ai-edge-torch-nightly 0.3.0.dev20250124__py3-none-any.whl → 0.3.0.dev20250125__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/deepseek/__init__.py +14 -0
- ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/deepseek/deepseek.py +92 -0
- ai_edge_torch/generative/examples/deepseek/verify.py +70 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +3 -0
- ai_edge_torch/generative/layers/experimental/__init__.py +14 -0
- ai_edge_torch/generative/layers/experimental/attention.py +269 -0
- ai_edge_torch/generative/layers/experimental/kv_cache.py +314 -0
- ai_edge_torch/generative/layers/experimental/scaled_dot_product_attention.py +97 -0
- ai_edge_torch/generative/layers/experimental/types.py +97 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +11 -2
- ai_edge_torch/generative/utilities/converter.py +15 -4
- ai_edge_torch/generative/utilities/model_builder.py +5 -3
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250124.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250124.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/RECORD +19 -10
- {ai_edge_torch_nightly-0.3.0.dev20250124.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250124.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250124.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,80 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting DeepSeek R1 distilled models to tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.deepseek import deepseek
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
26
|
+
|
27
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
28
|
+
'checkpoint_path',
|
29
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/deepseek'),
|
30
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
|
+
)
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
|
+
'/tmp/',
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'deepseek',
|
40
|
+
'The prefix of the output tflite model name.',
|
41
|
+
)
|
42
|
+
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
43
|
+
'prefill_seq_lens',
|
44
|
+
(8, 64, 128, 256, 512, 1024),
|
45
|
+
'List of the maximum sizes of prefill input tensors.',
|
46
|
+
)
|
47
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
48
|
+
'kv_cache_max_len',
|
49
|
+
1280,
|
50
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
51
|
+
)
|
52
|
+
_QUANTIZE = flags.DEFINE_bool(
|
53
|
+
'quantize',
|
54
|
+
True,
|
55
|
+
'Whether the model should be quantized.',
|
56
|
+
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
62
|
+
|
63
|
+
|
64
|
+
def main(_):
|
65
|
+
pytorch_model = deepseek.build_model(
|
66
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
67
|
+
)
|
68
|
+
converter.convert_to_tflite(
|
69
|
+
pytorch_model,
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
72
|
+
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
73
|
+
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
75
|
+
export_config=ExportConfig(),
|
76
|
+
)
|
77
|
+
|
78
|
+
|
79
|
+
if __name__ == '__main__':
|
80
|
+
app.run(main)
|
@@ -0,0 +1,92 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building DeepSeek R1 distilled models."""
|
17
|
+
|
18
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
TENSOR_NAMES = model_builder.TENSOR_NAMES_WITH_SEPARATE_LM_HEAD
|
23
|
+
|
24
|
+
|
25
|
+
class DeepSeekDistillQwen(model_builder.DecoderOnlyModel):
|
26
|
+
"""A DeepSeek distilled model based on Qwen."""
|
27
|
+
pass
|
28
|
+
|
29
|
+
|
30
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
31
|
+
"""Returns the model config for a Qwen 2.5 3B model.
|
32
|
+
|
33
|
+
Args:
|
34
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
35
|
+
is 1024.
|
36
|
+
|
37
|
+
Returns:
|
38
|
+
The model config for a SmolLM model.
|
39
|
+
"""
|
40
|
+
attn_config = cfg.AttentionConfig(
|
41
|
+
num_heads=12,
|
42
|
+
head_dim=128,
|
43
|
+
num_query_groups=2,
|
44
|
+
rotary_base=10000,
|
45
|
+
rotary_percentage=1.0,
|
46
|
+
qkv_use_bias=True,
|
47
|
+
)
|
48
|
+
ff_config = cfg.FeedForwardConfig(
|
49
|
+
type=cfg.FeedForwardType.GATED,
|
50
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
51
|
+
intermediate_size=8960,
|
52
|
+
)
|
53
|
+
norm_config = cfg.NormalizationConfig(
|
54
|
+
type=cfg.NormalizationType.RMS_NORM,
|
55
|
+
epsilon=1e-06,
|
56
|
+
)
|
57
|
+
block_config = cfg.TransformerBlockConfig(
|
58
|
+
attn_config=attn_config,
|
59
|
+
ff_config=ff_config,
|
60
|
+
pre_attention_norm_config=norm_config,
|
61
|
+
post_attention_norm_config=norm_config,
|
62
|
+
)
|
63
|
+
config = cfg.ModelConfig(
|
64
|
+
vocab_size=151936,
|
65
|
+
num_layers=28,
|
66
|
+
max_seq_len=4096,
|
67
|
+
embedding_dim=1536,
|
68
|
+
kv_cache_max_len=kv_cache_max_len,
|
69
|
+
block_configs=block_config,
|
70
|
+
final_norm_config=norm_config,
|
71
|
+
lm_head_share_weight_with_embedding=False,
|
72
|
+
enable_hlfb=True,
|
73
|
+
)
|
74
|
+
return config
|
75
|
+
|
76
|
+
|
77
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
78
|
+
config = get_model_config(**kwargs)
|
79
|
+
config.vocab_size = 128
|
80
|
+
config.num_layers = 2
|
81
|
+
# DeepSeek-R1-Distill-Qwen has only one block config.
|
82
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
83
|
+
return config
|
84
|
+
|
85
|
+
|
86
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
87
|
+
return model_builder.build_decoder_only_model(
|
88
|
+
checkpoint_path=checkpoint_path,
|
89
|
+
config=get_model_config(**kwargs),
|
90
|
+
tensor_names=TENSOR_NAMES,
|
91
|
+
model_class=DeepSeekDistillQwen,
|
92
|
+
)
|
@@ -0,0 +1,70 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored DeepSeek R1 distilled 1.5B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.deepseek import deepseek
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
+
"prompts",
|
31
|
+
"What is the meaning of life?",
|
32
|
+
"The input prompts to generate answers.",
|
33
|
+
)
|
34
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
+
"max_new_tokens",
|
36
|
+
30,
|
37
|
+
"The maximum size of the generated tokens.",
|
38
|
+
)
|
39
|
+
|
40
|
+
|
41
|
+
def main(_):
|
42
|
+
checkpoint = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
43
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
44
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
45
|
+
|
46
|
+
# Locate the cached dir.
|
47
|
+
cached_config_file = transformers.utils.cached_file(
|
48
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
49
|
+
)
|
50
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
51
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
52
|
+
reauthored_model = deepseek.build_model(reauthored_checkpoint)
|
53
|
+
|
54
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
55
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
56
|
+
|
57
|
+
verifier.verify_reauthored_model(
|
58
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
59
|
+
original_model
|
60
|
+
),
|
61
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
62
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
63
|
+
generate_prompts=_PROMPTS.value,
|
64
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
65
|
+
atol=1e-04,
|
66
|
+
)
|
67
|
+
|
68
|
+
|
69
|
+
if __name__ == "__main__":
|
70
|
+
app.run(main)
|
@@ -85,6 +85,7 @@ def convert_stable_diffusion_to_tflite(
|
|
85
85
|
clip.TENSOR_NAMES,
|
86
86
|
)
|
87
87
|
loader.load(clip_model, strict=False)
|
88
|
+
clip_model.eval()
|
88
89
|
|
89
90
|
diffusion_model = diffusion.Diffusion(
|
90
91
|
diffusion.get_model_config(batch_size=2, device_type=_DEVICE_TYPE.value)
|
@@ -93,6 +94,7 @@ def convert_stable_diffusion_to_tflite(
|
|
93
94
|
diffusion_ckpt_path, diffusion.TENSOR_NAMES
|
94
95
|
)
|
95
96
|
diffusion_loader.load(diffusion_model, strict=False)
|
97
|
+
diffusion_model.eval()
|
96
98
|
|
97
99
|
decoder_model = decoder.Decoder(
|
98
100
|
decoder.get_model_config(device_type=_DEVICE_TYPE.value)
|
@@ -101,6 +103,7 @@ def convert_stable_diffusion_to_tflite(
|
|
101
103
|
decoder_ckpt_path, decoder.TENSOR_NAMES
|
102
104
|
)
|
103
105
|
decoder_loader.load(decoder_model, strict=False)
|
106
|
+
decoder_model.eval()
|
104
107
|
|
105
108
|
# TODO(yichunk): enable image encoder conversion
|
106
109
|
# if encoder_ckpt_path is not None:
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
#
|
@@ -0,0 +1,269 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common building blocks for a GPU-specific Attention layer.
|
17
|
+
|
18
|
+
This is a temporary implemenation for the GPU. It is subject to change/removal
|
19
|
+
at any time.
|
20
|
+
"""
|
21
|
+
|
22
|
+
from typing import Optional, Tuple, Union
|
23
|
+
|
24
|
+
from ai_edge_torch.generative.layers import builder
|
25
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
26
|
+
from ai_edge_torch.generative.layers.experimental import kv_cache as kv_utils
|
27
|
+
from ai_edge_torch.generative.layers.experimental import scaled_dot_product_attention as sdpa
|
28
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
29
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
30
|
+
import torch
|
31
|
+
from torch import nn
|
32
|
+
|
33
|
+
|
34
|
+
class TransformerBlock(nn.Module):
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
config: cfg.TransformerBlockConfig,
|
39
|
+
model_config: cfg.ModelConfig,
|
40
|
+
) -> None:
|
41
|
+
"""Initialize an instance of the TransformerBlock.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
45
|
+
transformer block.
|
46
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
47
|
+
this transformer block belongs to.
|
48
|
+
"""
|
49
|
+
super().__init__()
|
50
|
+
self.pre_atten_norm = builder.build_norm(
|
51
|
+
model_config.embedding_dim,
|
52
|
+
config.pre_attention_norm_config,
|
53
|
+
)
|
54
|
+
self.atten_func = CausalSelfAttention(
|
55
|
+
model_config.batch_size,
|
56
|
+
model_config.embedding_dim,
|
57
|
+
config.attn_config,
|
58
|
+
model_config.enable_hlfb,
|
59
|
+
)
|
60
|
+
self.post_atten_norm = builder.build_norm(
|
61
|
+
model_config.embedding_dim,
|
62
|
+
config.post_attention_norm_config,
|
63
|
+
)
|
64
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
65
|
+
self.config = config
|
66
|
+
|
67
|
+
def forward(
|
68
|
+
self,
|
69
|
+
x: torch.Tensor,
|
70
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
71
|
+
mask: Optional[torch.Tensor] = None,
|
72
|
+
input_pos: Optional[torch.Tensor] = None,
|
73
|
+
kv_cache: kv_utils.KVCacheEntryBase = None,
|
74
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
75
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntryBase]]:
|
76
|
+
"""Forward function of the TransformerBlock.
|
77
|
+
|
78
|
+
Args:
|
79
|
+
x (torch.Tensor): the input tensor.
|
80
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
81
|
+
mask (torch.Tensor): the optional mask tensor.
|
82
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
83
|
+
kv_cache (KVCacheEntryBase): the optional kv cache entry.
|
84
|
+
lora (LoRAEntry): the optional lora entry.
|
85
|
+
|
86
|
+
Returns:
|
87
|
+
output activation from this transformer block, and updated kv cache (if
|
88
|
+
passed in).
|
89
|
+
"""
|
90
|
+
kv = None
|
91
|
+
if self.config.parallel_residual:
|
92
|
+
x_norm = self.pre_atten_norm(x)
|
93
|
+
atten_func_out = self.atten_func(
|
94
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
95
|
+
)
|
96
|
+
if kv_cache is None:
|
97
|
+
attn_out = atten_func_out
|
98
|
+
else:
|
99
|
+
attn_out, kv = atten_func_out
|
100
|
+
ff_out = self.ff(x_norm)
|
101
|
+
output = x + attn_out + ff_out
|
102
|
+
else:
|
103
|
+
x_norm = self.pre_atten_norm(x)
|
104
|
+
atten_func_out = self.atten_func(
|
105
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
106
|
+
)
|
107
|
+
if kv_cache is None:
|
108
|
+
attn_out = atten_func_out
|
109
|
+
else:
|
110
|
+
attn_out, kv = atten_func_out
|
111
|
+
x = x + attn_out
|
112
|
+
x_norm = self.post_atten_norm(x)
|
113
|
+
output = x + self.ff(x_norm)
|
114
|
+
|
115
|
+
return output if kv is None else (output, kv)
|
116
|
+
|
117
|
+
|
118
|
+
class CausalSelfAttention(nn.Module):
|
119
|
+
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
batch_size: int,
|
123
|
+
dim: int,
|
124
|
+
config: cfg.AttentionConfig,
|
125
|
+
enable_hlfb: bool,
|
126
|
+
) -> None:
|
127
|
+
"""Initialize an instance of CausalSelfAttention.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
batch_size (int): batch size of the input tensor.
|
131
|
+
dim (int): causal attention's input/output dimmension.
|
132
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
133
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
134
|
+
"""
|
135
|
+
super().__init__()
|
136
|
+
self.kv_cache = None
|
137
|
+
self.batch_size = batch_size
|
138
|
+
qkv_shape = (
|
139
|
+
config.num_heads + 2 * config.num_query_groups
|
140
|
+
) * config.head_dim
|
141
|
+
output_shape = config.num_heads * config.head_dim
|
142
|
+
# Key, query, value projections for all heads.
|
143
|
+
self.qkv_projection = nn.Linear(dim, qkv_shape, bias=config.qkv_use_bias)
|
144
|
+
self.output_projection = nn.Linear(
|
145
|
+
output_shape, dim, bias=config.output_proj_use_bias
|
146
|
+
)
|
147
|
+
self.query_norm = builder.build_norm(
|
148
|
+
config.head_dim, config.query_norm_config
|
149
|
+
)
|
150
|
+
self.key_norm = builder.build_norm(config.head_dim, config.key_norm_config)
|
151
|
+
self.config = config
|
152
|
+
self.enable_hlfb = enable_hlfb
|
153
|
+
self.sdpa_func = sdpa.scaled_dot_product_attention
|
154
|
+
|
155
|
+
def forward(
|
156
|
+
self,
|
157
|
+
x: torch.Tensor,
|
158
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
159
|
+
mask: Optional[torch.Tensor] = None,
|
160
|
+
input_pos: Optional[torch.Tensor] = None,
|
161
|
+
kv_cache: Optional[kv_utils.KVCacheEntryBase] = None,
|
162
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
163
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntryBase]]:
|
164
|
+
"""Forward function of the CausalSelfAttention layer, which can support
|
165
|
+
|
166
|
+
MQA, GQA and MHA.
|
167
|
+
|
168
|
+
Args:
|
169
|
+
x (torch.Tensor): the input tensor.
|
170
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
171
|
+
mask (torch.Tensor): the optional mask tensor.
|
172
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
173
|
+
kv_cache (KVCacheEntryBase): the KV cache entry corresponding to this
|
174
|
+
module.
|
175
|
+
lora (LoRAEntry): the optional lora entry.
|
176
|
+
|
177
|
+
Returns:
|
178
|
+
output activation from this self attention layer, and the updated
|
179
|
+
KV Cach Entry (if passed in).
|
180
|
+
"""
|
181
|
+
# Batch size, sequence length, embedding dimensionality.
|
182
|
+
B, T, E = x.size()
|
183
|
+
assert B == self.batch_size, (
|
184
|
+
"batch size of input tensor must match with the batch size specified in"
|
185
|
+
" the model configuration."
|
186
|
+
)
|
187
|
+
|
188
|
+
qkv = self.qkv_projection(x)
|
189
|
+
|
190
|
+
# Assemble into a number of query groups to support MHA, MQA and GQA.
|
191
|
+
q_per_kv = self.config.num_heads // self.config.num_query_groups
|
192
|
+
# Each group has >=1 queries, 1 key, and 1 value.
|
193
|
+
if self.config.qkv_transpose_before_split:
|
194
|
+
qkv = qkv.view(B, T, -1, self.config.head_dim)
|
195
|
+
q, k, v = qkv.split(
|
196
|
+
(
|
197
|
+
q_per_kv * self.config.num_query_groups,
|
198
|
+
self.config.num_query_groups,
|
199
|
+
self.config.num_query_groups,
|
200
|
+
),
|
201
|
+
dim=-2,
|
202
|
+
)
|
203
|
+
else:
|
204
|
+
qkv = qkv.view(B, T, self.config.num_query_groups, -1)
|
205
|
+
q, k, v = qkv.split(
|
206
|
+
(
|
207
|
+
q_per_kv * self.config.head_dim,
|
208
|
+
self.config.head_dim,
|
209
|
+
self.config.head_dim,
|
210
|
+
),
|
211
|
+
dim=-1,
|
212
|
+
)
|
213
|
+
|
214
|
+
if lora is not None:
|
215
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
216
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
217
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
218
|
+
|
219
|
+
q = self.query_norm(q)
|
220
|
+
k = self.key_norm(k)
|
221
|
+
|
222
|
+
q = q.reshape(B, T, -1, self.config.head_dim)
|
223
|
+
k = k.reshape(B, T, -1, self.config.head_dim)
|
224
|
+
v = v.reshape(B, T, -1, self.config.head_dim)
|
225
|
+
|
226
|
+
if rope is not None:
|
227
|
+
# Compute rotary positional embedding for query and key.
|
228
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
229
|
+
cos, sin = rope
|
230
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
231
|
+
|
232
|
+
# Transpose k/v to specific layout for GPU implementation.
|
233
|
+
b, _, n, h = q.shape
|
234
|
+
g = n // self.config.num_query_groups
|
235
|
+
# btnh -> bnth -> b(kg)th -> 1(bk)(gt)h
|
236
|
+
q = q.permute(0, 2, 1, 3).reshape(
|
237
|
+
1, b * self.config.num_query_groups, g * T, h
|
238
|
+
)
|
239
|
+
|
240
|
+
k = k.permute(0, 2, 1, 3).reshape(
|
241
|
+
1, -1, T, self.config.head_dim
|
242
|
+
) # 1, bk, s, h
|
243
|
+
v = v.permute(0, 2, 3, 1).reshape(
|
244
|
+
1, -1, self.config.head_dim, T
|
245
|
+
) # 1, bk, h, s
|
246
|
+
|
247
|
+
if kv_cache is not None:
|
248
|
+
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
249
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
250
|
+
|
251
|
+
sdpa_out = self.sdpa_func(
|
252
|
+
kv_cache,
|
253
|
+
q,
|
254
|
+
k,
|
255
|
+
v,
|
256
|
+
self.config.head_dim,
|
257
|
+
mask=mask,
|
258
|
+
softcap=self.config.logit_softcap,
|
259
|
+
) # 1, bk, gt, h
|
260
|
+
sdpa_out = (
|
261
|
+
sdpa_out.reshape(B, -1, T, h).permute(0, 2, 1, 3).reshape(B, T, -1)
|
262
|
+
)
|
263
|
+
|
264
|
+
# Compute the output projection.
|
265
|
+
y = self.output_projection(sdpa_out)
|
266
|
+
if lora is not None:
|
267
|
+
y += lora_utils.apply_lora(sdpa_out, lora.attention.output)
|
268
|
+
|
269
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -0,0 +1,314 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utility functions for KV Cache.
|
17
|
+
|
18
|
+
This is an experimental implementation and is subject to change at any time.
|
19
|
+
"""
|
20
|
+
|
21
|
+
import dataclasses
|
22
|
+
from typing import List, Tuple
|
23
|
+
|
24
|
+
from ai_edge_torch import hlfb
|
25
|
+
from ai_edge_torch.generative.layers import model_config
|
26
|
+
from ai_edge_torch.generative.layers.experimental import types as types
|
27
|
+
from ai_edge_torch.generative.utilities.dynamic_update_slice import dynamic_update_slice
|
28
|
+
import torch
|
29
|
+
import torch.nn as nn
|
30
|
+
import torch.utils._pytree as pytree
|
31
|
+
|
32
|
+
BATCH_SIZE = 1
|
33
|
+
|
34
|
+
|
35
|
+
@dataclasses.dataclass
|
36
|
+
class KVCacheEntryBase:
|
37
|
+
"""A single cache entry that includes K and V caches.
|
38
|
+
|
39
|
+
The chaches are built based on the provided config with the shape of
|
40
|
+
(batch_size=1, kv_cache_max, num_query_groups, head_dim).
|
41
|
+
"""
|
42
|
+
|
43
|
+
k_cache: torch.Tensor
|
44
|
+
v_cache: torch.Tensor
|
45
|
+
|
46
|
+
@classmethod
|
47
|
+
def _from_model_config(
|
48
|
+
cls,
|
49
|
+
kv_cache_max: int,
|
50
|
+
config: model_config.AttentionConfig,
|
51
|
+
k_shape: Tuple,
|
52
|
+
v_shape: Tuple,
|
53
|
+
dtype: torch.dtype = torch.float32,
|
54
|
+
device: torch.device = None,
|
55
|
+
) -> "KVCacheEntryBase":
|
56
|
+
"""Build an instance of the class based on model config."""
|
57
|
+
k = torch.zeros(k_shape, dtype=dtype, device=device)
|
58
|
+
v = torch.zeros(v_shape, dtype=dtype, device=device)
|
59
|
+
obj = cls(k_cache=k, v_cache=v)
|
60
|
+
return obj
|
61
|
+
|
62
|
+
@classmethod
|
63
|
+
def from_model_config(
|
64
|
+
cls,
|
65
|
+
kv_cache_max: int,
|
66
|
+
config: model_config.AttentionConfig,
|
67
|
+
dtype: torch.dtype = torch.float32,
|
68
|
+
device: torch.device = None,
|
69
|
+
) -> "KVCacheEntryBase":
|
70
|
+
"""Build an instance of the class based on model config."""
|
71
|
+
shape = (BATCH_SIZE, kv_cache_max, config.num_query_groups, config.head_dim)
|
72
|
+
return cls._from_model_config(
|
73
|
+
kv_cache_max, config, shape, shape, dtype, device
|
74
|
+
)
|
75
|
+
|
76
|
+
|
77
|
+
@dataclasses.dataclass
|
78
|
+
class KVCacheEntryBTNH(KVCacheEntryBase):
|
79
|
+
k_type = types.BTNH()
|
80
|
+
v_type = types.BTNH()
|
81
|
+
|
82
|
+
|
83
|
+
@dataclasses.dataclass
|
84
|
+
class KVCacheEntryTransposed(KVCacheEntryBase):
|
85
|
+
|
86
|
+
k_type = types.BNTH()
|
87
|
+
v_type = types.BNHT()
|
88
|
+
|
89
|
+
@classmethod
|
90
|
+
def from_model_config(
|
91
|
+
cls,
|
92
|
+
kv_cache_max: int,
|
93
|
+
config: model_config.AttentionConfig,
|
94
|
+
dtype: torch.dtype = torch.float32,
|
95
|
+
device: torch.device = None,
|
96
|
+
) -> "KVCacheEntryBase":
|
97
|
+
"""Build an instance of the class based on model config."""
|
98
|
+
num_kv_heads = config.num_query_groups
|
99
|
+
k_shape = (
|
100
|
+
1,
|
101
|
+
BATCH_SIZE * num_kv_heads,
|
102
|
+
kv_cache_max,
|
103
|
+
config.head_dim,
|
104
|
+
) # 1, bk, s, h
|
105
|
+
v_shape = (
|
106
|
+
1,
|
107
|
+
BATCH_SIZE * num_kv_heads,
|
108
|
+
config.head_dim,
|
109
|
+
kv_cache_max,
|
110
|
+
) # 1, bk, h, s
|
111
|
+
return cls._from_model_config(
|
112
|
+
kv_cache_max, config, k_shape, v_shape, dtype, device
|
113
|
+
)
|
114
|
+
|
115
|
+
|
116
|
+
@dataclasses.dataclass
|
117
|
+
class KVCacheBase:
|
118
|
+
"""A utility class for holding KV cache entries per layer."""
|
119
|
+
|
120
|
+
caches: Tuple[KVCacheEntryBase, ...]
|
121
|
+
|
122
|
+
@classmethod
|
123
|
+
def _from_model_config(
|
124
|
+
cls,
|
125
|
+
kv_entry_cls,
|
126
|
+
config: model_config.ModelConfig,
|
127
|
+
dtype: torch.dtype = torch.float32,
|
128
|
+
device: torch.device = None,
|
129
|
+
) -> "KVCacheBase":
|
130
|
+
caches = [
|
131
|
+
kv_entry_cls.from_model_config(
|
132
|
+
config.kv_cache_max,
|
133
|
+
config.block_config(idx).attn_config,
|
134
|
+
dtype,
|
135
|
+
device,
|
136
|
+
)
|
137
|
+
for idx in range(config.num_layers)
|
138
|
+
]
|
139
|
+
obj = cls(caches=tuple(caches))
|
140
|
+
return obj
|
141
|
+
|
142
|
+
@classmethod
|
143
|
+
def from_model_config(
|
144
|
+
cls,
|
145
|
+
config: model_config.ModelConfig,
|
146
|
+
dtype: torch.dtype = torch.float32,
|
147
|
+
device: torch.device = None,
|
148
|
+
) -> "KVCacheBase":
|
149
|
+
"""Build an instance of the class based on model config.
|
150
|
+
|
151
|
+
Args:
|
152
|
+
config (ModelConfig): Model config used for building the cache.
|
153
|
+
dtype (torch.dtype, optional): The data type of the cache tensor.
|
154
|
+
Defaults to torch.float32.
|
155
|
+
device (torch.device, optional): The device placement of the cache
|
156
|
+
tensors. Defaults to None.
|
157
|
+
|
158
|
+
Returns:
|
159
|
+
KVCacheBase: The created cache object.
|
160
|
+
"""
|
161
|
+
return cls._from_model_config(
|
162
|
+
KVCacheEntryBase, config=config, dtype=dtype, device=device
|
163
|
+
)
|
164
|
+
|
165
|
+
def flatten(self) -> List[torch.Tensor]:
|
166
|
+
"""Flatten the cache entries into a list of tensors with order k_i, v_i."""
|
167
|
+
flattened, _ = _flatten_kvc(self)
|
168
|
+
return flattened
|
169
|
+
|
170
|
+
|
171
|
+
@dataclasses.dataclass
|
172
|
+
class KVCacheBTNH(KVCacheBase):
|
173
|
+
|
174
|
+
@classmethod
|
175
|
+
def from_model_config(
|
176
|
+
cls,
|
177
|
+
config: model_config.ModelConfig,
|
178
|
+
dtype: torch.dtype = torch.float32,
|
179
|
+
device: torch.device = None,
|
180
|
+
) -> "KVCacheBTNH":
|
181
|
+
return cls._from_model_config(
|
182
|
+
KVCacheEntryBTNH, config=config, dtype=dtype, device=device
|
183
|
+
)
|
184
|
+
|
185
|
+
|
186
|
+
@dataclasses.dataclass
|
187
|
+
class KVCacheTransposed(KVCacheBase):
|
188
|
+
|
189
|
+
@classmethod
|
190
|
+
def from_model_config(
|
191
|
+
cls,
|
192
|
+
config: model_config.ModelConfig,
|
193
|
+
dtype: torch.dtype = torch.float32,
|
194
|
+
device: torch.device = None,
|
195
|
+
) -> "KVCacheBTNH":
|
196
|
+
return cls._from_model_config(
|
197
|
+
KVCacheEntryTransposed, config=config, dtype=dtype, device=device
|
198
|
+
)
|
199
|
+
|
200
|
+
|
201
|
+
def _flatten_kvc(kvc: KVCacheBase) -> Tuple[List[str], List[str]]:
|
202
|
+
flattened = []
|
203
|
+
flat_names = []
|
204
|
+
none_names = []
|
205
|
+
for i, kv_entry in enumerate(kvc.caches):
|
206
|
+
flattened.append(kv_entry.k_cache)
|
207
|
+
flat_names.append(f"k_{i}")
|
208
|
+
flattened.append(kv_entry.v_cache)
|
209
|
+
flat_names.append(f"v_{i}")
|
210
|
+
return flattened, [flat_names, none_names]
|
211
|
+
|
212
|
+
|
213
|
+
def _flatten_kvc_with_keys(kvc: KVCacheBase) -> Tuple[List, List]:
|
214
|
+
flattened, (flat_names, none_names) = _flatten_kvc(kvc)
|
215
|
+
return [
|
216
|
+
(pytree.MappingKey(k), v) for k, v in zip(flat_names, flattened)
|
217
|
+
], flat_names
|
218
|
+
|
219
|
+
|
220
|
+
def _unflatten_kvc(
|
221
|
+
values: List[torch.Tensor], context: Tuple[List, List]
|
222
|
+
) -> KVCacheBase:
|
223
|
+
assert len(values) % 2 == 0, "Found odd number of K and V entries."
|
224
|
+
num_layers = len(values) // 2
|
225
|
+
flat_names = context[0]
|
226
|
+
kv_entries = []
|
227
|
+
for i in range(num_layers):
|
228
|
+
k_cache_idx = flat_names.index(f"k_{i}")
|
229
|
+
v_cache_idx = flat_names.index(f"v_{i}")
|
230
|
+
kv_entries.append(
|
231
|
+
KVCacheEntryBase(
|
232
|
+
k_cache=values[k_cache_idx], v_cache=values[v_cache_idx]
|
233
|
+
)
|
234
|
+
)
|
235
|
+
obj = KVCacheBase(tuple(kv_entries))
|
236
|
+
return obj
|
237
|
+
|
238
|
+
|
239
|
+
pytree.register_pytree_node(
|
240
|
+
KVCacheTransposed,
|
241
|
+
_flatten_kvc,
|
242
|
+
_unflatten_kvc,
|
243
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
244
|
+
serialized_type_name="",
|
245
|
+
)
|
246
|
+
|
247
|
+
pytree.register_pytree_node(
|
248
|
+
KVCacheBase,
|
249
|
+
_flatten_kvc,
|
250
|
+
_unflatten_kvc,
|
251
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
252
|
+
serialized_type_name="",
|
253
|
+
)
|
254
|
+
|
255
|
+
|
256
|
+
def update(
|
257
|
+
cache: KVCacheEntryBase,
|
258
|
+
input_pos: torch.Tensor,
|
259
|
+
k_slice: torch.Tensor,
|
260
|
+
v_slice: torch.Tensor,
|
261
|
+
use_dus: bool = True,
|
262
|
+
) -> KVCacheEntryBase:
|
263
|
+
"""Out of place update of Cache buffer.
|
264
|
+
|
265
|
+
Args:
|
266
|
+
cache (KVCacheEntryBase): The original cache buffer.
|
267
|
+
input_pos (torch.Tensor): The update slice positions.
|
268
|
+
k_slice (torch.Tensor): The K slice to be updated in the new cache.
|
269
|
+
v_slice (torch.Tensor): The V slice to be updated in the new cache.
|
270
|
+
|
271
|
+
Returns:
|
272
|
+
KVCacheEntryBase: The updated KVCacheBase entry based on the passed
|
273
|
+
inputs.
|
274
|
+
"""
|
275
|
+
update_kv_cache = _update_kv_impl
|
276
|
+
return update_kv_cache(cache, input_pos, k_slice, v_slice)
|
277
|
+
|
278
|
+
|
279
|
+
def _get_slice_indices(
|
280
|
+
positions: torch.Tensor, cache_dim: int, ts_idx: int
|
281
|
+
) -> torch.Tensor:
|
282
|
+
"""Returns the slice indices."""
|
283
|
+
positions = positions.float()[0].reshape(
|
284
|
+
1,
|
285
|
+
)
|
286
|
+
|
287
|
+
zeros = torch.zeros((1,), dtype=torch.float32)
|
288
|
+
indices = []
|
289
|
+
for i in range(cache_dim):
|
290
|
+
if i == ts_idx:
|
291
|
+
indices.append(positions)
|
292
|
+
else:
|
293
|
+
indices.append(zeros)
|
294
|
+
slice_indices = torch.cat(indices, dim=0)
|
295
|
+
slice_indices = slice_indices.int()
|
296
|
+
return slice_indices
|
297
|
+
|
298
|
+
|
299
|
+
def _update_kv_impl(
|
300
|
+
cache: KVCacheEntryTransposed,
|
301
|
+
input_pos: torch.Tensor,
|
302
|
+
k_slice: torch.Tensor,
|
303
|
+
v_slice: torch.Tensor,
|
304
|
+
) -> KVCacheEntryTransposed:
|
305
|
+
"""Update the cache buffer with High Level Function Boundary annotation."""
|
306
|
+
cache_dim = 4
|
307
|
+
k_ts_idx = 2
|
308
|
+
v_ts_idx = 3
|
309
|
+
positions = input_pos.clone()
|
310
|
+
k_slice_indices = _get_slice_indices(positions, cache_dim, k_ts_idx)
|
311
|
+
v_slice_indices = _get_slice_indices(positions, cache_dim, v_ts_idx)
|
312
|
+
k = dynamic_update_slice(cache.k_cache, k_slice, [x for x in k_slice_indices])
|
313
|
+
v = dynamic_update_slice(cache.v_cache, v_slice, [x for x in v_slice_indices])
|
314
|
+
return KVCacheEntryTransposed(k, v)
|
@@ -0,0 +1,97 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Implements scaled dot product attention. This is experimental and
|
16
|
+
# GPU-specific code.
|
17
|
+
|
18
|
+
import math
|
19
|
+
from typing import Optional
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers.experimental import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers.experimental import types
|
23
|
+
from ai_edge_torch.generative.utilities import bmm_4d as bmm_lib
|
24
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
25
|
+
from multipledispatch import dispatch
|
26
|
+
import torch
|
27
|
+
import torch.nn.functional as F
|
28
|
+
|
29
|
+
|
30
|
+
def scaled_dot_product_attention(
|
31
|
+
kv: kv_utils.KVCacheBase,
|
32
|
+
query: torch.Tensor,
|
33
|
+
key: torch.Tensor,
|
34
|
+
value: torch.Tensor,
|
35
|
+
head_size: int,
|
36
|
+
mask: Optional[torch.Tensor] = None,
|
37
|
+
scale: Optional[float] = None,
|
38
|
+
softcap: Optional[float] = None,
|
39
|
+
):
|
40
|
+
if hasattr(kv, "k_type") and hasattr(kv, "v_type"):
|
41
|
+
return _sdpa(
|
42
|
+
kv.k_type,
|
43
|
+
kv.v_type,
|
44
|
+
query=query,
|
45
|
+
key=key,
|
46
|
+
value=value,
|
47
|
+
head_size=head_size,
|
48
|
+
mask=mask,
|
49
|
+
scale=scale,
|
50
|
+
softcap=softcap,
|
51
|
+
)
|
52
|
+
raise ValueError(
|
53
|
+
f"SDPA for K type {type(kv.caches[0].k_type)} and V type"
|
54
|
+
f" {type(kv.caches[0].v_type)} not supported."
|
55
|
+
)
|
56
|
+
|
57
|
+
|
58
|
+
@dispatch(types.BNTH, types.BNHT)
|
59
|
+
def _sdpa(k_type, v_type, *args, **kwargs):
|
60
|
+
query = kwargs["query"]
|
61
|
+
key = kwargs["key"]
|
62
|
+
value = kwargs["value"]
|
63
|
+
head_size = kwargs["head_size"]
|
64
|
+
mask = kwargs.get("mask", None)
|
65
|
+
scale = kwargs.get("scale", None)
|
66
|
+
softcap = kwargs.get("softcap", None)
|
67
|
+
|
68
|
+
if scale is None:
|
69
|
+
scale = 1.0 / math.sqrt(head_size)
|
70
|
+
|
71
|
+
query = query * scale
|
72
|
+
|
73
|
+
assert mask is not None, "Mask should not be None!"
|
74
|
+
t = mask.shape[2]
|
75
|
+
|
76
|
+
logits = bmm_lib.bmm_4d(query, key)
|
77
|
+
|
78
|
+
_, bk, gt, s = logits.shape
|
79
|
+
g = gt // t
|
80
|
+
logits = logits.reshape((bk, g, t, s))
|
81
|
+
if softcap is not None:
|
82
|
+
logits = torch.tanh(logits / softcap)
|
83
|
+
logits = logits * softcap
|
84
|
+
|
85
|
+
padded_logits = logits + mask
|
86
|
+
padded_logits = padded_logits.reshape(1, bk, gt, s)
|
87
|
+
probs = F.softmax(padded_logits, dim=-1).type_as(key)
|
88
|
+
|
89
|
+
encoded = bmm_lib.bmm_4d(probs, value)
|
90
|
+
|
91
|
+
return encoded # 1, bk, gt, h
|
92
|
+
|
93
|
+
|
94
|
+
@dispatch(object, object)
|
95
|
+
def _sdpa(k_type, v_type, *args, **kwargs):
|
96
|
+
|
97
|
+
raise ValueError(f"No implementations for k={k_type} and v={v_type}")
|
@@ -0,0 +1,97 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# A listing of types describes the K and V tensors in KV caches.
|
16
|
+
|
17
|
+
import enum
|
18
|
+
from enum import Enum, auto
|
19
|
+
from typing import Tuple
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
|
23
|
+
@enum.unique
|
24
|
+
class TensorDims(Enum):
|
25
|
+
BATCH = enum.auto()
|
26
|
+
SEQUENCE = enum.auto()
|
27
|
+
NUM_HEADS = enum.auto()
|
28
|
+
HEAD_DIM = enum.auto()
|
29
|
+
MODEL_DIM = enum.auto() # often num_heads * head_dim
|
30
|
+
|
31
|
+
|
32
|
+
DIM_TO_LETTER = {
|
33
|
+
TensorDims.BATCH: 'B',
|
34
|
+
TensorDims.SEQUENCE: 'T',
|
35
|
+
TensorDims.NUM_HEADS: 'N',
|
36
|
+
TensorDims.HEAD_DIM: 'H',
|
37
|
+
TensorDims.MODEL_DIM: 'D',
|
38
|
+
}
|
39
|
+
|
40
|
+
|
41
|
+
class TensorDimensionMeta(type):
|
42
|
+
"""Metaclass to create classes representing an order of tensor dimensions."""
|
43
|
+
|
44
|
+
def __new__(cls, name, bases, attrs, dimensions: Tuple[TensorDims]):
|
45
|
+
"""Creates a new class with the given name and tensor dimension order.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
name: Name of the new class.
|
49
|
+
bases: Base classes for the new class.
|
50
|
+
attrs: Attributes for the new class.
|
51
|
+
dimensions: A tuple of TensorDims defining the order.
|
52
|
+
"""
|
53
|
+
|
54
|
+
attrs['dimensions'] = (
|
55
|
+
dimensions # Store the dimensions as a class attribute
|
56
|
+
)
|
57
|
+
return super().__new__(cls, name, bases, attrs)
|
58
|
+
|
59
|
+
def __init__(cls, name, bases, attrs, dimensions: Tuple[TensorDims]):
|
60
|
+
super().__init__(name, bases, attrs)
|
61
|
+
|
62
|
+
def __repr__(cls):
|
63
|
+
return f'{cls.__name__}'
|
64
|
+
|
65
|
+
|
66
|
+
def create_tensor_dimension_order_class(dims: Tuple[TensorDims]):
|
67
|
+
"""Creates a TensorDimensionMeta class with the specified dimensions.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
dimensions: A tuple of TensorDims.
|
71
|
+
|
72
|
+
Returns:
|
73
|
+
A new class representing the tensor dimension order.
|
74
|
+
"""
|
75
|
+
name = ''.join(DIM_TO_LETTER[d] for d in dims)
|
76
|
+
# Derive from nn.Module for torch tracing compatiblity.
|
77
|
+
return TensorDimensionMeta(name, (nn.Module,), {}, dimensions=dims)
|
78
|
+
|
79
|
+
|
80
|
+
BTNH = create_tensor_dimension_order_class((
|
81
|
+
TensorDims.BATCH,
|
82
|
+
TensorDims.SEQUENCE,
|
83
|
+
TensorDims.NUM_HEADS,
|
84
|
+
TensorDims.HEAD_DIM,
|
85
|
+
))
|
86
|
+
BNTH = create_tensor_dimension_order_class((
|
87
|
+
TensorDims.BATCH,
|
88
|
+
TensorDims.NUM_HEADS,
|
89
|
+
TensorDims.SEQUENCE,
|
90
|
+
TensorDims.HEAD_DIM,
|
91
|
+
))
|
92
|
+
BNHT = create_tensor_dimension_order_class((
|
93
|
+
TensorDims.BATCH,
|
94
|
+
TensorDims.NUM_HEADS,
|
95
|
+
TensorDims.HEAD_DIM,
|
96
|
+
TensorDims.SEQUENCE,
|
97
|
+
))
|
@@ -17,6 +17,7 @@
|
|
17
17
|
|
18
18
|
import ai_edge_torch
|
19
19
|
from ai_edge_torch.generative.examples.amd_llama_135m import amd_llama_135m
|
20
|
+
from ai_edge_torch.generative.examples.deepseek import deepseek
|
20
21
|
from ai_edge_torch.generative.examples.gemma import gemma1
|
21
22
|
from ai_edge_torch.generative.examples.gemma import gemma2
|
22
23
|
from ai_edge_torch.generative.examples.llama import llama
|
@@ -150,16 +151,15 @@ class TestModelConversion(googletest.TestCase):
|
|
150
151
|
ai_edge_torch.config.in_oss,
|
151
152
|
reason="tests with custom ops are not supported in oss",
|
152
153
|
)
|
153
|
-
|
154
154
|
def test_smollm2(self):
|
155
155
|
config = smollm.get_fake_model_config_v2()
|
156
156
|
pytorch_model = smollm.SmolLM2(config).eval()
|
157
157
|
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
158
|
+
|
158
159
|
@googletest.skipIf(
|
159
160
|
ai_edge_torch.config.in_oss,
|
160
161
|
reason="tests with custom ops are not supported in oss",
|
161
162
|
)
|
162
|
-
|
163
163
|
def test_openelm(self):
|
164
164
|
config = openelm.get_fake_model_config()
|
165
165
|
pytorch_model = openelm.OpenELM(config).eval()
|
@@ -174,6 +174,15 @@ class TestModelConversion(googletest.TestCase):
|
|
174
174
|
pytorch_model = qwen.Qwen(config).eval()
|
175
175
|
self._test_model(config, pytorch_model, "prefill", atol=1e-3, rtol=1e-5)
|
176
176
|
|
177
|
+
@googletest.skipIf(
|
178
|
+
ai_edge_torch.config.in_oss,
|
179
|
+
reason="tests with custom ops are not supported in oss",
|
180
|
+
)
|
181
|
+
def test_deepseek(self):
|
182
|
+
config = deepseek.get_fake_model_config()
|
183
|
+
pytorch_model = deepseek.DeepSeekDistillQwen(config).eval()
|
184
|
+
self._test_model(config, pytorch_model, "prefill", atol=1e-5, rtol=1e-5)
|
185
|
+
|
177
186
|
@googletest.skipIf(
|
178
187
|
ai_edge_torch.config.in_oss,
|
179
188
|
reason="tests with custom ops are not supported in oss",
|
@@ -19,7 +19,6 @@ import os
|
|
19
19
|
from typing import Optional, Union
|
20
20
|
from ai_edge_torch._convert import converter as converter_utils
|
21
21
|
from ai_edge_torch.generative.layers import lora as lora_utils
|
22
|
-
import ai_edge_torch.generative.layers.kv_cache as kv_utils
|
23
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
23
|
from ai_edge_torch.generative.quantize import quant_recipes
|
25
24
|
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
@@ -151,9 +150,21 @@ def _export_helper(
|
|
151
150
|
else None
|
152
151
|
)
|
153
152
|
|
153
|
+
if export_config.prefill_mask is None:
|
154
|
+
prefill_masks = None
|
155
|
+
elif isinstance(export_config.prefill_mask, torch.Tensor):
|
156
|
+
prefill_masks = [export_config.prefill_mask]
|
157
|
+
elif isinstance(export_config.prefill_mask, list):
|
158
|
+
prefill_masks = export_config.prefill_mask
|
159
|
+
else:
|
160
|
+
raise ValueError('Prefill masks unrecognized.')
|
161
|
+
|
162
|
+
if prefill_masks:
|
163
|
+
assert len(prefill_masks) == len(prefill_seq_lens)
|
164
|
+
|
154
165
|
decode_token = torch.tensor([[0]], dtype=torch.int)
|
155
166
|
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
156
|
-
kv =
|
167
|
+
kv = export_config.kvcache_cls.from_model_config(config)
|
157
168
|
|
158
169
|
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
159
170
|
|
@@ -174,8 +185,8 @@ def _export_helper(
|
|
174
185
|
'input_pos': prefill_input_pos,
|
175
186
|
'kv_cache': kv,
|
176
187
|
}
|
177
|
-
if
|
178
|
-
sample_kwargs['mask'] =
|
188
|
+
if prefill_masks is not None:
|
189
|
+
sample_kwargs['mask'] = prefill_masks[i]
|
179
190
|
|
180
191
|
if lora is not None:
|
181
192
|
prefill_signature_name += f'_lora_r{lora.get_rank()}'
|
@@ -17,7 +17,7 @@
|
|
17
17
|
|
18
18
|
import copy
|
19
19
|
from dataclasses import dataclass
|
20
|
-
from typing import Optional, Tuple
|
20
|
+
from typing import List, Optional, Tuple
|
21
21
|
|
22
22
|
from ai_edge_torch.generative.layers import attention
|
23
23
|
from ai_edge_torch.generative.layers import builder
|
@@ -56,8 +56,10 @@ class ExportConfig:
|
|
56
56
|
# When False, only decode signatures will produce output.
|
57
57
|
output_logits_on_prefill: bool = False
|
58
58
|
# Attention masks given as inputs to the model.
|
59
|
-
prefill_mask: Optional[torch.Tensor] = None
|
60
|
-
decode_mask: Optional[torch.Tensor] = None
|
59
|
+
prefill_mask: Optional[torch.Tensor | List[torch.Tensor]] = None
|
60
|
+
decode_mask: Optional[torch.Tensor | List[torch.Tensor]] = None
|
61
|
+
# The KV Cache class for K and V buffers in attention.
|
62
|
+
kvcache_cls: type = kv_utils.KVCache
|
61
63
|
|
62
64
|
|
63
65
|
class DecoderOnlyModel(nn.Module):
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20250125
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=8sPR_5uXJA4NEE0nIwNdSl-ADOJEoR8hAgYvBQDY70Y,120
|
|
2
2
|
ai_edge_torch/_config.py,sha256=AiqhbcheF7j_ozIGDLC89k1we95aVgFDa-tR6h7UI0s,2529
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
5
|
-
ai_edge_torch/version.py,sha256=
|
5
|
+
ai_edge_torch/version.py,sha256=yuz53SwRvngiQ41D-VX7MPmVGe-Vi-UR3v12E-o3P4I,706
|
6
6
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
7
7
|
ai_edge_torch/_convert/conversion.py,sha256=mckvxznKLXdF2HuJg_IxQaT5Ty-iWl_iXElHEugH3VI,5452
|
8
8
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -49,6 +49,10 @@ ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0H
|
|
49
49
|
ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=urNif89PyCXbdXT5spOeDvdM5luJ-a5HaXHM86v4JnU,2766
|
50
50
|
ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=Oqlg5ZoUuG2aU3067QaPpmEXWOdB8GEq7u_NWoBpoB4,2337
|
51
51
|
ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=-9Nb9D818YSJR3olVtBwoLNeMMD5qE58YBnsA67hlHg,2421
|
52
|
+
ai_edge_torch/generative/examples/deepseek/__init__.py,sha256=JaAnrFoXTl3RJX97XspklkTyqOHVyAgRJsZtzNDd10c,671
|
53
|
+
ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py,sha256=I5eA-XfFdHjYwDsLIjn23T2e-IgnSCQ129-5DOU8j44,2532
|
54
|
+
ai_edge_torch/generative/examples/deepseek/deepseek.py,sha256=AOAJ7ltXwY5IbmcCP2nVHW9FmRwexzfNxnoDlR-sW9c,2885
|
55
|
+
ai_edge_torch/generative/examples/deepseek/verify.py,sha256=sDYBhmE_CeZw5iLIQ7rJNGLjhcTyKUQGdg7_QQBh9WM,2398
|
52
56
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
53
57
|
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=8HJi0cutxPstafVNs2LfBKdUzufVucje1Vrfjw_RS_g,2527
|
54
58
|
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=MX8fZhJJPZ5IoMiNHX0tLkRpHYqVuh4qhW0rkeIfmYw,2529
|
@@ -97,7 +101,7 @@ ai_edge_torch/generative/examples/smollm/verify.py,sha256=KpYxVz_lv61YWy6HLfwT68
|
|
97
101
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
98
102
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
99
103
|
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=5M4auM33SgCTODt0VT8TO-EVILruqGDRiNILBPeB83Y,6072
|
100
|
-
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=
|
104
|
+
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=GtwKAByEk0ENGEWbUmC2mAAPkbLZ3M5xH1HIToyu8QE,5307
|
101
105
|
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=sQKQ-k6H9kG2brgwLsktjCMeN2h0POyfMP6iNsPNKWc,16271
|
102
106
|
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=6W58LxmHHkz2ctgpknQkyoDANZAnE9Byp_svfqLpQf0,34793
|
103
107
|
ai_edge_torch/generative/examples/stable_diffusion/encoder.py,sha256=CAPsW84A8f00nS6fLFeh_XUjCPsDCA5UxHOUsMrLfSU,3450
|
@@ -134,6 +138,11 @@ ai_edge_torch/generative/layers/model_config.py,sha256=ZVRWEGw1BnLbLCuoR71kWGqQt
|
|
134
138
|
ai_edge_torch/generative/layers/normalization.py,sha256=MbwH-n80Fob5YvjBzdqDjBizMHLzSJGYRDdbD-rL5C0,6174
|
135
139
|
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=975zR202MdIrILJ7blceAcxrNqX1ZCN0ECKG1gz-bV8,2655
|
136
140
|
ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=vp8dVx6tOe99neJhpbrtIt5fvN5NFw19JVH1v0yi5Mg,4154
|
141
|
+
ai_edge_torch/generative/layers/experimental/__init__.py,sha256=nz-K0h8DfiATHzR6s1_bCw2akUmHWffU1bDRSkIzSqI,592
|
142
|
+
ai_edge_torch/generative/layers/experimental/attention.py,sha256=KC1UkIhaPx2DNRfkxCXO7eZZMeNm2UxkjFi-fB8HVhw,9212
|
143
|
+
ai_edge_torch/generative/layers/experimental/kv_cache.py,sha256=gE_q8YoSzOhGgbSm0K91jXkbFKnFJpuYf-hxMzLNw78,8976
|
144
|
+
ai_edge_torch/generative/layers/experimental/scaled_dot_product_attention.py,sha256=1vMh1L3uYX4ptKQMWcAjxkL1v2-g0jmOiuai8ydp0dc,2879
|
145
|
+
ai_edge_torch/generative/layers/experimental/types.py,sha256=bPPxw6TOCZVWdeDP3vCbOnjNP5-bdUMmfsfO-EtdazQ,2847
|
137
146
|
ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
138
147
|
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=9jKzOfiBQ66bp1ZnVIAoREIifVNFx4aTlQeYMAx2_pA,29062
|
139
148
|
ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
|
@@ -151,15 +160,15 @@ ai_edge_torch/generative/test/test_kv_cache.py,sha256=2AulHBS3hC4b_68PNNBkRVOryp
|
|
151
160
|
ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
|
152
161
|
ai_edge_torch/generative/test/test_lora.py,sha256=6QIM6RLTc2HrodGpp_aS3OxM9Rco2KAzEnYgotkg41M,5310
|
153
162
|
ai_edge_torch/generative/test/test_model_conversion.py,sha256=jfqkECCX7XKHeBAuDXrkwQJf0vM72eG3LMc5rluha84,6191
|
154
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
163
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=AJs_ARfWUqwuFRwYtQQOLd87CiD4mUDwAhq885cqc4Q,12875
|
155
164
|
ai_edge_torch/generative/test/test_quantize.py,sha256=bEJMhpQ9bIDUZVBXTW888728FcH-i3SyE4JSZZUgU0A,6071
|
156
165
|
ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
|
157
166
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
158
167
|
ai_edge_torch/generative/utilities/bmm_4d.py,sha256=2BMOYiFVUsl-bjxmLkrX4N7kpO0CnhB7eDYxm_iBCr8,2533
|
159
|
-
ai_edge_torch/generative/utilities/converter.py,sha256=
|
168
|
+
ai_edge_torch/generative/utilities/converter.py,sha256=6siSpCvH_cLV-eP40lkF_AqjBpYv68xeMRQ722fKgE0,8065
|
160
169
|
ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
|
161
170
|
ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
|
162
|
-
ai_edge_torch/generative/utilities/model_builder.py,sha256=
|
171
|
+
ai_edge_torch/generative/utilities/model_builder.py,sha256=5WqcxpeTdt51nVoUwt9g5kKB5wQKj2eYbiaz7k6Ofxg,6815
|
163
172
|
ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
|
164
173
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
165
174
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
@@ -213,8 +222,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
213
222
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
214
223
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
215
224
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
216
|
-
ai_edge_torch_nightly-0.3.0.
|
217
|
-
ai_edge_torch_nightly-0.3.0.
|
218
|
-
ai_edge_torch_nightly-0.3.0.
|
219
|
-
ai_edge_torch_nightly-0.3.0.
|
220
|
-
ai_edge_torch_nightly-0.3.0.
|
225
|
+
ai_edge_torch_nightly-0.3.0.dev20250125.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
226
|
+
ai_edge_torch_nightly-0.3.0.dev20250125.dist-info/METADATA,sha256=BkUH2iAinJYGmBLTMdeYSpihXAHY_mBOkeprZLPaDGk,1966
|
227
|
+
ai_edge_torch_nightly-0.3.0.dev20250125.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
228
|
+
ai_edge_torch_nightly-0.3.0.dev20250125.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
229
|
+
ai_edge_torch_nightly-0.3.0.dev20250125.dist-info/RECORD,,
|
File without changes
|
File without changes
|