
 
@@ -225,7 +230,7 @@ def verify_with_input_ids(
225
230
  AssertError if the model reauthored fails to generate the same output of the
226
231
  original.
227
232
  """
228
- tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
233
+ tokens = torch.full((1, total_seq_len), 0, dtype=torch.int, device="cpu")
229
234
  tokens[0, : len(input_ids)] = torch.tensor([input_ids]).int()
230
235
 
231
236
  logging.info("Forwarding the original model...")
@@ -323,6 +328,11 @@ def verify_reauthored_model(
323
328
  atol (float): The absolute tolerance for the comparison.
324
329
  continue_on_failure (bool): If True, it continues to verify the next prompt
325
330
  or input IDs even if a previous one fails.
331
+ verify_inputs (bool): If True, it verifies the model with forward_input_ids.
332
+ verify_prompts (bool): If True, it verifies the model with generate_prompts.
333
+
334
+ Returns:
335
+ True if all verification passes, False otherwise.
326
336
  """
327
337
  failure_count = 0
328
338
 
ai_edge_torch/version.py CHANGED
@@ -15,4 +15,4 @@
15
15
 
16
16
  # The next version of ai-edge-torch.
17
17
  # The minor version code should be bumped after every release.
18
- __version__ = "0.6.0.dev20250602"
18
+ __version__ = "0.6.0.dev20250603"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-torch-nightly
3
- Version: 0.6.0.dev20250602
3
+ Version: 0.6.0.dev20250603
4
4
  Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-torch
6
6
  Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=lemyLCNoGYRnJsmDuGZu7qOqLbLqG6CGDFtu3ue1syU,129
2
2
  ai_edge_torch/_config.py,sha256=AiqhbcheF7j_ozIGDLC89k1we95aVgFDa-tR6h7UI0s,2529
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/model.py,sha256=A7loFu8jE9CsXsfMmHYZ-KDFJiaD8Kkqwm_9d3IVzk0,5638
5
- ai_edge_torch/version.py,sha256=I_n5QeU4InMXQb0TjnX07oTycOaOlHWKNYGq6vVOnqg,806
5
+ ai_edge_torch/version.py,sha256=f6FvzLfBr0rauYb71ctwa8qlWkafgMxM73v4jYRgUzY,806
6
6
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
7
7
  ai_edge_torch/_convert/conversion.py,sha256=iQk3R-pLq4c1nfLqPB4xTRj78gghxPGzJCJtILLdg5o,6123
8
8
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -53,89 +53,89 @@ ai_edge_torch/generative/custom_ops/bmm_4d.py,sha256=JmVbZCujG_wuBchma8QF3DSBfVc
53
53
  ai_edge_torch/generative/custom_ops/dynamic_update_slice.py,sha256=ZGAq2CfWZsfef5mHulsWmyUx0dDWJX6J6xPjhBrjQdM,2097
54
54
  ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
55
55
  ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
56
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=PTKcl-CHQnzExQSfrwG9YC0KPc8zomG7WlPabXtZLx4,2910
57
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=s2f5TJos6rSgogqeFk0qsOpI30qsR04umk9hAAZ5918,1782
56
+ ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=Z2oUQ--pXPgNQyGLdWDNdyC90cSZzDN9YnSclRrPWAg,2703
57
+ ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=ze0MPZsUJpIBSCMJB4BrnJT5MFomRcffvuZEqKG20AM,1848
58
58
  ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=uyBg5-trxQEjEHDZMX4qojkcsZgERUiPqIgR9n0_AY4,1311
59
59
  ai_edge_torch/generative/examples/amd_llama_135m/verify_util.py,sha256=OJTjULdz-8LVd5DhmX8isxUI1PzhE-dQLj7--5DHfJ8,2961
60
60
  ai_edge_torch/generative/examples/deepseek/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
61
- ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py,sha256=xTPfT3Mt_4bMfGkrqDKatLecZOuaE0WhxXs3uAsO_uU,1749
62
- ai_edge_torch/generative/examples/deepseek/deepseek.py,sha256=9gUnK1IOifQyYpm03f64Mzg-afwbYY9kVWz6-ynq8zY,3014
61
+ ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py,sha256=DvoHDBNc0GPW3kOv0TbGg0PnNTKijW_6z9LfQMku3RY,1816
62
+ ai_edge_torch/generative/examples/deepseek/deepseek.py,sha256=cm3rLw6aHFWQswwCqfvwxr05JG0maSzNVn1pBqD19qY,2816
63
63
  ai_edge_torch/generative/examples/deepseek/verify.py,sha256=HkvgEyGb-V_f6mWfyeN7Ai5uADAVQNzWvkygaKJiLAc,1344
64
64
  ai_edge_torch/generative/examples/deepseek/verify_util.py,sha256=jui_16J0C0VhICGBJDiO7Br5l5QCrhm-AohXYuUyyqQ,2971
65
65
  ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
66
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=t2qZTjyM2imPenb14fzbQ-CHj5Cejw4M5xfEZpgX6Uc,1748
67
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=Yj-b4S9BNxArnGjruRIymCiWrlf7ZvwiG6keTVGldk4,1816
68
- ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=wV_tr51UIwiKki8u5i-Q2YFvKYpTIIXEdUKFbdbMhRo,3621
69
- ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=b3zCFOjeU6T7K2PLUBABurpf7UjRIsGKkOym1wRuJOg,11630
66
+ ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=m5N3MxNX4Yu8-0vXRszkMgfVuFKN6gskVoUIGqonJFk,1814
67
+ ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=fR4869w1UZIuUVGLDdPof0IDEMDhqn2ej5kl7QW9vNA,1882
68
+ ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=TH9XQAp5p4S829XbaWbJQZBwB18WizDRIQMsUkKqj38,3377
69
+ ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=E6jotWYYIx6SXUWqurKWjiZpbfj_M2jJrBc2rQ90z1s,11782
70
70
  ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
71
71
  ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=jhiyinOqPt5ZZjEadDRZt_wY5fiLSCpMo54PcxFaL_Q,1789
72
72
  ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=bbbdwuP4DKekvVuWHZ-jYYOQISto5ZkK1hC0r1Vhq00,7907
73
73
  ai_edge_torch/generative/examples/gemma3/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
74
- ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py,sha256=wOrOV_jxCnjrhjC8X0-uIi0D-4aQjOfXw6XaxTSrM9k,2048
75
- ai_edge_torch/generative/examples/gemma3/decoder.py,sha256=GC22bZRTtO8IczccYpqh5nSE0FHJK3I0M9oaofrr-Ss,15344
76
- ai_edge_torch/generative/examples/gemma3/gemma3.py,sha256=CPk3VJUobga0MVVIVRyWhdsrlCBWdQgF5kdSw7Yo--Y,6543
74
+ ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py,sha256=UEDNN3JmI31WfE2pvacxeJpqumKK86L2dEus3yTURaY,2114
75
+ ai_edge_torch/generative/examples/gemma3/decoder.py,sha256=1UVv9SFFg5degX3wf-Fefx7nor1AzJj2NWBVuo8bRnM,15540
76
+ ai_edge_torch/generative/examples/gemma3/gemma3.py,sha256=fFMyIS8si3GdwW8EsdhYk1OKyg_27xDv1HTQ2Gv4N8E,6616
77
77
  ai_edge_torch/generative/examples/gemma3/image_encoder.py,sha256=tUOI99kdny33qcDM7-z0R6F-1aU1lZ24kG5zeLVdwow,5129
78
78
  ai_edge_torch/generative/examples/gemma3/verify_gemma3.py,sha256=v8oNXFICmVOtQxfO7IhZ8GnbvotEkDi9lzYHjoQyOso,2464
79
79
  ai_edge_torch/generative/examples/gemma3/verify_util.py,sha256=ZgoocQSTJqFEYbNNvBaO0Be4_bgSUEnihVm47mCTzTg,9864
80
80
  ai_edge_torch/generative/examples/hammer/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
81
- ai_edge_torch/generative/examples/hammer/convert_to_tflite.py,sha256=XLmPuJCBJjKzMTG-mRmBX92juep2zl5yYeMrEhdqQQk,1975
82
- ai_edge_torch/generative/examples/hammer/hammer.py,sha256=aiGRdmJbtcePRde7l_Vte61rPh_4F-zcxNuGtg_ceTY,3649
81
+ ai_edge_torch/generative/examples/hammer/convert_to_tflite.py,sha256=BujBJml_ShWpKJyUgKAJqV4C6yd1uODjKg8fOgchPKI,2041
82
+ ai_edge_torch/generative/examples/hammer/hammer.py,sha256=0fz6LmZLXrVyty6w5T6LWRoqvQ-5XYREH6gFzB_gOu0,3737
83
83
  ai_edge_torch/generative/examples/hammer/verify.py,sha256=iuKFMkI1VZc9_ESUQr32cHWHsDtYOAF702TdqhD3Ns4,1589
84
84
  ai_edge_torch/generative/examples/hammer/verify_util.py,sha256=OtmLYBd2AlliSqj_5rNZokfwoXt2pBwwjJAYRv_dKNg,2905
85
85
  ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
86
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=4qnMyvJHqhqf9k01wEsO23BKo6tSy2KD7sHdTGimKGg,1957
87
- ai_edge_torch/generative/examples/llama/llama.py,sha256=eWPFnuSxhjuk5XZmvtndu_Z1-e9NlZg7-uFfiOqJXfw,6952
86
+ ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=K-hke37VBMWakuqCeRmpaZBujGWRykDIaUBKJQ0nI5g,2022
87
+ ai_edge_torch/generative/examples/llama/llama.py,sha256=PpC3idSFSATjQzcLv8oXwo66_5zU-B_np2YVAs2Naog,6602
88
88
  ai_edge_torch/generative/examples/llama/verify.py,sha256=XoF_-kxdryjt0Bt_YeHnIbLfjwFxSVioTSEG75moDr8,1581
89
89
  ai_edge_torch/generative/examples/llama/verify_util.py,sha256=JIAkG7TEaR_5scibyM-zgS9G2KrIfUBgX4vHDJwmaBo,3019
90
90
  ai_edge_torch/generative/examples/moonshine/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
91
91
  ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py,sha256=_GkaSkregS3NWN38UGXxj4pED5gtQGaaPZx5_CZ0TVM,1657
92
92
  ai_edge_torch/generative/examples/moonshine/moonshine.py,sha256=nZ2b8u4TmsB5sgdClgAuH8E78bcTv9RCnF9666HqP2M,3394
93
93
  ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
94
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=S7OP8PJcOQbm8AHvi_Tc3qnQuVOtjMFNlwaZQ_oirUM,1747
95
- ai_edge_torch/generative/examples/openelm/openelm.py,sha256=R_E0hXsg6l8ANEgBBy0R8egz3p4ONJvBmPWs6sXx63M,4692
94
+ ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=C5KEMMle8v6yZWrJPYoN-1CAjeZv7GQEJvyL28DeEYs,1813
95
+ ai_edge_torch/generative/examples/openelm/openelm.py,sha256=Zfoe0VzNHiCK3CIlp0UYzxxJuE9yZXrSCb84S24LMM0,4448
96
96
  ai_edge_torch/generative/examples/openelm/verify.py,sha256=kRoNEUEsrz51PFSeTPcrYsPBQRLtUmYM3t_-Jl0oFqM,1300
97
97
  ai_edge_torch/generative/examples/openelm/verify_util.py,sha256=arX-ZGWVFfsyZ7n_V8ivaw8fqpmK3CmcxfsS0b1pOBY,2913
98
98
  ai_edge_torch/generative/examples/paligemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
99
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=Fl4k-lcpiUaJS0A1E7HVVUW7iTcZAU4FbA4KcSkO5SQ,2212
100
- ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=GLlfbJr3ZIzmH643IwXyrG54qKEYMPRsvhU6gXXi7yg,5490
101
- ai_edge_torch/generative/examples/paligemma/decoder2.py,sha256=mSqB-E7JHjwhaEf1p2STxc5DWLKAGE47GTAwtM0EyDU,6039
99
+ ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=qwxnytRMcAYlSe2Ll3TvhB05YozEVnkARQhlaaQ2UHI,2278
100
+ ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=XRilFiLrRoWboKM6ptowtRGscek7TqSOM9YyWNhpldA,5298
101
+ ai_edge_torch/generative/examples/paligemma/decoder2.py,sha256=Y3CLRFs3W9JSNFYCMO-CYd7iyA57b2cUnitGhB0RAbo,5847
102
102
  ai_edge_torch/generative/examples/paligemma/image_encoder.py,sha256=V0RrkocOe-y2EDvcg8DMcSpWzzHUruQAEofHn20Jw7M,5589
103
- ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=nxvcurGkFJcCjjgVkK59SJgp8mZ71D56bEnrjvGgPs4,6264
103
+ ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=83MHNqbdza4j1CWWusVC6upKxJonzFfpBTqW0S6iBtg,6323
104
104
  ai_edge_torch/generative/examples/paligemma/verify.py,sha256=myHdeIAtVTOqb915h661CnvjvFkwmihy3Vp4UrKHb5I,6195
105
105
  ai_edge_torch/generative/examples/paligemma/verify_decoder.py,sha256=al5wMPWri4IRVWrLmCplPi6uoCzwh0vBHMGnCt-XUqo,2690
106
106
  ai_edge_torch/generative/examples/paligemma/verify_decoder2.py,sha256=tm-UfLr0YeBRVcQsWLBOMWI9JUzHmtPEbYK2vpITpqY,2534
107
107
  ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py,sha256=vNm-wTT8BD6zbX6GocfP1QrVoHl0zSvuVxoXN36eeiU,3540
108
108
  ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
109
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=kYgZAIHXolUhOyDAYDuEK7RZ5ExL1YzpqtlcZjo622c,1736
110
- ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py,sha256=3y3vYlJjLjRmz4Vsq-B8YKyp0LnC2fj1LAACW3pQivI,1734
111
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=tY5uwRu-4Jxro7Z9jsDqZR9SUDWB8PR6JKfswvsUSxM,1735
112
- ai_edge_torch/generative/examples/phi/phi2.py,sha256=RprdXLbdG5lDOAgN4xolZZwp74vbRHHuf_-CzjnI5cA,3602
113
- ai_edge_torch/generative/examples/phi/phi3.py,sha256=LW1E0C7A3IIyB5CLbVt914YJB4Fx6mbXh4xXibDHA2w,7054
114
- ai_edge_torch/generative/examples/phi/phi4.py,sha256=ZHA0Rq7ifgxiHC_8PJf-y7WCA7i_2SlsiGibyOMBP4s,5837
109
+ ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=th7EYY2NmT4qLMtQsEIU697sGhwZi24V8OwB6xZRHEw,1802
110
+ ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py,sha256=OkqJXktzNb8VO4_gNSl1iKIXBDMx0McCOxnoEUrq_B4,1800
111
+ ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=Ff0A2NOpcmwGi87AWdQ4X2ZXeALQVzVvAGdnBzcZgVY,1801
112
+ ai_edge_torch/generative/examples/phi/phi2.py,sha256=CyqXhCcegY7mcsuRBg8-aXvOHTK4PZufGKBWb0mgcNE,3361
113
+ ai_edge_torch/generative/examples/phi/phi3.py,sha256=lO9vVCTqtbVZuSjJGRlmYrh5ZmLPfrqg7RXgTsqtggg,6811
114
+ ai_edge_torch/generative/examples/phi/phi4.py,sha256=n-LLniR-Q3Nyz4JCTvKZe9hBHVWBGtIBQdqe7_6xAyM,5596
115
115
  ai_edge_torch/generative/examples/phi/verify.py,sha256=fIWgqypLQ3uOQ1u5uuklYiQSJPhKCTYIBACjrp7DbMA,1346
116
116
  ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=TwIu2xUPQyMUTFdz29E2y75wfq4c1fGJnT3QfA3eS1s,1347
117
117
  ai_edge_torch/generative/examples/phi/verify_phi4.py,sha256=2MlgQrfRkhE7Dya8MIixGwpqEZYdPjQkUGB47Mt1hSI,1343
118
- ai_edge_torch/generative/examples/phi/verify_util.py,sha256=yIfeGP-VJ9CpeOxzhUe0tDCwMSriQVMGOWXEBxJRYcs,3069
118
+ ai_edge_torch/generative/examples/phi/verify_util.py,sha256=30l5EJGcAR8u7yOPc7uQHzRxZaUIfBooZJoPdlMou9c,2980
119
119
  ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
120
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=TnzyARHQgmWeOdYsV9WpRj5vhKGBH0kAbp3tMj8ZCYw,1998
121
- ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py,sha256=GVV8CVj3rdgt_ZTOlpLSa6AD1pMMpMnZEuowzN2AIGM,2004
122
- ai_edge_torch/generative/examples/qwen/qwen.py,sha256=EcIHVeBcJLc290TiPkPfE7jdG_VXZYKlVGf0XQXzqo8,4554
123
- ai_edge_torch/generative/examples/qwen/qwen3.py,sha256=g6aVHjnlPo4YhLjSdXxONaDcKT3fZOh8cewlvf3cfoQ,5554
120
+ ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=XQee8T78I4CqFghZw6sSsrtryWcA_NlOzg2wMfHzHwY,2064
121
+ ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py,sha256=P10_5tnuvjXNYyWTp0Fzzj-8moFWyONDBhcGi2yvdp4,2070
122
+ ai_edge_torch/generative/examples/qwen/qwen.py,sha256=VrrTS83q1Fzp34SjUf0pFiCoMwXehF7VJCZjbxbQ5vA,4332
123
+ ai_edge_torch/generative/examples/qwen/qwen3.py,sha256=cJcN5nH-yAglKtm5Yc5NsLMQvkJ4Drz_IsQJzS91Veo,5329
124
124
  ai_edge_torch/generative/examples/qwen/verify_qwen2.py,sha256=ry-c2QesH-0KnrSQygfjUFs6d4kOFvJz2ts_8mP156I,1659
125
125
  ai_edge_torch/generative/examples/qwen/verify_qwen3.py,sha256=hmE0gdyzgcDpEDcWiwOzKQcxt4XeAe9DPRspy_I-lc8,1628
126
126
  ai_edge_torch/generative/examples/qwen/verify_util.py,sha256=9XhDQyIHFoJ6BYota1lIzwsBrN7t_Mtugpgbjgv17Gg,3277
127
127
  ai_edge_torch/generative/examples/qwen_vl/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
128
- ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py,sha256=BM-ed7KrmPwzI3MvDs2R7P-kJgE1SK_cNVqIfXhtJjs,2411
129
- ai_edge_torch/generative/examples/qwen_vl/decoder.py,sha256=plOi-3LltxReW_HVxhxwee_rYCQq-gsOwbGZtRsM8N8,4443
128
+ ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py,sha256=aC7ONr9hoQMGtbvfq_JBqGhSD6UYHT6fmMYdKp6dkh8,2477
129
+ ai_edge_torch/generative/examples/qwen_vl/decoder.py,sha256=xmRDK3fmyNnY5GlHStIymYJZDUNFyjH8OjPoPxNlAKk,4307
130
130
  ai_edge_torch/generative/examples/qwen_vl/image_encoder.py,sha256=nuAHb-RXqTffpwjwCHOd_2mCrSMwL6Q1z_yjsU64gmI,14992
131
- ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py,sha256=1Ac28olo0OJExZRyxqm7vxcf7GtXdkUwEbHvhiCHi0o,7908
131
+ ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py,sha256=ILxGsI1u4yYlrWTK63yEdsxomdssVrSv7XLxWIU9mqQ,7870
132
132
  ai_edge_torch/generative/examples/qwen_vl/verify.py,sha256=4WKgAFQNQzwmeJhC8ayI5vjGj9ko6VcU2HA3VAkhHug,5812
133
133
  ai_edge_torch/generative/examples/qwen_vl/verify_decoder.py,sha256=xPWoOBLh2eK12KEhELLYymfL7xvc0chmYC98c6x37oo,2602
134
134
  ai_edge_torch/generative/examples/qwen_vl/verify_image_encoder.py,sha256=PZ392nDoJG2OmHZ_7Jet3Zu1JkN6QErxKcDc7a-PPds,3126
135
135
  ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
136
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=QVRX_ovqBQi8fKAG6PezaO1qoRvMGpVxNH-_sds0pf8,1997
137
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py,sha256=rOVYSaS68_otJcGewQSconBCPD4GhDEIIyquD4dSUWc,1979
138
- ai_edge_torch/generative/examples/smollm/smollm.py,sha256=nQRiq6phJbtl3GAEEsJ_bPP_zrpQmiPumNEWCRrECn0,4028
136
+ ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=CsXboOmzk2GB506a-Je-Js-XFlUmikVX7dhBFQAmiUs,2040
137
+ ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py,sha256=2BFScI1RbpK3YqJcsvacGz9haKR_gwGsSNHfYmlOvNg,2045
138
+ ai_edge_torch/generative/examples/smollm/smollm.py,sha256=3QbVefwSlFjhze7ju3P6xgMex2d1AJpF6Ii_qlbfJ34,3656
139
139
  ai_edge_torch/generative/examples/smollm/verify.py,sha256=tXiAnwOnqgwyoa8dI4tCBiGUXkOMfdE9MUkkY_Bc4Ig,1603
140
140
  ai_edge_torch/generative/examples/smollm/verify_util.py,sha256=_Z5jtNzQnULeWrXWC1LIpEawKwL_wA1_FtRc6A4-s4k,3019
141
141
  ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
@@ -155,15 +155,15 @@ ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py,sha256=ZE6H
155
155
  ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py,sha256=RxR5rw0wFFm_5CfAY-3-EIz83vhM9EKye8Bb5zBb0Ok,1341
156
156
  ai_edge_torch/generative/examples/t5/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
157
157
  ai_edge_torch/generative/examples/t5/convert_to_tflite.py,sha256=HHtZTtUh3QgE4F74-ru_8n1pt6cqfbObw12xoaMJ7NQ,4596
158
- ai_edge_torch/generative/examples/t5/t5.py,sha256=aL-wDJDea9qbIe__oyKbK3g1p1xHq9-_88QsF95-JUs,21251
159
- ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqXquaFQPvCFBFF5zOnmGVb3Hg,8731
158
+ ai_edge_torch/generative/examples/t5/t5.py,sha256=0P3jyvQy3RmiTBRsL0aOKcrsLKfkjIQXxDQJd8wpHAY,21225
159
+ ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=hIeQt1SQuwqkImspPsdRPYFhTgV4YqdMRT5Zy29braI,8729
160
160
  ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
161
161
  ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
162
162
  ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=s3l__g3l0DpgXEPs1ikcJqSS7OfWzgYdkOLnEwdjcUo,5257
163
163
  ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=rVTaNQxlf3-mv9e6s33V9CDd_cmVwPti1A3ARUAwSD4,4766
164
164
  ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
165
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=urWkWjOaGzV2gwMXoGEs1mfHNEXfEKgwuXmQ0lrWcbM,1761
166
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=cVNP_a_3UBML0j9ITtcITeVXqCdcC7U1JoYwir09Dk8,2936
165
+ ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=dYqb9OhpZUBIdww1lUdMjFhEo3IYhpvitvrZfO0uGSs,1827
166
+ ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=fRuPLHwZu8Am8h0Y3dT5_1vsCEnm6euGWB_KHc3xBXk,2735
167
167
  ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=qzUsW8tJlAD9mqRxDSAcz5xSUKNlBz_DykA3PwUHMwc,1336
168
168
  ai_edge_torch/generative/examples/tiny_llama/verify_util.py,sha256=AxJeLbpDfKN-ztHYTr2qjoTpWQ-n9yeqYKhorFEBzLs,2937
169
169
  ai_edge_torch/generative/fx_passes/__init__.py,sha256=PFSMsA1vfBfrV9ssBCkYJNl8Hx_bLdWjN01iyjPM5jE,1094
@@ -178,9 +178,9 @@ ai_edge_torch/generative/layers/einsum.py,sha256=EsZSWNVWUs0-1plp4TBnhP4ZhaRDBa2
178
178
  ai_edge_torch/generative/layers/einsum_test.py,sha256=ltIE773bvvNLv_9aLQxFwe1MgQ762sez0c5E2tejxuA,1079
179
179
  ai_edge_torch/generative/layers/feed_forward.py,sha256=_GmtHxwL068l9gh_F_WFcFk7La-Tl5SfoQ9v2hMabZM,5541
180
180
  ai_edge_torch/generative/layers/feed_forward_test.py,sha256=Y5l1eC9NgfYixHcfIfE1W4FGh7oC-9UGGyHdKS9tQKc,1880
181
- ai_edge_torch/generative/layers/kv_cache.py,sha256=b-7shzDaKexmvQF7P3SiAmIz4ZofjYWv3m5u71GojsA,10460
181
+ ai_edge_torch/generative/layers/kv_cache.py,sha256=A0IFXZ1HD2ZHOWRLfsDO4almgE0KQfjyBOdBFZIGnAs,10893
182
182
  ai_edge_torch/generative/layers/lora.py,sha256=hsvWLLOnW7HQ0AysOZu30x_cetMquDd1tjfyLz8HCSU,17892
183
- ai_edge_torch/generative/layers/model_config.py,sha256=gGr6SZzgFVRXemfXwX__TZ0OXgAFnU70M6U0eql06TE,10712
183
+ ai_edge_torch/generative/layers/model_config.py,sha256=HP-vu1UmAiTmdLlTyZGDUF3le0gji8a61mLCy966NZw,10261
184
184
  ai_edge_torch/generative/layers/normalization.py,sha256=ijwCpi22NLX-Sygwy5sK9l9WjGvbPIhZvVwoBAonWAo,7014
185
185
  ai_edge_torch/generative/layers/normalization_test.py,sha256=zwurZly-TgFxdgVVdpzu9vCpcLbd5RYt_gKg9Lfg1jI,2248
186
186
  ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=975zR202MdIrILJ7blceAcxrNqX1ZCN0ECKG1gz-bV8,2655
@@ -200,25 +200,25 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=45DJfcQXZ1FA1qI4LgYoYE
200
200
  ai_edge_torch/generative/quantize/supported_schemes.py,sha256=TwR2FpQuBEORy6FshEyHNBMKARWlA2MVtTfX9tXV5aE,1488
201
201
  ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
202
202
  ai_edge_torch/generative/test/test_custom_dus.py,sha256=MjIhTvkTko872M35XMciobvICcDWTcIDJ3rociko-wM,3267
203
- ai_edge_torch/generative/test/test_kv_cache.py,sha256=1sXN2RPntq0PP3IEy0NkvIbzQ0Y8JhPIwRSFwO9JLlE,5728
203
+ ai_edge_torch/generative/test/test_kv_cache.py,sha256=zVocQZTORIROwSYVMmy5KGPDl6kTuEGko7L1PTkua8g,5568
204
204
  ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
205
- ai_edge_torch/generative/test/test_lora.py,sha256=6QIM6RLTc2HrodGpp_aS3OxM9Rco2KAzEnYgotkg41M,5310
206
- ai_edge_torch/generative/test/test_model_conversion.py,sha256=mhNJikLnGVGi9NKmXB8FhnqeDy9gtrvC3yEbrTABZ4Y,6163
207
- ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=vQWmpzMkJ2hPmWpg41ZMWwBsngTykRVzRPHtpbkwiLM,12811
205
+ ai_edge_torch/generative/test/test_lora.py,sha256=sKnBixmGIXHUtOwh3SA4MIFenPbjK2n-Xknwic_KMDQ,5046
206
+ ai_edge_torch/generative/test/test_model_conversion.py,sha256=T35zdzag2-nmy4qc6AifAjbDXAHU2vyLTE1QCabYBzk,6298
207
+ ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=NkEwrjO8vIcde3XwanpFBhNIw1GSOyJFKNjlvSJmVMY,13271
208
208
  ai_edge_torch/generative/test/test_quantize.py,sha256=kKJ01wscTC2t_Ylr7huO5gNKES01gm3dT1gx52z15PA,7356
209
209
  ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
210
210
  ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
211
- ai_edge_torch/generative/utilities/converter.py,sha256=DuoPb8Uhbxa32uUvr6grV5lssmUJdx298QwYz8cG_1Y,15512
211
+ ai_edge_torch/generative/utilities/converter.py,sha256=TKHUuC0b6swR3dYyijLz_IDCdmCKQJUT-nvXFO5M-0U,15885
212
212
  ai_edge_torch/generative/utilities/export_config.py,sha256=qjkEbjcvi2AgQikZS5qfgR95Z5z9pm07KX-RN5ibfNE,2280
213
213
  ai_edge_torch/generative/utilities/loader.py,sha256=drgKBmNibuc3PCdc0kU0pVcp2Nt1_mjLYh67RyXOn7U,15952
214
- ai_edge_torch/generative/utilities/model_builder.py,sha256=tBfOcsI_NcneggHqkCSydYN3ZgmkzPc6nW0AJrA81wI,6461
214
+ ai_edge_torch/generative/utilities/model_builder.py,sha256=xBvcTxihB9TN88UtQiXA9sAITQgf-pA77R-VZlLgUeU,6950
215
215
  ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
216
216
  ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
217
217
  ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
218
218
  ai_edge_torch/generative/utilities/test_utils.py,sha256=fhUMCMxoeMzxYbOCjNeX5wbQmF6Y88Hi52FtRiZYJAk,1147
219
219
  ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=l54bmmhj613eB2oCoONIAKEHhf8TQOhC9Gwjp6lxHAE,1659
220
220
  ai_edge_torch/generative/utilities/types.py,sha256=gZI9hIPB3XAo4oecKIIoVDfiyibLaSNFhecPFx4VDTM,2913
221
- ai_edge_torch/generative/utilities/verifier.py,sha256=ETO2ShU5KXG7MLP8eVOWuzuRLCUtapafYHcZ6TZHIkw,13061
221
+ ai_edge_torch/generative/utilities/verifier.py,sha256=HQhEpOmUCN2uu6I47um1x2azAa5hy9-kPbEvFUov2zI,13499
222
222
  ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
223
223
  ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=JsVmYrM_JEuN_smMHXUsRlo3Liapp7UyktbPpPARwDk,5386
224
224
  ai_edge_torch/hlfb/mark_pattern/fx_utils.py,sha256=YCtMgu-4w2BQ5fpnlpWC6IauKPf_tVqc7Ff91OTqlSw,1796
@@ -268,8 +268,8 @@ ai_edge_torch/testing/__init__.py,sha256=_yGgvnBZWb7T3IN3mc4x1sS4vM96HZwM8pwIcPG
268
268
  ai_edge_torch/testing/export.py,sha256=k5mGDGzwc23Z4zaIVDs8CNh-oOt64gsf9MS9NjhbPy4,3293
269
269
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
270
270
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
271
- ai_edge_torch_nightly-0.6.0.dev20250602.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
272
- ai_edge_torch_nightly-0.6.0.dev20250602.dist-info/METADATA,sha256=wEcieZU4keI3NxQdBcxmM01rrDF62Zqr07p_9OahjHY,2074
273
- ai_edge_torch_nightly-0.6.0.dev20250602.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
274
- ai_edge_torch_nightly-0.6.0.dev20250602.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
275
- ai_edge_torch_nightly-0.6.0.dev20250602.dist-info/RECORD,,
271
+ ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
272
+ ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/METADATA,sha256=3c68vDxxobFxHDgitrg9QPmEUuuN4_jNi7dZap5mcio,2074
273
+ ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
274
+ ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
275
+ ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/RECORD,,