ai-edge-torch-nightly 0.3.0.dev20250107__py3-none-any.whl → 0.3.0.dev20250108__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +16 -6
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +16 -6
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +16 -6
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +16 -9
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +11 -6
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +17 -7
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +16 -6
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +17 -9
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +16 -7
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +16 -8
- ai_edge_torch/generative/layers/attention.py +41 -8
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/utilities/converter.py +100 -47
- ai_edge_torch/generative/utilities/model_builder.py +7 -2
- ai_edge_torch/odml_torch/_torch_future.py +13 -0
- ai_edge_torch/odml_torch/export.py +6 -2
- ai_edge_torch/odml_torch/lowerings/decomp.py +4 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250107.dist-info → ai_edge_torch_nightly-0.3.0.dev20250108.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20250107.dist-info → ai_edge_torch_nightly-0.3.0.dev20250108.dist-info}/RECORD +24 -22
- {ai_edge_torch_nightly-0.3.0.dev20250107.dist-info → ai_edge_torch_nightly-0.3.0.dev20250108.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250107.dist-info → ai_edge_torch_nightly-0.3.0.dev20250108.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20250107.dist-info → ai_edge_torch_nightly-0.3.0.dev20250108.dist-info}/top_level.txt +0 -0
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/gemma-2b'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'gemma',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,19 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = gemma1.build_2b_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = f'gemma_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
60
68
|
converter.convert_to_tflite(
|
61
69
|
pytorch_model,
|
62
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
63
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
64
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
65
75
|
export_config=ExportConfig(),
|
66
76
|
)
|
67
77
|
|
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/gemma2-2b'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'gemma2',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,19 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = gemma2.build_2b_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = f'gemma2_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
60
68
|
converter.convert_to_tflite(
|
61
69
|
pytorch_model,
|
62
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
63
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
64
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
65
75
|
export_config=ExportConfig(),
|
66
76
|
)
|
67
77
|
|
@@ -35,10 +35,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
35
35
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/llama'),
|
36
36
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
37
37
|
)
|
38
|
-
|
39
|
-
'
|
38
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
39
|
+
'output_path',
|
40
40
|
'/tmp/',
|
41
|
-
'The
|
41
|
+
'The path to export the tflite model.',
|
42
|
+
)
|
43
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
44
|
+
'output_name_prefix',
|
45
|
+
'llama',
|
46
|
+
'The prefix of the output tflite model name.',
|
42
47
|
)
|
43
48
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
44
49
|
'prefill_seq_lens',
|
@@ -55,6 +60,11 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
55
60
|
True,
|
56
61
|
'Whether the model should be quantized.',
|
57
62
|
)
|
63
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
64
|
+
'lora_ranks',
|
65
|
+
None,
|
66
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
67
|
+
)
|
58
68
|
|
59
69
|
_BUILDER = {
|
60
70
|
'1b': llama.build_1b_model,
|
@@ -66,13 +76,13 @@ def main(_):
|
|
66
76
|
pytorch_model = _BUILDER[_MODEL_SIZE.value](
|
67
77
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
68
78
|
)
|
69
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
70
|
-
output_filename = f'llama_{_MODEL_SIZE.value}_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
71
79
|
converter.convert_to_tflite(
|
72
80
|
pytorch_model,
|
73
|
-
|
81
|
+
output_path=_OUTPUT_PATH.value,
|
82
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
74
83
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
75
84
|
quantize=_QUANTIZE.value,
|
85
|
+
lora_ranks=_LORA_RANKS.value,
|
76
86
|
export_config=ExportConfig(),
|
77
87
|
)
|
78
88
|
|
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/openelm'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'openelm',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,22 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = openelm.build_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = (
|
60
|
-
f'openelm_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
61
|
-
)
|
62
|
-
|
63
68
|
converter.convert_to_tflite(
|
64
69
|
pytorch_model,
|
65
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
66
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
67
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
68
75
|
export_config=ExportConfig(),
|
69
76
|
)
|
70
77
|
|
@@ -40,10 +40,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
40
40
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/paligemma2-3b-224'),
|
41
41
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
42
42
|
)
|
43
|
-
|
44
|
-
'
|
43
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
44
|
+
'output_path',
|
45
45
|
'/tmp/',
|
46
|
-
'The
|
46
|
+
'The path to export the tflite model.',
|
47
|
+
)
|
48
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
49
|
+
'output_name_prefix',
|
50
|
+
'paligemma',
|
51
|
+
'The prefix of the output tflite model name.',
|
47
52
|
)
|
48
53
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
49
54
|
'prefill_seq_len',
|
@@ -73,11 +78,11 @@ def main(_):
|
|
73
78
|
version=int(_VERSION.value),
|
74
79
|
kv_cache_max_len=_KV_CACHE_MAX_LEN.value,
|
75
80
|
)
|
76
|
-
|
77
|
-
output_filename = f'paligemma{_VERSION.value}_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
81
|
+
|
78
82
|
converter.convert_to_tflite(
|
79
83
|
pytorch_model,
|
80
|
-
|
84
|
+
output_path=_OUTPUT_PATH.value,
|
85
|
+
output_name_prefix=f'{_OUTPUT_NAME_PREFIX.value}_{_VERSION.value}',
|
81
86
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
82
87
|
pixel_values_size=torch.Size(_PIXEL_VALUES_SIZE.value),
|
83
88
|
quantize=_QUANTIZE.value,
|
@@ -26,13 +26,18 @@ from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
|
26
26
|
|
27
27
|
_CHECKPOINT_PATH = flags.DEFINE_string(
|
28
28
|
'checkpoint_path',
|
29
|
-
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/
|
29
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/gemma-2b'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'phi3',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,19 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = phi3.build_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = f'phi3_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
60
68
|
converter.convert_to_tflite(
|
61
69
|
pytorch_model,
|
62
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
63
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
64
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
65
75
|
export_config=ExportConfig(),
|
66
76
|
)
|
67
77
|
|
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/phi2'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'phi2',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,19 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = phi2.build_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = f'phi2_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
60
68
|
converter.convert_to_tflite(
|
61
69
|
pytorch_model,
|
62
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
63
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
64
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
65
75
|
export_config=ExportConfig(),
|
66
76
|
)
|
67
77
|
|
@@ -35,10 +35,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
35
35
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/qwen'),
|
36
36
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
37
37
|
)
|
38
|
-
|
39
|
-
'
|
38
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
39
|
+
'output_path',
|
40
40
|
'/tmp/',
|
41
|
-
'The
|
41
|
+
'The path to export the tflite model.',
|
42
|
+
)
|
43
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
44
|
+
'output_name_prefix',
|
45
|
+
'qwen',
|
46
|
+
'The prefix of the output tflite model name.',
|
42
47
|
)
|
43
48
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
44
49
|
'prefill_seq_lens',
|
@@ -55,6 +60,12 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
55
60
|
True,
|
56
61
|
'Whether the model should be quantized.',
|
57
62
|
)
|
63
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
64
|
+
'lora_ranks',
|
65
|
+
None,
|
66
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
67
|
+
)
|
68
|
+
|
58
69
|
|
59
70
|
_BUILDER = {
|
60
71
|
'0.5b': qwen.build_0_5b_model,
|
@@ -67,16 +78,13 @@ def main(_):
|
|
67
78
|
pytorch_model = _BUILDER[_MODEL_SIZE.value](
|
68
79
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
69
80
|
)
|
70
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
71
|
-
model_size = _MODEL_SIZE.value.replace('.', '_')
|
72
|
-
output_filename = (
|
73
|
-
f'qwen_{model_size}_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
74
|
-
)
|
75
81
|
converter.convert_to_tflite(
|
76
82
|
pytorch_model,
|
77
|
-
|
83
|
+
output_path=_OUTPUT_PATH.value,
|
84
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
78
85
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
79
86
|
quantize=_QUANTIZE.value,
|
87
|
+
lora_ranks=_LORA_RANKS.value,
|
80
88
|
export_config=ExportConfig(),
|
81
89
|
)
|
82
90
|
|
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/smollm'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'smollm',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,20 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = smollm.build_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
|
59
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
60
|
-
output_filename = f'smollm_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
61
68
|
converter.convert_to_tflite(
|
62
69
|
pytorch_model,
|
63
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
64
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
65
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
66
75
|
export_config=ExportConfig(),
|
67
76
|
)
|
68
77
|
|
@@ -29,10 +29,15 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
29
29
|
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/tiny_llama'),
|
30
30
|
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
31
|
)
|
32
|
-
|
33
|
-
'
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
34
|
'/tmp/',
|
35
|
-
'The
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'tinyllama',
|
40
|
+
'The prefix of the output tflite model name.',
|
36
41
|
)
|
37
42
|
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
38
43
|
'prefill_seq_lens',
|
@@ -49,21 +54,24 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
49
54
|
True,
|
50
55
|
'Whether the model should be quantized.',
|
51
56
|
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
52
62
|
|
53
63
|
|
54
64
|
def main(_):
|
55
65
|
pytorch_model = tiny_llama.build_model(
|
56
66
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
57
67
|
)
|
58
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
59
|
-
output_filename = (
|
60
|
-
f'tinyllama_{quant_suffix}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
61
|
-
)
|
62
68
|
converter.convert_to_tflite(
|
63
69
|
pytorch_model,
|
64
|
-
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
65
72
|
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
66
73
|
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
67
75
|
export_config=ExportConfig(),
|
68
76
|
)
|
69
77
|
|
@@ -19,6 +19,7 @@ from typing import Optional, Tuple, Union
|
|
19
19
|
|
20
20
|
from ai_edge_torch.generative.layers import builder
|
21
21
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
22
23
|
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
23
24
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
25
|
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
@@ -93,6 +94,7 @@ class TransformerBlock(nn.Module):
|
|
93
94
|
mask: Optional[torch.Tensor] = None,
|
94
95
|
input_pos: Optional[torch.Tensor] = None,
|
95
96
|
kv_cache: kv_utils.KVCacheEntry = None,
|
97
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
96
98
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
97
99
|
"""Forward function of the TransformerBlock.
|
98
100
|
|
@@ -102,6 +104,7 @@ class TransformerBlock(nn.Module):
|
|
102
104
|
mask (torch.Tensor): the optional mask tensor.
|
103
105
|
input_pos (torch.Tensor): the optional input position tensor.
|
104
106
|
kv_cache (KVCacheEntry): the optional kv cache entry.
|
107
|
+
lora (LoRAEntry): the optional lora entry.
|
105
108
|
|
106
109
|
Returns:
|
107
110
|
output activation from this transformer block, and updated kv cache (if
|
@@ -110,7 +113,9 @@ class TransformerBlock(nn.Module):
|
|
110
113
|
kv = None
|
111
114
|
if self.config.parallel_residual:
|
112
115
|
x_norm = self.pre_atten_norm(x)
|
113
|
-
atten_func_out = self.atten_func(
|
116
|
+
atten_func_out = self.atten_func(
|
117
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
118
|
+
)
|
114
119
|
if kv_cache is None:
|
115
120
|
attn_out = atten_func_out
|
116
121
|
else:
|
@@ -119,7 +124,9 @@ class TransformerBlock(nn.Module):
|
|
119
124
|
output = x + attn_out + ff_out
|
120
125
|
else:
|
121
126
|
x_norm = self.pre_atten_norm(x)
|
122
|
-
atten_func_out = self.atten_func(
|
127
|
+
atten_func_out = self.atten_func(
|
128
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
129
|
+
)
|
123
130
|
if kv_cache is None:
|
124
131
|
attn_out = atten_func_out
|
125
132
|
else:
|
@@ -179,6 +186,7 @@ class CausalSelfAttention(nn.Module):
|
|
179
186
|
mask: Optional[torch.Tensor] = None,
|
180
187
|
input_pos: Optional[torch.Tensor] = None,
|
181
188
|
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
189
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
182
190
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
183
191
|
"""Forward function of the CausalSelfAttention layer, which can support
|
184
192
|
|
@@ -189,7 +197,8 @@ class CausalSelfAttention(nn.Module):
|
|
189
197
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
190
198
|
mask (torch.Tensor): the optional mask tensor.
|
191
199
|
input_pos (torch.Tensor): the optional input position tensor.
|
192
|
-
kv_cache (KVCacheEntry):
|
200
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
201
|
+
lora (LoRAEntry): the optional lora entry.
|
193
202
|
|
194
203
|
Returns:
|
195
204
|
output activation from this self attention layer, and the updated
|
@@ -228,6 +237,11 @@ class CausalSelfAttention(nn.Module):
|
|
228
237
|
dim=-1,
|
229
238
|
)
|
230
239
|
|
240
|
+
if lora is not None:
|
241
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
242
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
243
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
244
|
+
|
231
245
|
q = self.query_norm(q)
|
232
246
|
k = self.key_norm(k)
|
233
247
|
|
@@ -244,7 +258,7 @@ class CausalSelfAttention(nn.Module):
|
|
244
258
|
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
245
259
|
k, v = kv_cache.k_cache, kv_cache.v_cache
|
246
260
|
|
247
|
-
|
261
|
+
sdpa_out = self.sdpa_func(
|
248
262
|
q,
|
249
263
|
k,
|
250
264
|
v,
|
@@ -252,10 +266,13 @@ class CausalSelfAttention(nn.Module):
|
|
252
266
|
mask=mask,
|
253
267
|
softcap=self.config.logit_softcap,
|
254
268
|
)
|
255
|
-
|
269
|
+
sdpa_out = sdpa_out.reshape(B, T, -1)
|
256
270
|
|
257
271
|
# Compute the output projection.
|
258
|
-
y = self.output_projection(
|
272
|
+
y = self.output_projection(sdpa_out)
|
273
|
+
if lora is not None:
|
274
|
+
y += lora_utils.apply_lora(sdpa_out, lora.attention.output)
|
275
|
+
|
259
276
|
return y if kv_cache is None else (y, kv_cache)
|
260
277
|
|
261
278
|
|
@@ -268,6 +285,7 @@ class SelfAttention(CausalSelfAttention):
|
|
268
285
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
269
286
|
input_pos: Optional[torch.Tensor] = None,
|
270
287
|
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
288
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
271
289
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
272
290
|
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
273
291
|
|
@@ -275,18 +293,23 @@ class SelfAttention(CausalSelfAttention):
|
|
275
293
|
x (torch.Tensor): the input tensor.
|
276
294
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
277
295
|
input_pos (torch.Tensor): the optional input position tensor.
|
278
|
-
kv_cache (KVCacheEntry):
|
296
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
297
|
+
lora (LoRAEntry): the optional lora entry.
|
279
298
|
|
280
299
|
Returns:
|
281
300
|
output activation from this self attention layer, and the updated
|
282
301
|
KV Cach Entry (if passed in).
|
283
302
|
"""
|
284
303
|
B, T, _ = x.size()
|
304
|
+
assert (
|
305
|
+
kv_cache is None
|
306
|
+
), "KV cache is not supported in non-causal SelfAttention."
|
285
307
|
return super().forward(
|
286
308
|
x,
|
287
309
|
rope=rope,
|
288
310
|
mask=torch.zeros((B, 1, T, T), dtype=torch.float32),
|
289
311
|
input_pos=input_pos,
|
312
|
+
lora=lora,
|
290
313
|
)
|
291
314
|
|
292
315
|
|
@@ -343,6 +366,7 @@ class CrossAttention(nn.Module):
|
|
343
366
|
mask: Optional[torch.Tensor] = None,
|
344
367
|
input_pos: Optional[torch.Tensor] = None,
|
345
368
|
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
369
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
346
370
|
):
|
347
371
|
"""Forward function of the CrossAttention layer.
|
348
372
|
|
@@ -353,7 +377,8 @@ class CrossAttention(nn.Module):
|
|
353
377
|
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
354
378
|
[B, n_heads, target_seq_len, source_seq_len].
|
355
379
|
input_pos (torch.Tensor): the optional input position tensor.
|
356
|
-
kv_cache (KVCacheEntry):
|
380
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
381
|
+
lora (LoRAEntry): the optional lora entry.
|
357
382
|
|
358
383
|
Returns:
|
359
384
|
output activation from this cross attention layer.
|
@@ -366,6 +391,11 @@ class CrossAttention(nn.Module):
|
|
366
391
|
k = self.k_projection(y)
|
367
392
|
v = self.v_projection(y)
|
368
393
|
|
394
|
+
if lora is not None:
|
395
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
396
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
397
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
398
|
+
|
369
399
|
interim_shape = (batch_size, -1, self.n_heads, self.config.head_dim)
|
370
400
|
q = q.view(interim_shape)
|
371
401
|
k = k.view(interim_shape)
|
@@ -388,4 +418,7 @@ class CrossAttention(nn.Module):
|
|
388
418
|
|
389
419
|
# Compute the output projection.
|
390
420
|
y = self.output_projection(y)
|
421
|
+
if lora is not None:
|
422
|
+
y += lora_utils.apply_lora(y, lora.attention.output)
|
423
|
+
|
391
424
|
return y if kv_cache is None else (y, kv_cache)
|