ai-edge-torch-nightly 0.3.0.dev20250123__py3-none-any.whl → 0.3.0.dev20250125__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/_config.py +9 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +11 -8
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +22 -24
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +3 -4
- ai_edge_torch/generative/examples/deepseek/__init__.py +14 -0
- ai_edge_torch/generative/examples/deepseek/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/deepseek/deepseek.py +92 -0
- ai_edge_torch/generative/examples/deepseek/verify.py +70 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +3 -0
- ai_edge_torch/generative/layers/experimental/__init__.py +14 -0
- ai_edge_torch/generative/layers/experimental/attention.py +269 -0
- ai_edge_torch/generative/layers/experimental/kv_cache.py +314 -0
- ai_edge_torch/generative/layers/experimental/scaled_dot_product_attention.py +97 -0
- ai_edge_torch/generative/layers/experimental/types.py +97 -0
- ai_edge_torch/generative/layers/kv_cache.py +2 -1
- ai_edge_torch/generative/layers/model_config.py +5 -1
- ai_edge_torch/generative/test/test_model_conversion_large.py +11 -2
- ai_edge_torch/generative/utilities/bmm_4d.py +76 -0
- ai_edge_torch/generative/utilities/converter.py +18 -2
- ai_edge_torch/generative/utilities/model_builder.py +6 -1
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +1 -1
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +22 -2
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250123.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250123.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/RECORD +28 -18
- {ai_edge_torch_nightly-0.3.0.dev20250123.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250123.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250123.dist-info → ai_edge_torch_nightly-0.3.0.dev20250125.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,269 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common building blocks for a GPU-specific Attention layer.
|
17
|
+
|
18
|
+
This is a temporary implemenation for the GPU. It is subject to change/removal
|
19
|
+
at any time.
|
20
|
+
"""
|
21
|
+
|
22
|
+
from typing import Optional, Tuple, Union
|
23
|
+
|
24
|
+
from ai_edge_torch.generative.layers import builder
|
25
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
26
|
+
from ai_edge_torch.generative.layers.experimental import kv_cache as kv_utils
|
27
|
+
from ai_edge_torch.generative.layers.experimental import scaled_dot_product_attention as sdpa
|
28
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
29
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
30
|
+
import torch
|
31
|
+
from torch import nn
|
32
|
+
|
33
|
+
|
34
|
+
class TransformerBlock(nn.Module):
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
config: cfg.TransformerBlockConfig,
|
39
|
+
model_config: cfg.ModelConfig,
|
40
|
+
) -> None:
|
41
|
+
"""Initialize an instance of the TransformerBlock.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
45
|
+
transformer block.
|
46
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
47
|
+
this transformer block belongs to.
|
48
|
+
"""
|
49
|
+
super().__init__()
|
50
|
+
self.pre_atten_norm = builder.build_norm(
|
51
|
+
model_config.embedding_dim,
|
52
|
+
config.pre_attention_norm_config,
|
53
|
+
)
|
54
|
+
self.atten_func = CausalSelfAttention(
|
55
|
+
model_config.batch_size,
|
56
|
+
model_config.embedding_dim,
|
57
|
+
config.attn_config,
|
58
|
+
model_config.enable_hlfb,
|
59
|
+
)
|
60
|
+
self.post_atten_norm = builder.build_norm(
|
61
|
+
model_config.embedding_dim,
|
62
|
+
config.post_attention_norm_config,
|
63
|
+
)
|
64
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
65
|
+
self.config = config
|
66
|
+
|
67
|
+
def forward(
|
68
|
+
self,
|
69
|
+
x: torch.Tensor,
|
70
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
71
|
+
mask: Optional[torch.Tensor] = None,
|
72
|
+
input_pos: Optional[torch.Tensor] = None,
|
73
|
+
kv_cache: kv_utils.KVCacheEntryBase = None,
|
74
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
75
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntryBase]]:
|
76
|
+
"""Forward function of the TransformerBlock.
|
77
|
+
|
78
|
+
Args:
|
79
|
+
x (torch.Tensor): the input tensor.
|
80
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
81
|
+
mask (torch.Tensor): the optional mask tensor.
|
82
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
83
|
+
kv_cache (KVCacheEntryBase): the optional kv cache entry.
|
84
|
+
lora (LoRAEntry): the optional lora entry.
|
85
|
+
|
86
|
+
Returns:
|
87
|
+
output activation from this transformer block, and updated kv cache (if
|
88
|
+
passed in).
|
89
|
+
"""
|
90
|
+
kv = None
|
91
|
+
if self.config.parallel_residual:
|
92
|
+
x_norm = self.pre_atten_norm(x)
|
93
|
+
atten_func_out = self.atten_func(
|
94
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
95
|
+
)
|
96
|
+
if kv_cache is None:
|
97
|
+
attn_out = atten_func_out
|
98
|
+
else:
|
99
|
+
attn_out, kv = atten_func_out
|
100
|
+
ff_out = self.ff(x_norm)
|
101
|
+
output = x + attn_out + ff_out
|
102
|
+
else:
|
103
|
+
x_norm = self.pre_atten_norm(x)
|
104
|
+
atten_func_out = self.atten_func(
|
105
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
106
|
+
)
|
107
|
+
if kv_cache is None:
|
108
|
+
attn_out = atten_func_out
|
109
|
+
else:
|
110
|
+
attn_out, kv = atten_func_out
|
111
|
+
x = x + attn_out
|
112
|
+
x_norm = self.post_atten_norm(x)
|
113
|
+
output = x + self.ff(x_norm)
|
114
|
+
|
115
|
+
return output if kv is None else (output, kv)
|
116
|
+
|
117
|
+
|
118
|
+
class CausalSelfAttention(nn.Module):
|
119
|
+
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
batch_size: int,
|
123
|
+
dim: int,
|
124
|
+
config: cfg.AttentionConfig,
|
125
|
+
enable_hlfb: bool,
|
126
|
+
) -> None:
|
127
|
+
"""Initialize an instance of CausalSelfAttention.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
batch_size (int): batch size of the input tensor.
|
131
|
+
dim (int): causal attention's input/output dimmension.
|
132
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
133
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
134
|
+
"""
|
135
|
+
super().__init__()
|
136
|
+
self.kv_cache = None
|
137
|
+
self.batch_size = batch_size
|
138
|
+
qkv_shape = (
|
139
|
+
config.num_heads + 2 * config.num_query_groups
|
140
|
+
) * config.head_dim
|
141
|
+
output_shape = config.num_heads * config.head_dim
|
142
|
+
# Key, query, value projections for all heads.
|
143
|
+
self.qkv_projection = nn.Linear(dim, qkv_shape, bias=config.qkv_use_bias)
|
144
|
+
self.output_projection = nn.Linear(
|
145
|
+
output_shape, dim, bias=config.output_proj_use_bias
|
146
|
+
)
|
147
|
+
self.query_norm = builder.build_norm(
|
148
|
+
config.head_dim, config.query_norm_config
|
149
|
+
)
|
150
|
+
self.key_norm = builder.build_norm(config.head_dim, config.key_norm_config)
|
151
|
+
self.config = config
|
152
|
+
self.enable_hlfb = enable_hlfb
|
153
|
+
self.sdpa_func = sdpa.scaled_dot_product_attention
|
154
|
+
|
155
|
+
def forward(
|
156
|
+
self,
|
157
|
+
x: torch.Tensor,
|
158
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
159
|
+
mask: Optional[torch.Tensor] = None,
|
160
|
+
input_pos: Optional[torch.Tensor] = None,
|
161
|
+
kv_cache: Optional[kv_utils.KVCacheEntryBase] = None,
|
162
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
163
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntryBase]]:
|
164
|
+
"""Forward function of the CausalSelfAttention layer, which can support
|
165
|
+
|
166
|
+
MQA, GQA and MHA.
|
167
|
+
|
168
|
+
Args:
|
169
|
+
x (torch.Tensor): the input tensor.
|
170
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
171
|
+
mask (torch.Tensor): the optional mask tensor.
|
172
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
173
|
+
kv_cache (KVCacheEntryBase): the KV cache entry corresponding to this
|
174
|
+
module.
|
175
|
+
lora (LoRAEntry): the optional lora entry.
|
176
|
+
|
177
|
+
Returns:
|
178
|
+
output activation from this self attention layer, and the updated
|
179
|
+
KV Cach Entry (if passed in).
|
180
|
+
"""
|
181
|
+
# Batch size, sequence length, embedding dimensionality.
|
182
|
+
B, T, E = x.size()
|
183
|
+
assert B == self.batch_size, (
|
184
|
+
"batch size of input tensor must match with the batch size specified in"
|
185
|
+
" the model configuration."
|
186
|
+
)
|
187
|
+
|
188
|
+
qkv = self.qkv_projection(x)
|
189
|
+
|
190
|
+
# Assemble into a number of query groups to support MHA, MQA and GQA.
|
191
|
+
q_per_kv = self.config.num_heads // self.config.num_query_groups
|
192
|
+
# Each group has >=1 queries, 1 key, and 1 value.
|
193
|
+
if self.config.qkv_transpose_before_split:
|
194
|
+
qkv = qkv.view(B, T, -1, self.config.head_dim)
|
195
|
+
q, k, v = qkv.split(
|
196
|
+
(
|
197
|
+
q_per_kv * self.config.num_query_groups,
|
198
|
+
self.config.num_query_groups,
|
199
|
+
self.config.num_query_groups,
|
200
|
+
),
|
201
|
+
dim=-2,
|
202
|
+
)
|
203
|
+
else:
|
204
|
+
qkv = qkv.view(B, T, self.config.num_query_groups, -1)
|
205
|
+
q, k, v = qkv.split(
|
206
|
+
(
|
207
|
+
q_per_kv * self.config.head_dim,
|
208
|
+
self.config.head_dim,
|
209
|
+
self.config.head_dim,
|
210
|
+
),
|
211
|
+
dim=-1,
|
212
|
+
)
|
213
|
+
|
214
|
+
if lora is not None:
|
215
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
216
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
217
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
218
|
+
|
219
|
+
q = self.query_norm(q)
|
220
|
+
k = self.key_norm(k)
|
221
|
+
|
222
|
+
q = q.reshape(B, T, -1, self.config.head_dim)
|
223
|
+
k = k.reshape(B, T, -1, self.config.head_dim)
|
224
|
+
v = v.reshape(B, T, -1, self.config.head_dim)
|
225
|
+
|
226
|
+
if rope is not None:
|
227
|
+
# Compute rotary positional embedding for query and key.
|
228
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
229
|
+
cos, sin = rope
|
230
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
231
|
+
|
232
|
+
# Transpose k/v to specific layout for GPU implementation.
|
233
|
+
b, _, n, h = q.shape
|
234
|
+
g = n // self.config.num_query_groups
|
235
|
+
# btnh -> bnth -> b(kg)th -> 1(bk)(gt)h
|
236
|
+
q = q.permute(0, 2, 1, 3).reshape(
|
237
|
+
1, b * self.config.num_query_groups, g * T, h
|
238
|
+
)
|
239
|
+
|
240
|
+
k = k.permute(0, 2, 1, 3).reshape(
|
241
|
+
1, -1, T, self.config.head_dim
|
242
|
+
) # 1, bk, s, h
|
243
|
+
v = v.permute(0, 2, 3, 1).reshape(
|
244
|
+
1, -1, self.config.head_dim, T
|
245
|
+
) # 1, bk, h, s
|
246
|
+
|
247
|
+
if kv_cache is not None:
|
248
|
+
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
249
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
250
|
+
|
251
|
+
sdpa_out = self.sdpa_func(
|
252
|
+
kv_cache,
|
253
|
+
q,
|
254
|
+
k,
|
255
|
+
v,
|
256
|
+
self.config.head_dim,
|
257
|
+
mask=mask,
|
258
|
+
softcap=self.config.logit_softcap,
|
259
|
+
) # 1, bk, gt, h
|
260
|
+
sdpa_out = (
|
261
|
+
sdpa_out.reshape(B, -1, T, h).permute(0, 2, 1, 3).reshape(B, T, -1)
|
262
|
+
)
|
263
|
+
|
264
|
+
# Compute the output projection.
|
265
|
+
y = self.output_projection(sdpa_out)
|
266
|
+
if lora is not None:
|
267
|
+
y += lora_utils.apply_lora(sdpa_out, lora.attention.output)
|
268
|
+
|
269
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -0,0 +1,314 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utility functions for KV Cache.
|
17
|
+
|
18
|
+
This is an experimental implementation and is subject to change at any time.
|
19
|
+
"""
|
20
|
+
|
21
|
+
import dataclasses
|
22
|
+
from typing import List, Tuple
|
23
|
+
|
24
|
+
from ai_edge_torch import hlfb
|
25
|
+
from ai_edge_torch.generative.layers import model_config
|
26
|
+
from ai_edge_torch.generative.layers.experimental import types as types
|
27
|
+
from ai_edge_torch.generative.utilities.dynamic_update_slice import dynamic_update_slice
|
28
|
+
import torch
|
29
|
+
import torch.nn as nn
|
30
|
+
import torch.utils._pytree as pytree
|
31
|
+
|
32
|
+
BATCH_SIZE = 1
|
33
|
+
|
34
|
+
|
35
|
+
@dataclasses.dataclass
|
36
|
+
class KVCacheEntryBase:
|
37
|
+
"""A single cache entry that includes K and V caches.
|
38
|
+
|
39
|
+
The chaches are built based on the provided config with the shape of
|
40
|
+
(batch_size=1, kv_cache_max, num_query_groups, head_dim).
|
41
|
+
"""
|
42
|
+
|
43
|
+
k_cache: torch.Tensor
|
44
|
+
v_cache: torch.Tensor
|
45
|
+
|
46
|
+
@classmethod
|
47
|
+
def _from_model_config(
|
48
|
+
cls,
|
49
|
+
kv_cache_max: int,
|
50
|
+
config: model_config.AttentionConfig,
|
51
|
+
k_shape: Tuple,
|
52
|
+
v_shape: Tuple,
|
53
|
+
dtype: torch.dtype = torch.float32,
|
54
|
+
device: torch.device = None,
|
55
|
+
) -> "KVCacheEntryBase":
|
56
|
+
"""Build an instance of the class based on model config."""
|
57
|
+
k = torch.zeros(k_shape, dtype=dtype, device=device)
|
58
|
+
v = torch.zeros(v_shape, dtype=dtype, device=device)
|
59
|
+
obj = cls(k_cache=k, v_cache=v)
|
60
|
+
return obj
|
61
|
+
|
62
|
+
@classmethod
|
63
|
+
def from_model_config(
|
64
|
+
cls,
|
65
|
+
kv_cache_max: int,
|
66
|
+
config: model_config.AttentionConfig,
|
67
|
+
dtype: torch.dtype = torch.float32,
|
68
|
+
device: torch.device = None,
|
69
|
+
) -> "KVCacheEntryBase":
|
70
|
+
"""Build an instance of the class based on model config."""
|
71
|
+
shape = (BATCH_SIZE, kv_cache_max, config.num_query_groups, config.head_dim)
|
72
|
+
return cls._from_model_config(
|
73
|
+
kv_cache_max, config, shape, shape, dtype, device
|
74
|
+
)
|
75
|
+
|
76
|
+
|
77
|
+
@dataclasses.dataclass
|
78
|
+
class KVCacheEntryBTNH(KVCacheEntryBase):
|
79
|
+
k_type = types.BTNH()
|
80
|
+
v_type = types.BTNH()
|
81
|
+
|
82
|
+
|
83
|
+
@dataclasses.dataclass
|
84
|
+
class KVCacheEntryTransposed(KVCacheEntryBase):
|
85
|
+
|
86
|
+
k_type = types.BNTH()
|
87
|
+
v_type = types.BNHT()
|
88
|
+
|
89
|
+
@classmethod
|
90
|
+
def from_model_config(
|
91
|
+
cls,
|
92
|
+
kv_cache_max: int,
|
93
|
+
config: model_config.AttentionConfig,
|
94
|
+
dtype: torch.dtype = torch.float32,
|
95
|
+
device: torch.device = None,
|
96
|
+
) -> "KVCacheEntryBase":
|
97
|
+
"""Build an instance of the class based on model config."""
|
98
|
+
num_kv_heads = config.num_query_groups
|
99
|
+
k_shape = (
|
100
|
+
1,
|
101
|
+
BATCH_SIZE * num_kv_heads,
|
102
|
+
kv_cache_max,
|
103
|
+
config.head_dim,
|
104
|
+
) # 1, bk, s, h
|
105
|
+
v_shape = (
|
106
|
+
1,
|
107
|
+
BATCH_SIZE * num_kv_heads,
|
108
|
+
config.head_dim,
|
109
|
+
kv_cache_max,
|
110
|
+
) # 1, bk, h, s
|
111
|
+
return cls._from_model_config(
|
112
|
+
kv_cache_max, config, k_shape, v_shape, dtype, device
|
113
|
+
)
|
114
|
+
|
115
|
+
|
116
|
+
@dataclasses.dataclass
|
117
|
+
class KVCacheBase:
|
118
|
+
"""A utility class for holding KV cache entries per layer."""
|
119
|
+
|
120
|
+
caches: Tuple[KVCacheEntryBase, ...]
|
121
|
+
|
122
|
+
@classmethod
|
123
|
+
def _from_model_config(
|
124
|
+
cls,
|
125
|
+
kv_entry_cls,
|
126
|
+
config: model_config.ModelConfig,
|
127
|
+
dtype: torch.dtype = torch.float32,
|
128
|
+
device: torch.device = None,
|
129
|
+
) -> "KVCacheBase":
|
130
|
+
caches = [
|
131
|
+
kv_entry_cls.from_model_config(
|
132
|
+
config.kv_cache_max,
|
133
|
+
config.block_config(idx).attn_config,
|
134
|
+
dtype,
|
135
|
+
device,
|
136
|
+
)
|
137
|
+
for idx in range(config.num_layers)
|
138
|
+
]
|
139
|
+
obj = cls(caches=tuple(caches))
|
140
|
+
return obj
|
141
|
+
|
142
|
+
@classmethod
|
143
|
+
def from_model_config(
|
144
|
+
cls,
|
145
|
+
config: model_config.ModelConfig,
|
146
|
+
dtype: torch.dtype = torch.float32,
|
147
|
+
device: torch.device = None,
|
148
|
+
) -> "KVCacheBase":
|
149
|
+
"""Build an instance of the class based on model config.
|
150
|
+
|
151
|
+
Args:
|
152
|
+
config (ModelConfig): Model config used for building the cache.
|
153
|
+
dtype (torch.dtype, optional): The data type of the cache tensor.
|
154
|
+
Defaults to torch.float32.
|
155
|
+
device (torch.device, optional): The device placement of the cache
|
156
|
+
tensors. Defaults to None.
|
157
|
+
|
158
|
+
Returns:
|
159
|
+
KVCacheBase: The created cache object.
|
160
|
+
"""
|
161
|
+
return cls._from_model_config(
|
162
|
+
KVCacheEntryBase, config=config, dtype=dtype, device=device
|
163
|
+
)
|
164
|
+
|
165
|
+
def flatten(self) -> List[torch.Tensor]:
|
166
|
+
"""Flatten the cache entries into a list of tensors with order k_i, v_i."""
|
167
|
+
flattened, _ = _flatten_kvc(self)
|
168
|
+
return flattened
|
169
|
+
|
170
|
+
|
171
|
+
@dataclasses.dataclass
|
172
|
+
class KVCacheBTNH(KVCacheBase):
|
173
|
+
|
174
|
+
@classmethod
|
175
|
+
def from_model_config(
|
176
|
+
cls,
|
177
|
+
config: model_config.ModelConfig,
|
178
|
+
dtype: torch.dtype = torch.float32,
|
179
|
+
device: torch.device = None,
|
180
|
+
) -> "KVCacheBTNH":
|
181
|
+
return cls._from_model_config(
|
182
|
+
KVCacheEntryBTNH, config=config, dtype=dtype, device=device
|
183
|
+
)
|
184
|
+
|
185
|
+
|
186
|
+
@dataclasses.dataclass
|
187
|
+
class KVCacheTransposed(KVCacheBase):
|
188
|
+
|
189
|
+
@classmethod
|
190
|
+
def from_model_config(
|
191
|
+
cls,
|
192
|
+
config: model_config.ModelConfig,
|
193
|
+
dtype: torch.dtype = torch.float32,
|
194
|
+
device: torch.device = None,
|
195
|
+
) -> "KVCacheBTNH":
|
196
|
+
return cls._from_model_config(
|
197
|
+
KVCacheEntryTransposed, config=config, dtype=dtype, device=device
|
198
|
+
)
|
199
|
+
|
200
|
+
|
201
|
+
def _flatten_kvc(kvc: KVCacheBase) -> Tuple[List[str], List[str]]:
|
202
|
+
flattened = []
|
203
|
+
flat_names = []
|
204
|
+
none_names = []
|
205
|
+
for i, kv_entry in enumerate(kvc.caches):
|
206
|
+
flattened.append(kv_entry.k_cache)
|
207
|
+
flat_names.append(f"k_{i}")
|
208
|
+
flattened.append(kv_entry.v_cache)
|
209
|
+
flat_names.append(f"v_{i}")
|
210
|
+
return flattened, [flat_names, none_names]
|
211
|
+
|
212
|
+
|
213
|
+
def _flatten_kvc_with_keys(kvc: KVCacheBase) -> Tuple[List, List]:
|
214
|
+
flattened, (flat_names, none_names) = _flatten_kvc(kvc)
|
215
|
+
return [
|
216
|
+
(pytree.MappingKey(k), v) for k, v in zip(flat_names, flattened)
|
217
|
+
], flat_names
|
218
|
+
|
219
|
+
|
220
|
+
def _unflatten_kvc(
|
221
|
+
values: List[torch.Tensor], context: Tuple[List, List]
|
222
|
+
) -> KVCacheBase:
|
223
|
+
assert len(values) % 2 == 0, "Found odd number of K and V entries."
|
224
|
+
num_layers = len(values) // 2
|
225
|
+
flat_names = context[0]
|
226
|
+
kv_entries = []
|
227
|
+
for i in range(num_layers):
|
228
|
+
k_cache_idx = flat_names.index(f"k_{i}")
|
229
|
+
v_cache_idx = flat_names.index(f"v_{i}")
|
230
|
+
kv_entries.append(
|
231
|
+
KVCacheEntryBase(
|
232
|
+
k_cache=values[k_cache_idx], v_cache=values[v_cache_idx]
|
233
|
+
)
|
234
|
+
)
|
235
|
+
obj = KVCacheBase(tuple(kv_entries))
|
236
|
+
return obj
|
237
|
+
|
238
|
+
|
239
|
+
pytree.register_pytree_node(
|
240
|
+
KVCacheTransposed,
|
241
|
+
_flatten_kvc,
|
242
|
+
_unflatten_kvc,
|
243
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
244
|
+
serialized_type_name="",
|
245
|
+
)
|
246
|
+
|
247
|
+
pytree.register_pytree_node(
|
248
|
+
KVCacheBase,
|
249
|
+
_flatten_kvc,
|
250
|
+
_unflatten_kvc,
|
251
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
252
|
+
serialized_type_name="",
|
253
|
+
)
|
254
|
+
|
255
|
+
|
256
|
+
def update(
|
257
|
+
cache: KVCacheEntryBase,
|
258
|
+
input_pos: torch.Tensor,
|
259
|
+
k_slice: torch.Tensor,
|
260
|
+
v_slice: torch.Tensor,
|
261
|
+
use_dus: bool = True,
|
262
|
+
) -> KVCacheEntryBase:
|
263
|
+
"""Out of place update of Cache buffer.
|
264
|
+
|
265
|
+
Args:
|
266
|
+
cache (KVCacheEntryBase): The original cache buffer.
|
267
|
+
input_pos (torch.Tensor): The update slice positions.
|
268
|
+
k_slice (torch.Tensor): The K slice to be updated in the new cache.
|
269
|
+
v_slice (torch.Tensor): The V slice to be updated in the new cache.
|
270
|
+
|
271
|
+
Returns:
|
272
|
+
KVCacheEntryBase: The updated KVCacheBase entry based on the passed
|
273
|
+
inputs.
|
274
|
+
"""
|
275
|
+
update_kv_cache = _update_kv_impl
|
276
|
+
return update_kv_cache(cache, input_pos, k_slice, v_slice)
|
277
|
+
|
278
|
+
|
279
|
+
def _get_slice_indices(
|
280
|
+
positions: torch.Tensor, cache_dim: int, ts_idx: int
|
281
|
+
) -> torch.Tensor:
|
282
|
+
"""Returns the slice indices."""
|
283
|
+
positions = positions.float()[0].reshape(
|
284
|
+
1,
|
285
|
+
)
|
286
|
+
|
287
|
+
zeros = torch.zeros((1,), dtype=torch.float32)
|
288
|
+
indices = []
|
289
|
+
for i in range(cache_dim):
|
290
|
+
if i == ts_idx:
|
291
|
+
indices.append(positions)
|
292
|
+
else:
|
293
|
+
indices.append(zeros)
|
294
|
+
slice_indices = torch.cat(indices, dim=0)
|
295
|
+
slice_indices = slice_indices.int()
|
296
|
+
return slice_indices
|
297
|
+
|
298
|
+
|
299
|
+
def _update_kv_impl(
|
300
|
+
cache: KVCacheEntryTransposed,
|
301
|
+
input_pos: torch.Tensor,
|
302
|
+
k_slice: torch.Tensor,
|
303
|
+
v_slice: torch.Tensor,
|
304
|
+
) -> KVCacheEntryTransposed:
|
305
|
+
"""Update the cache buffer with High Level Function Boundary annotation."""
|
306
|
+
cache_dim = 4
|
307
|
+
k_ts_idx = 2
|
308
|
+
v_ts_idx = 3
|
309
|
+
positions = input_pos.clone()
|
310
|
+
k_slice_indices = _get_slice_indices(positions, cache_dim, k_ts_idx)
|
311
|
+
v_slice_indices = _get_slice_indices(positions, cache_dim, v_ts_idx)
|
312
|
+
k = dynamic_update_slice(cache.k_cache, k_slice, [x for x in k_slice_indices])
|
313
|
+
v = dynamic_update_slice(cache.v_cache, v_slice, [x for x in v_slice_indices])
|
314
|
+
return KVCacheEntryTransposed(k, v)
|
@@ -0,0 +1,97 @@
|
|
1
|
+
# Copyright 2025 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Implements scaled dot product attention. This is experimental and
|
16
|
+
# GPU-specific code.
|
17
|
+
|
18
|
+
import math
|
19
|
+
from typing import Optional
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers.experimental import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers.experimental import types
|
23
|
+
from ai_edge_torch.generative.utilities import bmm_4d as bmm_lib
|
24
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
25
|
+
from multipledispatch import dispatch
|
26
|
+
import torch
|
27
|
+
import torch.nn.functional as F
|
28
|
+
|
29
|
+
|
30
|
+
def scaled_dot_product_attention(
|
31
|
+
kv: kv_utils.KVCacheBase,
|
32
|
+
query: torch.Tensor,
|
33
|
+
key: torch.Tensor,
|
34
|
+
value: torch.Tensor,
|
35
|
+
head_size: int,
|
36
|
+
mask: Optional[torch.Tensor] = None,
|
37
|
+
scale: Optional[float] = None,
|
38
|
+
softcap: Optional[float] = None,
|
39
|
+
):
|
40
|
+
if hasattr(kv, "k_type") and hasattr(kv, "v_type"):
|
41
|
+
return _sdpa(
|
42
|
+
kv.k_type,
|
43
|
+
kv.v_type,
|
44
|
+
query=query,
|
45
|
+
key=key,
|
46
|
+
value=value,
|
47
|
+
head_size=head_size,
|
48
|
+
mask=mask,
|
49
|
+
scale=scale,
|
50
|
+
softcap=softcap,
|
51
|
+
)
|
52
|
+
raise ValueError(
|
53
|
+
f"SDPA for K type {type(kv.caches[0].k_type)} and V type"
|
54
|
+
f" {type(kv.caches[0].v_type)} not supported."
|
55
|
+
)
|
56
|
+
|
57
|
+
|
58
|
+
@dispatch(types.BNTH, types.BNHT)
|
59
|
+
def _sdpa(k_type, v_type, *args, **kwargs):
|
60
|
+
query = kwargs["query"]
|
61
|
+
key = kwargs["key"]
|
62
|
+
value = kwargs["value"]
|
63
|
+
head_size = kwargs["head_size"]
|
64
|
+
mask = kwargs.get("mask", None)
|
65
|
+
scale = kwargs.get("scale", None)
|
66
|
+
softcap = kwargs.get("softcap", None)
|
67
|
+
|
68
|
+
if scale is None:
|
69
|
+
scale = 1.0 / math.sqrt(head_size)
|
70
|
+
|
71
|
+
query = query * scale
|
72
|
+
|
73
|
+
assert mask is not None, "Mask should not be None!"
|
74
|
+
t = mask.shape[2]
|
75
|
+
|
76
|
+
logits = bmm_lib.bmm_4d(query, key)
|
77
|
+
|
78
|
+
_, bk, gt, s = logits.shape
|
79
|
+
g = gt // t
|
80
|
+
logits = logits.reshape((bk, g, t, s))
|
81
|
+
if softcap is not None:
|
82
|
+
logits = torch.tanh(logits / softcap)
|
83
|
+
logits = logits * softcap
|
84
|
+
|
85
|
+
padded_logits = logits + mask
|
86
|
+
padded_logits = padded_logits.reshape(1, bk, gt, s)
|
87
|
+
probs = F.softmax(padded_logits, dim=-1).type_as(key)
|
88
|
+
|
89
|
+
encoded = bmm_lib.bmm_4d(probs, value)
|
90
|
+
|
91
|
+
return encoded # 1, bk, gt, h
|
92
|
+
|
93
|
+
|
94
|
+
@dispatch(object, object)
|
95
|
+
def _sdpa(k_type, v_type, *args, **kwargs):
|
96
|
+
|
97
|
+
raise ValueError(f"No implementations for k={k_type} and v={v_type}")
|