ai-edge-torch-nightly 0.6.0.dev20250602__py3-none-any.whl → 0.6.0.dev20250603__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +7 -15
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py +3 -1
- ai_edge_torch/generative/examples/deepseek/deepseek.py +7 -15
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/gemma/gemma1.py +8 -16
- ai_edge_torch/generative/examples/gemma/gemma2.py +24 -24
- ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/gemma3/decoder.py +34 -35
- ai_edge_torch/generative/examples/gemma3/gemma3.py +10 -8
- ai_edge_torch/generative/examples/hammer/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/hammer/hammer.py +23 -16
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +2 -2
- ai_edge_torch/generative/examples/llama/llama.py +13 -26
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/openelm/openelm.py +8 -16
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/paligemma/decoder.py +12 -17
- ai_edge_torch/generative/examples/paligemma/decoder2.py +12 -17
- ai_edge_torch/generative/examples/paligemma/paligemma.py +14 -9
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/phi/phi2.py +8 -16
- ai_edge_torch/generative/examples/phi/phi3.py +8 -16
- ai_edge_torch/generative/examples/phi/phi4.py +8 -16
- ai_edge_torch/generative/examples/phi/verify_util.py +1 -3
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/qwen/qwen.py +29 -34
- ai_edge_torch/generative/examples/qwen/qwen3.py +29 -35
- ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/qwen_vl/decoder.py +11 -16
- ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py +8 -12
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +2 -2
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/smollm/smollm.py +15 -30
- ai_edge_torch/generative/examples/t5/t5.py +23 -23
- ai_edge_torch/generative/examples/t5/t5_attention.py +2 -2
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +2 -1
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +7 -15
- ai_edge_torch/generative/layers/kv_cache.py +13 -1
- ai_edge_torch/generative/layers/model_config.py +0 -14
- ai_edge_torch/generative/test/test_kv_cache.py +14 -24
- ai_edge_torch/generative/test/test_lora.py +4 -21
- ai_edge_torch/generative/test/test_model_conversion.py +8 -4
- ai_edge_torch/generative/test/test_model_conversion_large.py +27 -19
- ai_edge_torch/generative/utilities/converter.py +15 -6
- ai_edge_torch/generative/utilities/model_builder.py +16 -6
- ai_edge_torch/generative/utilities/verifier.py +16 -6
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/RECORD +57 -57
- {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.6.0.dev20250602.dist-info → ai_edge_torch_nightly-0.6.0.dev20250603.dist-info}/top_level.txt +0 -0
@@ -129,6 +129,11 @@ def define_conversion_flags(
|
|
129
129
|
return flags
|
130
130
|
|
131
131
|
|
132
|
+
def get_mask_cache_size_from_flags() -> int:
|
133
|
+
"""Returns the mask cache size according to the flags."""
|
134
|
+
return 0 if flags.FLAGS.mask_as_input else flags.FLAGS.kv_cache_max_len
|
135
|
+
|
136
|
+
|
132
137
|
def get_quant_recipe_from_flag(
|
133
138
|
quantize: str,
|
134
139
|
model_config: cfg.ModelConfig,
|
@@ -211,6 +216,7 @@ def convert_to_tflite(
|
|
211
216
|
output_path: str,
|
212
217
|
output_name_prefix: str,
|
213
218
|
prefill_seq_len: Union[int, list[int]],
|
219
|
+
kv_cache_max_len: int,
|
214
220
|
pixel_values_size: torch.Size = None,
|
215
221
|
pixel_seq_len: int = 0,
|
216
222
|
quantize: str = 'dynamic_int8',
|
@@ -253,6 +259,8 @@ def convert_to_tflite(
|
|
253
259
|
output_name_prefix (str): The prefix of the tflite model name.
|
254
260
|
prefill_seq_len (Union[int, list[int]]): The prefill sequence length to
|
255
261
|
use. If a list, the model will have multiple prefill signatures.
|
262
|
+
kv_cache_max_len (int): The maximum size of KV cache buffer, including
|
263
|
+
both prefill and decode.
|
256
264
|
pixel_values_size (torch.Size, optional): The size of pixel values to pass
|
257
265
|
to the model. If None, the model is not expected to take pixel values.
|
258
266
|
pixel_seq_len (int, optional): The length of pixel tokens, or pixel
|
@@ -282,7 +290,7 @@ def convert_to_tflite(
|
|
282
290
|
loras.append(lora)
|
283
291
|
|
284
292
|
quant_suffix = create_quantize_suffix(quantize)
|
285
|
-
kv_size =
|
293
|
+
kv_size = kv_cache_max_len
|
286
294
|
lora_suffix = (
|
287
295
|
'' if not lora_ranks else f'_lora{",".join(map(str, lora_ranks))}'
|
288
296
|
)
|
@@ -309,6 +317,7 @@ def convert_to_tflite(
|
|
309
317
|
pytorch_model,
|
310
318
|
output_file,
|
311
319
|
prefill_seq_lens,
|
320
|
+
kv_cache_max_len,
|
312
321
|
pixel_values_size,
|
313
322
|
pixel_seq_len,
|
314
323
|
quantize,
|
@@ -322,6 +331,7 @@ def _export_helper(
|
|
322
331
|
pytorch_model: torch.nn.Module,
|
323
332
|
output_file: str,
|
324
333
|
prefill_seq_lens: list[int],
|
334
|
+
kv_cache_max_len: int,
|
325
335
|
pixel_values_size: torch.Size,
|
326
336
|
pixel_seq_len: int,
|
327
337
|
quantize: str,
|
@@ -352,9 +362,7 @@ def _export_helper(
|
|
352
362
|
prefill_masks = None
|
353
363
|
if export_config.mask_as_input:
|
354
364
|
prefill_masks = _build_mask(
|
355
|
-
prefill_seq_lens,
|
356
|
-
config.kv_cache_max_len,
|
357
|
-
config.causal_mask_value,
|
365
|
+
prefill_seq_lens, kv_cache_max_len, config.causal_mask_value
|
358
366
|
)
|
359
367
|
if not isinstance(prefill_masks, list):
|
360
368
|
prefill_masks = [prefill_masks]
|
@@ -365,9 +373,10 @@ def _export_helper(
|
|
365
373
|
)
|
366
374
|
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
367
375
|
prefill_kv = kv_utils.KVCache.from_model_config(
|
368
|
-
config, kv_layout=export_config.kvcache_layout
|
376
|
+
kv_cache_max_len, config, kv_layout=export_config.kvcache_layout
|
369
377
|
)
|
370
378
|
decode_kv = kv_utils.KVCache.from_model_config(
|
379
|
+
kv_cache_max_len,
|
371
380
|
config,
|
372
381
|
batch_size=export_config.decode_batch_size,
|
373
382
|
kv_layout=export_config.kvcache_layout,
|
@@ -433,7 +442,7 @@ def _export_helper(
|
|
433
442
|
# torch.triu(mask, diagonal=decode_position).unsqueeze(0).unsqueeze(0)
|
434
443
|
#
|
435
444
|
sample_kwargs['mask'] = _build_mask(
|
436
|
-
1,
|
445
|
+
1, kv_cache_max_len, config.causal_mask_value
|
437
446
|
)
|
438
447
|
if lora is not None:
|
439
448
|
sample_kwargs['lora'] = lora
|
@@ -59,7 +59,7 @@ class DecoderOnlyModel(nn.Module):
|
|
59
59
|
and rotary_percentage are the same for all layers.
|
60
60
|
"""
|
61
61
|
|
62
|
-
def __init__(self, config: cfg.ModelConfig):
|
62
|
+
def __init__(self, config: cfg.ModelConfig, mask_cache_size: int = 0):
|
63
63
|
super().__init__()
|
64
64
|
|
65
65
|
# Construct model layers.
|
@@ -78,10 +78,17 @@ class DecoderOnlyModel(nn.Module):
|
|
78
78
|
self.final_norm = builder.build_norm(
|
79
79
|
config.embedding_dim, config.final_norm_config
|
80
80
|
)
|
81
|
-
self.mask_cache = attn_utils.build_causal_mask_cache(
|
82
|
-
size=config.kv_cache_max,
|
83
|
-
)
|
84
81
|
self.config = config
|
82
|
+
self.build_mask_cache(mask_cache_size)
|
83
|
+
|
84
|
+
def build_mask_cache(self, mask_cache_size: int):
|
85
|
+
assert (
|
86
|
+
mask_cache_size <= self.config.max_seq_len
|
87
|
+
), "Mask cache size must be less than or equal to the max seq length."
|
88
|
+
if mask_cache_size <= 0:
|
89
|
+
self.mask_cache = None
|
90
|
+
else:
|
91
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(mask_cache_size)
|
85
92
|
|
86
93
|
@torch.inference_mode
|
87
94
|
def forward(
|
@@ -108,8 +115,10 @@ class DecoderOnlyModel(nn.Module):
|
|
108
115
|
rope = self.config.build_rope(input_pos, n_elem, attn_config.rotary_base)
|
109
116
|
|
110
117
|
if mask is None:
|
118
|
+
assert self.mask_cache is not None, "Mask cache must be built."
|
119
|
+
assert kv_cache is not None, "KV cache must be provided."
|
111
120
|
mask = self.mask_cache.index_select(2, input_pos)
|
112
|
-
mask = mask[:, :, :, :
|
121
|
+
mask = mask[:, :, :, :kv_cache.get_max_seq_len()]
|
113
122
|
|
114
123
|
return self._forward_with_embeds(
|
115
124
|
input_embeds, rope, mask, input_pos, kv_cache, lora, export_config
|
@@ -162,8 +171,9 @@ def build_decoder_only_model(
|
|
162
171
|
tensor_names: loading_utils.ModelLoader.TensorNames,
|
163
172
|
model_class: type[nn.Module] = DecoderOnlyModel,
|
164
173
|
custom_loader: Callable[[str], Dict[str, torch.Tensor]] = None,
|
174
|
+
mask_cache_size: int = 0,
|
165
175
|
) -> nn.Module:
|
166
|
-
transformer = model_class(config)
|
176
|
+
transformer = model_class(config, mask_cache_size)
|
167
177
|
loader = loading_utils.ModelLoader(
|
168
178
|
checkpoint_path, tensor_names, custom_loader
|
169
179
|
)
|
@@ -53,6 +53,7 @@ class ModelWrapper(torch.nn.Module):
|
|
53
53
|
Args:
|
54
54
|
tokens (torch.Tensor): The input tokens to forward. Its dimension is
|
55
55
|
expected to be (batch_size=1, kv_cache_max_len).
|
56
|
+
pixel_values (torch.Tensor): Optional input pixel values to forward.
|
56
57
|
|
57
58
|
Returns:
|
58
59
|
The output logits.
|
@@ -74,6 +75,7 @@ class ModelWrapper(torch.nn.Module):
|
|
74
75
|
expected to be (batch_size=1, input_ids_len).
|
75
76
|
max_new_tokens (int): The maximum number of response token IDs to
|
76
77
|
generate.
|
78
|
+
pixel_values (torch.Tensor): Optional input pixel values to generate with.
|
77
79
|
|
78
80
|
Returns:
|
79
81
|
The tensor of response token IDs with shape of (batch_size=1,
|
@@ -90,16 +92,18 @@ class ReauthoredModelWrapper(ModelWrapper):
|
|
90
92
|
model: torch.nn.Module,
|
91
93
|
mask_as_input: bool = False,
|
92
94
|
kv_layout: kv_utils.KVLayout = kv_utils.KV_LAYOUT_DEFAULT,
|
95
|
+
kv_cache_max_len: int = 1280,
|
93
96
|
):
|
94
97
|
"""Wraps a reauthored model with some options."""
|
95
98
|
super().__init__(model)
|
96
99
|
self.mask_as_input = mask_as_input
|
97
100
|
self.kv_layout = kv_layout
|
101
|
+
self.kv_cache_max_len = kv_cache_max_len
|
98
102
|
|
99
103
|
def _init_kv_cache(self):
|
100
104
|
"""Returns an initialized KV cache."""
|
101
105
|
return kv_utils.KVCache.from_model_config(
|
102
|
-
self.model.config, kv_layout=self.kv_layout
|
106
|
+
self.kv_cache_max_len, self.model.config, kv_layout=self.kv_layout
|
103
107
|
)
|
104
108
|
|
105
109
|
def _get_extra_args_for_forward(self) -> dict[str, Any]:
|
@@ -108,9 +112,10 @@ class ReauthoredModelWrapper(ModelWrapper):
|
|
108
112
|
|
109
113
|
def _build_mask(self, input_pos: torch.Tensor) -> torch.Tensor:
|
110
114
|
"""Builds a mask for the model."""
|
111
|
-
kv_cache_max_len = self.model.config.kv_cache_max_len
|
112
115
|
mask = torch.full(
|
113
|
-
(len(input_pos), kv_cache_max_len),
|
116
|
+
(len(input_pos), self.kv_cache_max_len),
|
117
|
+
float("-inf"),
|
118
|
+
dtype=torch.float32,
|
114
119
|
)
|
115
120
|
return torch.triu(mask, diagonal=input_pos[0] + 1).unsqueeze(0).unsqueeze(0)
|
116
121
|
|
@@ -204,7 +209,7 @@ def verify_with_input_ids(
|
|
204
209
|
original_model: ModelWrapper,
|
205
210
|
reauthored_model: ReauthoredModelWrapper,
|
206
211
|
input_ids: List[int],
|
207
|
-
|
212
|
+
total_seq_len: int = 128,
|
208
213
|
rtol: float = 1e-05,
|
209
214
|
atol: float = 1e-05,
|
210
215
|
):
|
@@ -217,7 +222,7 @@ def verify_with_input_ids(
|
|
217
222
|
reauthored_model (ReauthoredModelWrapper): The model reauthored with
|
218
223
|
ai_edge_torch Generative API.
|
219
224
|
input_ids (List[int]): The input token IDs to forward with.
|
220
|
-
|
225
|
+
total_seq_len (int): The total sequence length of the input.
|
221
226
|
rtol (float): The relative tolerance for the comparison.
|
222
227
|
atol (float): The absolute tolerance for the comparison.
|
223
228
|
|
@@ -225,7 +230,7 @@ def verify_with_input_ids(
|
|
225
230
|
AssertError if the model reauthored fails to generate the same output of the
|
226
231
|
original.
|
227
232
|
"""
|
228
|
-
tokens = torch.full((1,
|
233
|
+
tokens = torch.full((1, total_seq_len), 0, dtype=torch.int, device="cpu")
|
229
234
|
tokens[0, : len(input_ids)] = torch.tensor([input_ids]).int()
|
230
235
|
|
231
236
|
logging.info("Forwarding the original model...")
|
@@ -323,6 +328,11 @@ def verify_reauthored_model(
|
|
323
328
|
atol (float): The absolute tolerance for the comparison.
|
324
329
|
continue_on_failure (bool): If True, it continues to verify the next prompt
|
325
330
|
or input IDs even if a previous one fails.
|
331
|
+
verify_inputs (bool): If True, it verifies the model with forward_input_ids.
|
332
|
+
verify_prompts (bool): If True, it verifies the model with generate_prompts.
|
333
|
+
|
334
|
+
Returns:
|
335
|
+
True if all verification passes, False otherwise.
|
326
336
|
"""
|
327
337
|
failure_count = 0
|
328
338
|
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.6.0.
|
3
|
+
Version: 0.6.0.dev20250603
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=lemyLCNoGYRnJsmDuGZu7qOqLbLqG6CGDFtu3ue1syU,129
|
|
2
2
|
ai_edge_torch/_config.py,sha256=AiqhbcheF7j_ozIGDLC89k1we95aVgFDa-tR6h7UI0s,2529
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/model.py,sha256=A7loFu8jE9CsXsfMmHYZ-KDFJiaD8Kkqwm_9d3IVzk0,5638
|
5
|
-
ai_edge_torch/version.py,sha256=
|
5
|
+
ai_edge_torch/version.py,sha256=f6FvzLfBr0rauYb71ctwa8qlWkafgMxM73v4jYRgUzY,806
|
6
6
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
7
7
|
ai_edge_torch/_convert/conversion.py,sha256=iQk3R-pLq4c1nfLqPB4xTRj78gghxPGzJCJtILLdg5o,6123
|
8
8
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -53,89 +53,89 @@ ai_edge_torch/generative/custom_ops/bmm_4d.py,sha256=JmVbZCujG_wuBchma8QF3DSBfVc
|
|
53
53
|
ai_edge_torch/generative/custom_ops/dynamic_update_slice.py,sha256=ZGAq2CfWZsfef5mHulsWmyUx0dDWJX6J6xPjhBrjQdM,2097
|
54
54
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
55
55
|
ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
56
|
-
ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=
|
57
|
-
ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=
|
56
|
+
ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=Z2oUQ--pXPgNQyGLdWDNdyC90cSZzDN9YnSclRrPWAg,2703
|
57
|
+
ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=ze0MPZsUJpIBSCMJB4BrnJT5MFomRcffvuZEqKG20AM,1848
|
58
58
|
ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=uyBg5-trxQEjEHDZMX4qojkcsZgERUiPqIgR9n0_AY4,1311
|
59
59
|
ai_edge_torch/generative/examples/amd_llama_135m/verify_util.py,sha256=OJTjULdz-8LVd5DhmX8isxUI1PzhE-dQLj7--5DHfJ8,2961
|
60
60
|
ai_edge_torch/generative/examples/deepseek/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
|
61
|
-
ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py,sha256=
|
62
|
-
ai_edge_torch/generative/examples/deepseek/deepseek.py,sha256=
|
61
|
+
ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py,sha256=DvoHDBNc0GPW3kOv0TbGg0PnNTKijW_6z9LfQMku3RY,1816
|
62
|
+
ai_edge_torch/generative/examples/deepseek/deepseek.py,sha256=cm3rLw6aHFWQswwCqfvwxr05JG0maSzNVn1pBqD19qY,2816
|
63
63
|
ai_edge_torch/generative/examples/deepseek/verify.py,sha256=HkvgEyGb-V_f6mWfyeN7Ai5uADAVQNzWvkygaKJiLAc,1344
|
64
64
|
ai_edge_torch/generative/examples/deepseek/verify_util.py,sha256=jui_16J0C0VhICGBJDiO7Br5l5QCrhm-AohXYuUyyqQ,2971
|
65
65
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
66
|
-
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=
|
67
|
-
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=
|
68
|
-
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=
|
69
|
-
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=
|
66
|
+
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=m5N3MxNX4Yu8-0vXRszkMgfVuFKN6gskVoUIGqonJFk,1814
|
67
|
+
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=fR4869w1UZIuUVGLDdPof0IDEMDhqn2ej5kl7QW9vNA,1882
|
68
|
+
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=TH9XQAp5p4S829XbaWbJQZBwB18WizDRIQMsUkKqj38,3377
|
69
|
+
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=E6jotWYYIx6SXUWqurKWjiZpbfj_M2jJrBc2rQ90z1s,11782
|
70
70
|
ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
|
71
71
|
ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=jhiyinOqPt5ZZjEadDRZt_wY5fiLSCpMo54PcxFaL_Q,1789
|
72
72
|
ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=bbbdwuP4DKekvVuWHZ-jYYOQISto5ZkK1hC0r1Vhq00,7907
|
73
73
|
ai_edge_torch/generative/examples/gemma3/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
|
74
|
-
ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py,sha256=
|
75
|
-
ai_edge_torch/generative/examples/gemma3/decoder.py,sha256=
|
76
|
-
ai_edge_torch/generative/examples/gemma3/gemma3.py,sha256=
|
74
|
+
ai_edge_torch/generative/examples/gemma3/convert_gemma3_to_tflite.py,sha256=UEDNN3JmI31WfE2pvacxeJpqumKK86L2dEus3yTURaY,2114
|
75
|
+
ai_edge_torch/generative/examples/gemma3/decoder.py,sha256=1UVv9SFFg5degX3wf-Fefx7nor1AzJj2NWBVuo8bRnM,15540
|
76
|
+
ai_edge_torch/generative/examples/gemma3/gemma3.py,sha256=fFMyIS8si3GdwW8EsdhYk1OKyg_27xDv1HTQ2Gv4N8E,6616
|
77
77
|
ai_edge_torch/generative/examples/gemma3/image_encoder.py,sha256=tUOI99kdny33qcDM7-z0R6F-1aU1lZ24kG5zeLVdwow,5129
|
78
78
|
ai_edge_torch/generative/examples/gemma3/verify_gemma3.py,sha256=v8oNXFICmVOtQxfO7IhZ8GnbvotEkDi9lzYHjoQyOso,2464
|
79
79
|
ai_edge_torch/generative/examples/gemma3/verify_util.py,sha256=ZgoocQSTJqFEYbNNvBaO0Be4_bgSUEnihVm47mCTzTg,9864
|
80
80
|
ai_edge_torch/generative/examples/hammer/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
81
|
-
ai_edge_torch/generative/examples/hammer/convert_to_tflite.py,sha256=
|
82
|
-
ai_edge_torch/generative/examples/hammer/hammer.py,sha256=
|
81
|
+
ai_edge_torch/generative/examples/hammer/convert_to_tflite.py,sha256=BujBJml_ShWpKJyUgKAJqV4C6yd1uODjKg8fOgchPKI,2041
|
82
|
+
ai_edge_torch/generative/examples/hammer/hammer.py,sha256=0fz6LmZLXrVyty6w5T6LWRoqvQ-5XYREH6gFzB_gOu0,3737
|
83
83
|
ai_edge_torch/generative/examples/hammer/verify.py,sha256=iuKFMkI1VZc9_ESUQr32cHWHsDtYOAF702TdqhD3Ns4,1589
|
84
84
|
ai_edge_torch/generative/examples/hammer/verify_util.py,sha256=OtmLYBd2AlliSqj_5rNZokfwoXt2pBwwjJAYRv_dKNg,2905
|
85
85
|
ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
86
|
-
ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=
|
87
|
-
ai_edge_torch/generative/examples/llama/llama.py,sha256=
|
86
|
+
ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=K-hke37VBMWakuqCeRmpaZBujGWRykDIaUBKJQ0nI5g,2022
|
87
|
+
ai_edge_torch/generative/examples/llama/llama.py,sha256=PpC3idSFSATjQzcLv8oXwo66_5zU-B_np2YVAs2Naog,6602
|
88
88
|
ai_edge_torch/generative/examples/llama/verify.py,sha256=XoF_-kxdryjt0Bt_YeHnIbLfjwFxSVioTSEG75moDr8,1581
|
89
89
|
ai_edge_torch/generative/examples/llama/verify_util.py,sha256=JIAkG7TEaR_5scibyM-zgS9G2KrIfUBgX4vHDJwmaBo,3019
|
90
90
|
ai_edge_torch/generative/examples/moonshine/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
91
91
|
ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py,sha256=_GkaSkregS3NWN38UGXxj4pED5gtQGaaPZx5_CZ0TVM,1657
|
92
92
|
ai_edge_torch/generative/examples/moonshine/moonshine.py,sha256=nZ2b8u4TmsB5sgdClgAuH8E78bcTv9RCnF9666HqP2M,3394
|
93
93
|
ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
94
|
-
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=
|
95
|
-
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=
|
94
|
+
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=C5KEMMle8v6yZWrJPYoN-1CAjeZv7GQEJvyL28DeEYs,1813
|
95
|
+
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=Zfoe0VzNHiCK3CIlp0UYzxxJuE9yZXrSCb84S24LMM0,4448
|
96
96
|
ai_edge_torch/generative/examples/openelm/verify.py,sha256=kRoNEUEsrz51PFSeTPcrYsPBQRLtUmYM3t_-Jl0oFqM,1300
|
97
97
|
ai_edge_torch/generative/examples/openelm/verify_util.py,sha256=arX-ZGWVFfsyZ7n_V8ivaw8fqpmK3CmcxfsS0b1pOBY,2913
|
98
98
|
ai_edge_torch/generative/examples/paligemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
99
|
-
ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=
|
100
|
-
ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=
|
101
|
-
ai_edge_torch/generative/examples/paligemma/decoder2.py,sha256=
|
99
|
+
ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=qwxnytRMcAYlSe2Ll3TvhB05YozEVnkARQhlaaQ2UHI,2278
|
100
|
+
ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=XRilFiLrRoWboKM6ptowtRGscek7TqSOM9YyWNhpldA,5298
|
101
|
+
ai_edge_torch/generative/examples/paligemma/decoder2.py,sha256=Y3CLRFs3W9JSNFYCMO-CYd7iyA57b2cUnitGhB0RAbo,5847
|
102
102
|
ai_edge_torch/generative/examples/paligemma/image_encoder.py,sha256=V0RrkocOe-y2EDvcg8DMcSpWzzHUruQAEofHn20Jw7M,5589
|
103
|
-
ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=
|
103
|
+
ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=83MHNqbdza4j1CWWusVC6upKxJonzFfpBTqW0S6iBtg,6323
|
104
104
|
ai_edge_torch/generative/examples/paligemma/verify.py,sha256=myHdeIAtVTOqb915h661CnvjvFkwmihy3Vp4UrKHb5I,6195
|
105
105
|
ai_edge_torch/generative/examples/paligemma/verify_decoder.py,sha256=al5wMPWri4IRVWrLmCplPi6uoCzwh0vBHMGnCt-XUqo,2690
|
106
106
|
ai_edge_torch/generative/examples/paligemma/verify_decoder2.py,sha256=tm-UfLr0YeBRVcQsWLBOMWI9JUzHmtPEbYK2vpITpqY,2534
|
107
107
|
ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py,sha256=vNm-wTT8BD6zbX6GocfP1QrVoHl0zSvuVxoXN36eeiU,3540
|
108
108
|
ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
109
|
-
ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=
|
110
|
-
ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py,sha256=
|
111
|
-
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=
|
112
|
-
ai_edge_torch/generative/examples/phi/phi2.py,sha256=
|
113
|
-
ai_edge_torch/generative/examples/phi/phi3.py,sha256=
|
114
|
-
ai_edge_torch/generative/examples/phi/phi4.py,sha256=
|
109
|
+
ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=th7EYY2NmT4qLMtQsEIU697sGhwZi24V8OwB6xZRHEw,1802
|
110
|
+
ai_edge_torch/generative/examples/phi/convert_phi4_to_tflite.py,sha256=OkqJXktzNb8VO4_gNSl1iKIXBDMx0McCOxnoEUrq_B4,1800
|
111
|
+
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=Ff0A2NOpcmwGi87AWdQ4X2ZXeALQVzVvAGdnBzcZgVY,1801
|
112
|
+
ai_edge_torch/generative/examples/phi/phi2.py,sha256=CyqXhCcegY7mcsuRBg8-aXvOHTK4PZufGKBWb0mgcNE,3361
|
113
|
+
ai_edge_torch/generative/examples/phi/phi3.py,sha256=lO9vVCTqtbVZuSjJGRlmYrh5ZmLPfrqg7RXgTsqtggg,6811
|
114
|
+
ai_edge_torch/generative/examples/phi/phi4.py,sha256=n-LLniR-Q3Nyz4JCTvKZe9hBHVWBGtIBQdqe7_6xAyM,5596
|
115
115
|
ai_edge_torch/generative/examples/phi/verify.py,sha256=fIWgqypLQ3uOQ1u5uuklYiQSJPhKCTYIBACjrp7DbMA,1346
|
116
116
|
ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=TwIu2xUPQyMUTFdz29E2y75wfq4c1fGJnT3QfA3eS1s,1347
|
117
117
|
ai_edge_torch/generative/examples/phi/verify_phi4.py,sha256=2MlgQrfRkhE7Dya8MIixGwpqEZYdPjQkUGB47Mt1hSI,1343
|
118
|
-
ai_edge_torch/generative/examples/phi/verify_util.py,sha256=
|
118
|
+
ai_edge_torch/generative/examples/phi/verify_util.py,sha256=30l5EJGcAR8u7yOPc7uQHzRxZaUIfBooZJoPdlMou9c,2980
|
119
119
|
ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
120
|
-
ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=
|
121
|
-
ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py,sha256=
|
122
|
-
ai_edge_torch/generative/examples/qwen/qwen.py,sha256=
|
123
|
-
ai_edge_torch/generative/examples/qwen/qwen3.py,sha256=
|
120
|
+
ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=XQee8T78I4CqFghZw6sSsrtryWcA_NlOzg2wMfHzHwY,2064
|
121
|
+
ai_edge_torch/generative/examples/qwen/convert_v3_to_tflite.py,sha256=P10_5tnuvjXNYyWTp0Fzzj-8moFWyONDBhcGi2yvdp4,2070
|
122
|
+
ai_edge_torch/generative/examples/qwen/qwen.py,sha256=VrrTS83q1Fzp34SjUf0pFiCoMwXehF7VJCZjbxbQ5vA,4332
|
123
|
+
ai_edge_torch/generative/examples/qwen/qwen3.py,sha256=cJcN5nH-yAglKtm5Yc5NsLMQvkJ4Drz_IsQJzS91Veo,5329
|
124
124
|
ai_edge_torch/generative/examples/qwen/verify_qwen2.py,sha256=ry-c2QesH-0KnrSQygfjUFs6d4kOFvJz2ts_8mP156I,1659
|
125
125
|
ai_edge_torch/generative/examples/qwen/verify_qwen3.py,sha256=hmE0gdyzgcDpEDcWiwOzKQcxt4XeAe9DPRspy_I-lc8,1628
|
126
126
|
ai_edge_torch/generative/examples/qwen/verify_util.py,sha256=9XhDQyIHFoJ6BYota1lIzwsBrN7t_Mtugpgbjgv17Gg,3277
|
127
127
|
ai_edge_torch/generative/examples/qwen_vl/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
|
128
|
-
ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py,sha256=
|
129
|
-
ai_edge_torch/generative/examples/qwen_vl/decoder.py,sha256=
|
128
|
+
ai_edge_torch/generative/examples/qwen_vl/convert_to_tflite.py,sha256=aC7ONr9hoQMGtbvfq_JBqGhSD6UYHT6fmMYdKp6dkh8,2477
|
129
|
+
ai_edge_torch/generative/examples/qwen_vl/decoder.py,sha256=xmRDK3fmyNnY5GlHStIymYJZDUNFyjH8OjPoPxNlAKk,4307
|
130
130
|
ai_edge_torch/generative/examples/qwen_vl/image_encoder.py,sha256=nuAHb-RXqTffpwjwCHOd_2mCrSMwL6Q1z_yjsU64gmI,14992
|
131
|
-
ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py,sha256=
|
131
|
+
ai_edge_torch/generative/examples/qwen_vl/qwen_vl.py,sha256=ILxGsI1u4yYlrWTK63yEdsxomdssVrSv7XLxWIU9mqQ,7870
|
132
132
|
ai_edge_torch/generative/examples/qwen_vl/verify.py,sha256=4WKgAFQNQzwmeJhC8ayI5vjGj9ko6VcU2HA3VAkhHug,5812
|
133
133
|
ai_edge_torch/generative/examples/qwen_vl/verify_decoder.py,sha256=xPWoOBLh2eK12KEhELLYymfL7xvc0chmYC98c6x37oo,2602
|
134
134
|
ai_edge_torch/generative/examples/qwen_vl/verify_image_encoder.py,sha256=PZ392nDoJG2OmHZ_7Jet3Zu1JkN6QErxKcDc7a-PPds,3126
|
135
135
|
ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
136
|
-
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=
|
137
|
-
ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py,sha256=
|
138
|
-
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=
|
136
|
+
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=CsXboOmzk2GB506a-Je-Js-XFlUmikVX7dhBFQAmiUs,2040
|
137
|
+
ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py,sha256=2BFScI1RbpK3YqJcsvacGz9haKR_gwGsSNHfYmlOvNg,2045
|
138
|
+
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=3QbVefwSlFjhze7ju3P6xgMex2d1AJpF6Ii_qlbfJ34,3656
|
139
139
|
ai_edge_torch/generative/examples/smollm/verify.py,sha256=tXiAnwOnqgwyoa8dI4tCBiGUXkOMfdE9MUkkY_Bc4Ig,1603
|
140
140
|
ai_edge_torch/generative/examples/smollm/verify_util.py,sha256=_Z5jtNzQnULeWrXWC1LIpEawKwL_wA1_FtRc6A4-s4k,3019
|
141
141
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
@@ -155,15 +155,15 @@ ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py,sha256=ZE6H
|
|
155
155
|
ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py,sha256=RxR5rw0wFFm_5CfAY-3-EIz83vhM9EKye8Bb5zBb0Ok,1341
|
156
156
|
ai_edge_torch/generative/examples/t5/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
157
157
|
ai_edge_torch/generative/examples/t5/convert_to_tflite.py,sha256=HHtZTtUh3QgE4F74-ru_8n1pt6cqfbObw12xoaMJ7NQ,4596
|
158
|
-
ai_edge_torch/generative/examples/t5/t5.py,sha256=
|
159
|
-
ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=
|
158
|
+
ai_edge_torch/generative/examples/t5/t5.py,sha256=0P3jyvQy3RmiTBRsL0aOKcrsLKfkjIQXxDQJd8wpHAY,21225
|
159
|
+
ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=hIeQt1SQuwqkImspPsdRPYFhTgV4YqdMRT5Zy29braI,8729
|
160
160
|
ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
161
161
|
ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
|
162
162
|
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=s3l__g3l0DpgXEPs1ikcJqSS7OfWzgYdkOLnEwdjcUo,5257
|
163
163
|
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=rVTaNQxlf3-mv9e6s33V9CDd_cmVwPti1A3ARUAwSD4,4766
|
164
164
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
165
|
-
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=
|
166
|
-
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=
|
165
|
+
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=dYqb9OhpZUBIdww1lUdMjFhEo3IYhpvitvrZfO0uGSs,1827
|
166
|
+
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=fRuPLHwZu8Am8h0Y3dT5_1vsCEnm6euGWB_KHc3xBXk,2735
|
167
167
|
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=qzUsW8tJlAD9mqRxDSAcz5xSUKNlBz_DykA3PwUHMwc,1336
|
168
168
|
ai_edge_torch/generative/examples/tiny_llama/verify_util.py,sha256=AxJeLbpDfKN-ztHYTr2qjoTpWQ-n9yeqYKhorFEBzLs,2937
|
169
169
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=PFSMsA1vfBfrV9ssBCkYJNl8Hx_bLdWjN01iyjPM5jE,1094
|
@@ -178,9 +178,9 @@ ai_edge_torch/generative/layers/einsum.py,sha256=EsZSWNVWUs0-1plp4TBnhP4ZhaRDBa2
|
|
178
178
|
ai_edge_torch/generative/layers/einsum_test.py,sha256=ltIE773bvvNLv_9aLQxFwe1MgQ762sez0c5E2tejxuA,1079
|
179
179
|
ai_edge_torch/generative/layers/feed_forward.py,sha256=_GmtHxwL068l9gh_F_WFcFk7La-Tl5SfoQ9v2hMabZM,5541
|
180
180
|
ai_edge_torch/generative/layers/feed_forward_test.py,sha256=Y5l1eC9NgfYixHcfIfE1W4FGh7oC-9UGGyHdKS9tQKc,1880
|
181
|
-
ai_edge_torch/generative/layers/kv_cache.py,sha256=
|
181
|
+
ai_edge_torch/generative/layers/kv_cache.py,sha256=A0IFXZ1HD2ZHOWRLfsDO4almgE0KQfjyBOdBFZIGnAs,10893
|
182
182
|
ai_edge_torch/generative/layers/lora.py,sha256=hsvWLLOnW7HQ0AysOZu30x_cetMquDd1tjfyLz8HCSU,17892
|
183
|
-
ai_edge_torch/generative/layers/model_config.py,sha256=
|
183
|
+
ai_edge_torch/generative/layers/model_config.py,sha256=HP-vu1UmAiTmdLlTyZGDUF3le0gji8a61mLCy966NZw,10261
|
184
184
|
ai_edge_torch/generative/layers/normalization.py,sha256=ijwCpi22NLX-Sygwy5sK9l9WjGvbPIhZvVwoBAonWAo,7014
|
185
185
|
ai_edge_torch/generative/layers/normalization_test.py,sha256=zwurZly-TgFxdgVVdpzu9vCpcLbd5RYt_gKg9Lfg1jI,2248
|
186
186
|
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=975zR202MdIrILJ7blceAcxrNqX1ZCN0ECKG1gz-bV8,2655
|
@@ -200,25 +200,25 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=45DJfcQXZ1FA1qI4LgYoYE
|
|
200
200
|
ai_edge_torch/generative/quantize/supported_schemes.py,sha256=TwR2FpQuBEORy6FshEyHNBMKARWlA2MVtTfX9tXV5aE,1488
|
201
201
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
202
202
|
ai_edge_torch/generative/test/test_custom_dus.py,sha256=MjIhTvkTko872M35XMciobvICcDWTcIDJ3rociko-wM,3267
|
203
|
-
ai_edge_torch/generative/test/test_kv_cache.py,sha256=
|
203
|
+
ai_edge_torch/generative/test/test_kv_cache.py,sha256=zVocQZTORIROwSYVMmy5KGPDl6kTuEGko7L1PTkua8g,5568
|
204
204
|
ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
|
205
|
-
ai_edge_torch/generative/test/test_lora.py,sha256=
|
206
|
-
ai_edge_torch/generative/test/test_model_conversion.py,sha256=
|
207
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
205
|
+
ai_edge_torch/generative/test/test_lora.py,sha256=sKnBixmGIXHUtOwh3SA4MIFenPbjK2n-Xknwic_KMDQ,5046
|
206
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=T35zdzag2-nmy4qc6AifAjbDXAHU2vyLTE1QCabYBzk,6298
|
207
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=NkEwrjO8vIcde3XwanpFBhNIw1GSOyJFKNjlvSJmVMY,13271
|
208
208
|
ai_edge_torch/generative/test/test_quantize.py,sha256=kKJ01wscTC2t_Ylr7huO5gNKES01gm3dT1gx52z15PA,7356
|
209
209
|
ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
|
210
210
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
211
|
-
ai_edge_torch/generative/utilities/converter.py,sha256=
|
211
|
+
ai_edge_torch/generative/utilities/converter.py,sha256=TKHUuC0b6swR3dYyijLz_IDCdmCKQJUT-nvXFO5M-0U,15885
|
212
212
|
ai_edge_torch/generative/utilities/export_config.py,sha256=qjkEbjcvi2AgQikZS5qfgR95Z5z9pm07KX-RN5ibfNE,2280
|
213
213
|
ai_edge_torch/generative/utilities/loader.py,sha256=drgKBmNibuc3PCdc0kU0pVcp2Nt1_mjLYh67RyXOn7U,15952
|
214
|
-
ai_edge_torch/generative/utilities/model_builder.py,sha256=
|
214
|
+
ai_edge_torch/generative/utilities/model_builder.py,sha256=xBvcTxihB9TN88UtQiXA9sAITQgf-pA77R-VZlLgUeU,6950
|
215
215
|
ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
|
216
216
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
217
217
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
218
218
|
ai_edge_torch/generative/utilities/test_utils.py,sha256=fhUMCMxoeMzxYbOCjNeX5wbQmF6Y88Hi52FtRiZYJAk,1147
|
219
219
|
ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=l54bmmhj613eB2oCoONIAKEHhf8TQOhC9Gwjp6lxHAE,1659
|
220
220
|
ai_edge_torch/generative/utilities/types.py,sha256=gZI9hIPB3XAo4oecKIIoVDfiyibLaSNFhecPFx4VDTM,2913
|
221
|
-
ai_edge_torch/generative/utilities/verifier.py,sha256=
|
221
|
+
ai_edge_torch/generative/utilities/verifier.py,sha256=HQhEpOmUCN2uu6I47um1x2azAa5hy9-kPbEvFUov2zI,13499
|
222
222
|
ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
|
223
223
|
ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=JsVmYrM_JEuN_smMHXUsRlo3Liapp7UyktbPpPARwDk,5386
|
224
224
|
ai_edge_torch/hlfb/mark_pattern/fx_utils.py,sha256=YCtMgu-4w2BQ5fpnlpWC6IauKPf_tVqc7Ff91OTqlSw,1796
|
@@ -268,8 +268,8 @@ ai_edge_torch/testing/__init__.py,sha256=_yGgvnBZWb7T3IN3mc4x1sS4vM96HZwM8pwIcPG
|
|
268
268
|
ai_edge_torch/testing/export.py,sha256=k5mGDGzwc23Z4zaIVDs8CNh-oOt64gsf9MS9NjhbPy4,3293
|
269
269
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
270
270
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
271
|
-
ai_edge_torch_nightly-0.6.0.
|
272
|
-
ai_edge_torch_nightly-0.6.0.
|
273
|
-
ai_edge_torch_nightly-0.6.0.
|
274
|
-
ai_edge_torch_nightly-0.6.0.
|
275
|
-
ai_edge_torch_nightly-0.6.0.
|
271
|
+
ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
272
|
+
ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/METADATA,sha256=3c68vDxxobFxHDgitrg9QPmEUuuN4_jNi7dZap5mcio,2074
|
273
|
+
ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
274
|
+
ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
275
|
+
ai_edge_torch_nightly-0.6.0.dev20250603.dist-info/RECORD,,
|
File without changes
|
File without changes
|