ai-edge-torch-nightly 0.3.0.dev20241218__py3-none-any.whl → 0.3.0.dev20241220__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/gemma/gemma2.py +14 -15
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +3 -3
- ai_edge_torch/generative/layers/attention.py +4 -29
- ai_edge_torch/generative/layers/rotary_position_embedding.py +34 -27
- ai_edge_torch/generative/utilities/model_builder.py +11 -12
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241218.dist-info → ai_edge_torch_nightly-0.3.0.dev20241220.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241218.dist-info → ai_edge_torch_nightly-0.3.0.dev20241220.dist-info}/RECORD +11 -11
- {ai_edge_torch_nightly-0.3.0.dev20241218.dist-info → ai_edge_torch_nightly-0.3.0.dev20241220.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241218.dist-info → ai_edge_torch_nightly-0.3.0.dev20241220.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241218.dist-info → ai_edge_torch_nightly-0.3.0.dev20241220.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,7 @@ from ai_edge_torch.generative.layers import builder
|
|
22
22
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
23
23
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
24
|
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
25
26
|
from ai_edge_torch.generative.utilities import model_builder
|
26
27
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
28
|
import torch
|
@@ -103,17 +104,12 @@ class Gemma2(nn.Module):
|
|
103
104
|
config.embedding_dim,
|
104
105
|
config.final_norm_config,
|
105
106
|
)
|
106
|
-
# Gemma2 has same hyper parameters for each layer except for attention
|
107
|
-
# types. Use the first layer.
|
108
|
-
attn_config = config.block_config(0).attn_config
|
109
|
-
self.rope_cache = attn_utils.build_rope_cache(
|
110
|
-
size=config.kv_cache_max,
|
111
|
-
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
112
|
-
base=attn_config.rotary_base,
|
113
|
-
)
|
114
107
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
115
108
|
size=config.kv_cache_max,
|
116
109
|
)
|
110
|
+
# Gemma2 has same hyper parameters for each layer except for attention
|
111
|
+
# types. Use the first layer.
|
112
|
+
attn_config = config.block_config(0).attn_config
|
117
113
|
self.sliding_window_mask_cache = attn_utils.build_sliding_window_mask_cache(
|
118
114
|
size=config.kv_cache_max,
|
119
115
|
window_size=attn_config.sliding_window_size,
|
@@ -145,24 +141,27 @@ class Gemma2(nn.Module):
|
|
145
141
|
" must be the same."
|
146
142
|
)
|
147
143
|
|
148
|
-
|
149
|
-
|
150
|
-
|
144
|
+
# RoPE parameters are the same for all blocks. Use the first layer.
|
145
|
+
attn_config = self.config.block_config(0).attn_config
|
146
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
147
|
+
rope = rotary_pos_emb.build_rope(
|
148
|
+
input_pos, n_elem, attn_config.head_dim, attn_config.rotary_base
|
149
|
+
)
|
151
150
|
|
152
151
|
# token embeddings of shape (b, t, n_embd)
|
153
152
|
x = self.tok_embedding(tokens)
|
154
153
|
x = x * (self.config.embedding_dim**0.5)
|
155
154
|
|
156
|
-
|
155
|
+
updated_kv_entries = []
|
157
156
|
for i, block in enumerate(self.transformer_blocks):
|
158
157
|
mask = self.get_attention_mask(
|
159
158
|
block.config.attn_config.attn_type, input_pos
|
160
159
|
)
|
161
160
|
kv_entry = kv_cache.caches[i] if kv_cache else None
|
162
|
-
x, kv_entry = block(x,
|
161
|
+
x, kv_entry = block(x, rope, mask, input_pos, kv_entry)
|
163
162
|
if kv_entry:
|
164
|
-
|
165
|
-
updated_kv_cache = kv_utils.KVCache(tuple(
|
163
|
+
updated_kv_entries.append(kv_entry)
|
164
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
166
165
|
|
167
166
|
if export_config is not None:
|
168
167
|
if (
|
@@ -72,14 +72,14 @@ class ToyModelWithKVCache(torch.nn.Module):
|
|
72
72
|
mask = self.mask_cache.index_select(2, input_pos)
|
73
73
|
mask = mask[:, :, :, : self.config.max_seq_len]
|
74
74
|
|
75
|
-
|
75
|
+
updated_kv_entries = []
|
76
76
|
for i, block in enumerate(self.transformer_blocks):
|
77
77
|
kv_entry = kv_cache.caches[i] if kv_cache else None
|
78
78
|
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
79
79
|
if kv_entry:
|
80
|
-
|
80
|
+
updated_kv_entries.append(kv_entry)
|
81
81
|
|
82
|
-
updated_kv_cache = kv_utils.KVCache(tuple(
|
82
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
83
83
|
|
84
84
|
if export_config is not None:
|
85
85
|
if (
|
@@ -26,33 +26,6 @@ import torch
|
|
26
26
|
from torch import nn
|
27
27
|
|
28
28
|
|
29
|
-
def _embed_rope(
|
30
|
-
q: torch.Tensor,
|
31
|
-
k: torch.Tensor,
|
32
|
-
n_elem: int,
|
33
|
-
rope: Tuple[torch.Tensor, torch.Tensor],
|
34
|
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
35
|
-
"""Embed rotary positional embedding for query and key.
|
36
|
-
|
37
|
-
Args:
|
38
|
-
q (torch.Tensor): query tensor.
|
39
|
-
k (torch.Tensor): key tensor.
|
40
|
-
n_elem (int): number of elements to embed rotarty positional embedding.
|
41
|
-
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
42
|
-
"""
|
43
|
-
if n_elem > 0:
|
44
|
-
cos, sin = rope
|
45
|
-
q_roped = rotary_pos_emb.apply_rope(
|
46
|
-
q[..., :n_elem], cos.repeat(1, 2), sin.repeat(1, 2)
|
47
|
-
)
|
48
|
-
k_roped = rotary_pos_emb.apply_rope(
|
49
|
-
k[..., :n_elem], cos.repeat(1, 2), sin.repeat(1, 2)
|
50
|
-
)
|
51
|
-
q = torch.cat((q_roped, q[..., n_elem:]), dim=-1)
|
52
|
-
k = torch.cat((k_roped, k[..., n_elem:]), dim=-1)
|
53
|
-
return q, k
|
54
|
-
|
55
|
-
|
56
29
|
class TransformerBlock(nn.Module):
|
57
30
|
|
58
31
|
def __init__(
|
@@ -238,7 +211,8 @@ class CausalSelfAttention(nn.Module):
|
|
238
211
|
if rope is not None:
|
239
212
|
# Compute rotary positional embedding for query and key.
|
240
213
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
241
|
-
|
214
|
+
cos, sin = rope
|
215
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
242
216
|
|
243
217
|
if kv_cache is not None:
|
244
218
|
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
@@ -374,7 +348,8 @@ class CrossAttention(nn.Module):
|
|
374
348
|
if rope is not None:
|
375
349
|
# Compute rotary positional embedding for query and key.
|
376
350
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
377
|
-
|
351
|
+
cos, sin = rope
|
352
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
378
353
|
|
379
354
|
if kv_cache is not None:
|
380
355
|
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
@@ -32,57 +32,64 @@ def apply_rope(
|
|
32
32
|
"""
|
33
33
|
x = x.transpose(1, 2)
|
34
34
|
head_size = x.size(-1)
|
35
|
-
x1 = x
|
36
|
-
|
37
|
-
|
38
|
-
roped = (
|
35
|
+
x1, x2 = torch.split(x, head_size // 2, dim=-1)
|
36
|
+
left = x1 * cos - x2 * sin
|
37
|
+
right = x2 * cos + x1 * sin
|
38
|
+
roped = torch.cat([left, right], dim=-1)
|
39
39
|
return roped.transpose(1, 2).type_as(x)
|
40
40
|
|
41
41
|
|
42
|
-
def
|
43
|
-
q: torch.Tensor,
|
44
|
-
k: torch.Tensor,
|
42
|
+
def build_rope(
|
45
43
|
input_pos: torch.Tensor,
|
46
44
|
n_elem: int,
|
45
|
+
head_dim: int,
|
47
46
|
base: int = 10_000,
|
48
47
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
49
|
-
"""Computes rotary positional embedding
|
48
|
+
"""Computes rotary positional embedding cosine and sine tensors.
|
50
49
|
|
51
50
|
Args:
|
52
|
-
q: the query tensor.
|
53
|
-
k: the key tensor.
|
54
51
|
input_pos: the sequence indices for the query and key
|
55
52
|
n_elem: number of elements of the head dimension for RoPE computation
|
53
|
+
base: the base of the exponentiated value for RoPE.
|
56
54
|
|
57
55
|
Returns:
|
58
|
-
|
56
|
+
cos, sin tensors
|
59
57
|
"""
|
60
58
|
|
61
59
|
if n_elem <= 0:
|
62
|
-
return
|
60
|
+
return None, None
|
63
61
|
|
64
62
|
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2).float() / n_elem))
|
65
63
|
freq_exponents = (2.0 / n_elem) * torch.arange(
|
66
|
-
|
64
|
+
head_dim // 2, dtype=torch.float32
|
67
65
|
)
|
68
66
|
timescale = float(base) ** freq_exponents
|
69
67
|
radians = input_pos.clone().unsqueeze(0).unsqueeze(-1) / timescale.unsqueeze(
|
70
68
|
0
|
71
69
|
).unsqueeze(0)
|
72
|
-
cos = torch.cos(radians)
|
73
|
-
sin = torch.sin(radians)
|
70
|
+
cos = torch.cos(radians)
|
71
|
+
sin = torch.sin(radians)
|
72
|
+
return cos, sin
|
73
|
+
|
74
74
|
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
75
|
+
def apply_rope_inline(
|
76
|
+
q: torch.Tensor,
|
77
|
+
k: torch.Tensor,
|
78
|
+
cos: torch.Tensor,
|
79
|
+
sin: torch.Tensor,
|
80
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
81
|
+
"""Computes rotary positional embedding inline for a query and key.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
q: the query tensor.
|
85
|
+
k: the key tensor.
|
86
|
+
cos: the cosine tensor.
|
87
|
+
sin: the sine tensor.
|
88
|
+
|
89
|
+
Returns:
|
90
|
+
output the RoPE'd query and key.
|
91
|
+
"""
|
85
92
|
|
86
|
-
q_roped =
|
87
|
-
k_roped =
|
93
|
+
q_roped = apply_rope(q, cos, sin)
|
94
|
+
k_roped = apply_rope(k, cos, sin)
|
88
95
|
return q_roped, k_roped
|
@@ -24,6 +24,7 @@ from ai_edge_torch.generative.layers import builder
|
|
24
24
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
25
25
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
26
26
|
import ai_edge_torch.generative.layers.model_config as cfg
|
27
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
27
28
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
28
29
|
import torch
|
29
30
|
from torch import nn
|
@@ -85,13 +86,6 @@ class DecoderOnlyModel(nn.Module):
|
|
85
86
|
config.embedding_dim,
|
86
87
|
config.final_norm_config,
|
87
88
|
)
|
88
|
-
# ROPE parameters for all attn_configs are the same. Take the first one.
|
89
|
-
attn_config = config.block_config(0).attn_config
|
90
|
-
self.rope_cache = attn_utils.build_rope_cache(
|
91
|
-
size=config.kv_cache_max,
|
92
|
-
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
93
|
-
base=attn_config.rotary_base,
|
94
|
-
)
|
95
89
|
self.mask_cache = attn_utils.build_causal_mask_cache(
|
96
90
|
size=config.kv_cache_max,
|
97
91
|
)
|
@@ -113,11 +107,16 @@ class DecoderOnlyModel(nn.Module):
|
|
113
107
|
|
114
108
|
# token embeddings of shape (b, t, n_embd)
|
115
109
|
input_embeds = self.tok_embedding(tokens)
|
116
|
-
cos, sin = self.rope_cache
|
117
|
-
rope = (cos.index_select(0, input_pos), sin.index_select(0, input_pos))
|
118
110
|
mask = self.mask_cache.index_select(2, input_pos)
|
119
111
|
mask = mask[:, :, :, : self.config.kv_cache_max]
|
120
112
|
|
113
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
114
|
+
attn_config = self.config.block_config(0).attn_config
|
115
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
116
|
+
rope = rotary_pos_emb.build_rope(
|
117
|
+
input_pos, n_elem, attn_config.head_dim, attn_config.rotary_base
|
118
|
+
)
|
119
|
+
|
121
120
|
return self.forward_with_embeds(
|
122
121
|
input_embeds, rope, mask, input_pos, kv_cache, export_config
|
123
122
|
)
|
@@ -141,13 +140,13 @@ class DecoderOnlyModel(nn.Module):
|
|
141
140
|
if self.config.embedding_scale is not None:
|
142
141
|
x = x * self.config.embedding_scale
|
143
142
|
|
144
|
-
|
143
|
+
updated_kv_entries = []
|
145
144
|
for i, block in enumerate(self.transformer_blocks):
|
146
145
|
kv_entry = kv_cache.caches[i] if kv_cache else None
|
147
146
|
x, kv_entry = block(x, rope, mask, input_pos, kv_entry)
|
148
147
|
if kv_entry:
|
149
|
-
|
150
|
-
updated_kv_cache = kv_utils.KVCache(tuple(
|
148
|
+
updated_kv_entries.append(kv_entry)
|
149
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
151
150
|
|
152
151
|
if export_config is not None:
|
153
152
|
if (
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241220
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/_config.py,sha256=QIrerb6uHMahRvMilmhodJ_6jfiRps3qgLOBeidPnS4,1614
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=xD-MWAEa1ROHhyF3rY7MaL28xsuON0aJwaiXbJ04qfc,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=SzbR16V2JEfkCjjPwRVAFUbFnzu-_1iHPKgGT9Yz7gQ,5678
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -47,7 +47,7 @@ ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIX
|
|
47
47
|
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=GhwtQZ1xuMyKJl8qdxU6uKavQnlm5US9xhKJvdmgACc,2309
|
48
48
|
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=hsy4Gd7Inchi0p_Cc5yecH6vr9A7X4MvmQNfTt8N2sQ,2311
|
49
49
|
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=N0jKVZA3qWKOaHVbIM3WmQh3u0Sq7MTw_oO3Zo16wCw,3456
|
50
|
-
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=
|
50
|
+
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=roEwWVXASbk5BFj7jojjEJpHui6gCelT51l-TtN_ZaQ,9367
|
51
51
|
ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
|
52
52
|
ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=IoBhEMwH07-tFm5-U6F2hpCsI8xynglhq1x9tIOdaPQ,1322
|
53
53
|
ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=tR8RflXocDZqvuStyw9aFlzuiTllEC8rNnjrxms6_Is,5727
|
@@ -107,7 +107,7 @@ ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqX
|
|
107
107
|
ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
108
108
|
ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
|
109
109
|
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=4113jZK-Hu3kYop__WTc8Bq-bG6YzQtADbxHtYPEB4w,5036
|
110
|
-
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=
|
110
|
+
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=C9dzJFK3TybxKpM1vSdLjOKftkJ72DGjr8YR4H7vCe8,4664
|
111
111
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
112
112
|
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=5rgbTIxHoFg8sTnzrGA_ekT-HJEt9p7Dla7cIY874jU,2338
|
113
113
|
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=mhJ18rb9sxrYRzv1YSzhbNs97oUZck99avZDcUO2oV8,2800
|
@@ -115,14 +115,14 @@ ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=7Bk8z033M-BCXJ299f
|
|
115
115
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
|
116
116
|
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
|
117
117
|
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
118
|
-
ai_edge_torch/generative/layers/attention.py,sha256=
|
118
|
+
ai_edge_torch/generative/layers/attention.py,sha256=_OmamS3f0m_JtW73ljwGLwFPeMLL837JCLY-dJ3iRUg,12453
|
119
119
|
ai_edge_torch/generative/layers/attention_utils.py,sha256=zBVwlBUTs-nStIKCZG0ks5ra7tsqc9ShfakFJKH5rds,7344
|
120
120
|
ai_edge_torch/generative/layers/builder.py,sha256=LXGuSHIx6QZAzLFm7aJvlzoMPgQwbXLFchGEKYwOOUA,5090
|
121
121
|
ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
|
122
122
|
ai_edge_torch/generative/layers/kv_cache.py,sha256=DhHIggaOQ2IAY4aRuMAuCLWZv1dBz5PYtmOEjkx9EQY,6291
|
123
123
|
ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
|
124
124
|
ai_edge_torch/generative/layers/normalization.py,sha256=h2btgRHMMjOcyLm8adEmcT0pG6imq4QcWblKJK5MYXA,7479
|
125
|
-
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=
|
125
|
+
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=zbFTNgQdOT-tcKK1QaIX6fG-50syYwQX_ZbLhg2C98c,2691
|
126
126
|
ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
|
127
127
|
ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
128
128
|
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=9jKzOfiBQ66bp1ZnVIAoREIifVNFx4aTlQeYMAx2_pA,29062
|
@@ -147,7 +147,7 @@ ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5l
|
|
147
147
|
ai_edge_torch/generative/utilities/converter.py,sha256=hIwWUWjgPvWLATtsYYG6RWbFQWhOr2RpPlMrd-4Am9U,5959
|
148
148
|
ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
|
149
149
|
ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
|
150
|
-
ai_edge_torch/generative/utilities/model_builder.py,sha256=
|
150
|
+
ai_edge_torch/generative/utilities/model_builder.py,sha256=q82-1E2zYlzpbFW6Vw-MWrJivRXHKpRh8jUxpR-w0sY,6349
|
151
151
|
ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
|
152
152
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
153
153
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
@@ -200,8 +200,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
200
200
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
201
201
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
202
202
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
203
|
-
ai_edge_torch_nightly-0.3.0.
|
204
|
-
ai_edge_torch_nightly-0.3.0.
|
205
|
-
ai_edge_torch_nightly-0.3.0.
|
206
|
-
ai_edge_torch_nightly-0.3.0.
|
207
|
-
ai_edge_torch_nightly-0.3.0.
|
203
|
+
ai_edge_torch_nightly-0.3.0.dev20241220.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
204
|
+
ai_edge_torch_nightly-0.3.0.dev20241220.dist-info/METADATA,sha256=PfyYhqbf7VEibw2TEDRb8tBOIPG9dfXhT9tNNou_iZg,1966
|
205
|
+
ai_edge_torch_nightly-0.3.0.dev20241220.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
206
|
+
ai_edge_torch_nightly-0.3.0.dev20241220.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
207
|
+
ai_edge_torch_nightly-0.3.0.dev20241220.dist-info/RECORD,,
|
File without changes
|
File without changes
|