ai-edge-torch-nightly 0.3.0.dev20241206__py3-none-any.whl → 0.3.0.dev20241214__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (56) hide show
  1. ai_edge_torch/__init__.py +1 -1
  2. ai_edge_torch/_config.py +52 -0
  3. ai_edge_torch/_convert/test/test_convert.py +1 -2
  4. ai_edge_torch/debug/test/test_culprit.py +8 -3
  5. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +8 -3
  6. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +2 -0
  7. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +2 -0
  8. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +2 -0
  9. ai_edge_torch/generative/examples/gemma/gemma1.py +8 -3
  10. ai_edge_torch/generative/examples/gemma/gemma2.py +15 -8
  11. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +2 -0
  12. ai_edge_torch/generative/examples/llama/llama.py +11 -17
  13. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +2 -0
  14. ai_edge_torch/generative/examples/openelm/openelm.py +8 -3
  15. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +2 -0
  16. ai_edge_torch/generative/examples/paligemma/decoder.py +10 -9
  17. ai_edge_torch/generative/examples/paligemma/paligemma.py +11 -1
  18. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +2 -0
  19. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +2 -0
  20. ai_edge_torch/generative/examples/phi/phi2.py +8 -3
  21. ai_edge_torch/generative/examples/phi/phi3.py +7 -9
  22. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +2 -0
  23. ai_edge_torch/generative/examples/qwen/qwen.py +12 -9
  24. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +3 -0
  25. ai_edge_torch/generative/examples/smollm/smollm.py +8 -3
  26. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +12 -2
  27. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +2 -0
  28. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +8 -3
  29. ai_edge_torch/generative/layers/attention.py +2 -6
  30. ai_edge_torch/generative/layers/kv_cache.py +24 -18
  31. ai_edge_torch/generative/layers/normalization.py +1 -3
  32. ai_edge_torch/generative/test/test_kv_cache.py +3 -3
  33. ai_edge_torch/generative/test/test_model_conversion.py +12 -14
  34. ai_edge_torch/generative/test/test_model_conversion_large.py +63 -59
  35. ai_edge_torch/generative/test/utils.py +31 -6
  36. ai_edge_torch/generative/utilities/converter.py +25 -4
  37. ai_edge_torch/generative/utilities/model_builder.py +24 -4
  38. ai_edge_torch/generative/utilities/verifier.py +16 -2
  39. ai_edge_torch/lowertools/_shim.py +4 -2
  40. ai_edge_torch/lowertools/test_utils.py +4 -2
  41. ai_edge_torch/odml_torch/lowerings/__init__.py +1 -1
  42. ai_edge_torch/odml_torch/lowerings/_basic.py +5 -3
  43. ai_edge_torch/odml_torch/lowerings/_convolution.py +3 -1
  44. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +28 -2
  45. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +11 -2
  46. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +9 -9
  47. ai_edge_torch/odml_torch/lowerings/decomp.py +65 -0
  48. ai_edge_torch/odml_torch/lowerings/registry.py +0 -32
  49. ai_edge_torch/version.py +1 -1
  50. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/METADATA +7 -5
  51. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/RECORD +54 -54
  52. ai_edge_torch/config.py +0 -27
  53. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +0 -283
  54. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/LICENSE +0 -0
  55. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/WHEEL +0 -0
  56. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,9 @@
1
- ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,1168
2
- ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
1
+ ai_edge_torch/__init__.py,sha256=rq9ZtMJLG8yYNC4tNE4rpl94UAUClZW7f4GAr6HBVDQ,1208
2
+ ai_edge_torch/_config.py,sha256=QIrerb6uHMahRvMilmhodJ_6jfiRps3qgLOBeidPnS4,1614
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
5
5
  ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
6
- ai_edge_torch/version.py,sha256=t0bO5q_PrmOZRLB-Ctr76SvnlQe4yxlDMh9MrXR25p8,706
6
+ ai_edge_torch/version.py,sha256=iCH8lnlOrtbGwvxnT3knpY_keeu2UnrJ_ZXNK2LSvf4,706
7
7
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
8
8
  ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
9
9
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -26,7 +26,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
26
26
  ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
27
27
  ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
28
28
  ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
29
- ai_edge_torch/_convert/test/test_convert.py,sha256=v6AhfWqRBuHT7uBDueTbntaQtDSMMrvQOqlIDXNUaMA,17250
29
+ ai_edge_torch/_convert/test/test_convert.py,sha256=gK9QJuLbpjXt0l6tVnzl9Miq6GLkJR-hB67i3VE13Og,17224
30
30
  ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
31
31
  ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
32
32
  ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
@@ -34,56 +34,56 @@ ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyu
34
34
  ai_edge_torch/debug/culprit.py,sha256=7UYVpVWpiCXbMAyThVtHt_kc_poT7sCTh5UUPvcycgk,14832
35
35
  ai_edge_torch/debug/utils.py,sha256=vOAL4t6Lj47uhKapfEsc_WHmvwew3eKO9hSJyzvPXnU,1625
36
36
  ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
37
- ai_edge_torch/debug/test/test_culprit.py,sha256=SLX4rC-5Dlna8MWHhGRNe72K71AHTFufDrWLlFQn50c,3773
37
+ ai_edge_torch/debug/test/test_culprit.py,sha256=fRN-8jJicawJ2mhPRQNAQUZ8AdGg-s0tYMXyhnLAlWw,3875
38
38
  ai_edge_torch/debug/test/test_search_model.py,sha256=-RuU0QsjqkfzZF2IbeA55MoeVOawhbgiSEu96PmioPE,1668
39
39
  ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
40
40
  ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
41
41
  ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
42
42
  ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
43
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=bkq2ZknJfuY7WC8wLVg92Z6eA_aMDbkgwaMxvmDW4_0,2618
44
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=-n79r6yFnCACpms5eMkXNpyQsCn2PYVRdB-jOoIqn14,2227
43
+ ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=urNif89PyCXbdXT5spOeDvdM5luJ-a5HaXHM86v4JnU,2766
44
+ ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=Oqlg5ZoUuG2aU3067QaPpmEXWOdB8GEq7u_NWoBpoB4,2337
45
45
  ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=-9Nb9D818YSJR3olVtBwoLNeMMD5qE58YBnsA67hlHg,2421
46
46
  ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
47
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=mrG96_WEGD4NQ4uFEKrHRMAQvVVliOcj1zbI3drGDjI,2199
48
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=I_tvwCYmtf08D1HqDxYx7dpvj2q5_eaYnuI_3rI6Dlw,2201
49
- ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=oSbysiPvwp5efMbNYZop3HrxDMGiD15Tmz-HiQuTr2E,3315
50
- ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=RQFQDMEnIVp8PefcCTr7P0CvllKI7FVoIJLXbPLLIsc,9056
47
+ ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=GhwtQZ1xuMyKJl8qdxU6uKavQnlm5US9xhKJvdmgACc,2309
48
+ ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=hsy4Gd7Inchi0p_Cc5yecH6vr9A7X4MvmQNfTt8N2sQ,2311
49
+ ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=N0jKVZA3qWKOaHVbIM3WmQh3u0Sq7MTw_oO3Zo16wCw,3456
50
+ ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=whQ6DEnmhmj9hd5OyaoEI-FUNJ4m302vY3Swo_IqQcA,9285
51
51
  ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
52
52
  ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=IoBhEMwH07-tFm5-U6F2hpCsI8xynglhq1x9tIOdaPQ,1322
53
53
  ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=tR8RflXocDZqvuStyw9aFlzuiTllEC8rNnjrxms6_Is,5727
54
54
  ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
55
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=Brb83sbqBfStUiIZFhfWnYtN7LcNmkKyFn96cZK4sGo,2426
56
- ai_edge_torch/generative/examples/llama/llama.py,sha256=AMcCbuDBxEfbO-l3KiEXbUaXEJ3RLLwkHii7to7UhVo,6854
55
+ ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=ck7tXN0U25wAbbRjDcf-aqiS2YhismkmoZIsMpjIsjc,2536
56
+ ai_edge_torch/generative/examples/llama/llama.py,sha256=BMjpdw6oOXmtqXCAfW9o7Iewaj-Hxd57xVrvSLBuHTk,6656
57
57
  ai_edge_torch/generative/examples/llama/verify.py,sha256=X7oKQi85M789ugBrOlMvzk8eSRR3Kf1Mprfl-U-WIpo,2842
58
58
  ai_edge_torch/generative/examples/moonshine/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
59
59
  ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py,sha256=7m3rYRzThRDYb-7pGnpLr3ACi4PWX07Mg20Q98ArPc4,1714
60
60
  ai_edge_torch/generative/examples/moonshine/moonshine.py,sha256=nZ2b8u4TmsB5sgdClgAuH8E78bcTv9RCnF9666HqP2M,3394
61
61
  ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
62
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=-qDBu3bjUq0jx73SPDMsPIBP0BT1nA_0UgtFKeSuM18,2213
63
- ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sFakstoPDcOHSak0IGFEEq_HQMBBSMcx-WVCDZqcVDo,4411
62
+ ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=nji1oDgf6xImvGh95--8cNl3QPs-Xml2XBgNJB_c2hY,2323
63
+ ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sIJ8Ie1oxFrJM-1jvv2ukiJbQOTIUGuMEZvmwZbt3n0,4556
64
64
  ai_edge_torch/generative/examples/openelm/verify.py,sha256=VkigoqhAr8ew95neb3TifYv-SLOSheaWKv2AH0iKDrc,2441
65
65
  ai_edge_torch/generative/examples/paligemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
66
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=dT7dnx1dzGzFiH5gQJ4M6zcTLSRFvSDpi3IuZ9_vd78,2706
67
- ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=XMeznGBbjRJidv725L6_7XzkYskS2cDjf8NGB18FNhg,4944
66
+ ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=rPFqcsv8RHvjmgfBW9OL6EKxMtVX-ySjBsMP4N8FErk,2816
67
+ ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=eICKQkJsJuEUkuvn5ymUsI9CGB-oNbgV7VH7BlmklfQ,4961
68
68
  ai_edge_torch/generative/examples/paligemma/image_encoder.py,sha256=yKPWG8aBp-GuzeyQntlzwTTcGBBjvUywVGRjnlNprmo,5574
69
- ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=pIjsS-IUFevRjFA9153YT1vtWXATGWHsgVQQX_nWaZQ,5280
69
+ ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=nDyI-wUFJSawu57uLbFENei5l4cciqZ8lM5S5beN0FU,5604
70
70
  ai_edge_torch/generative/examples/paligemma/verify.py,sha256=Bkbgy-GFjnMNYjduWUM7YLWarPTwmj1v38eHY-PdBlM,4874
71
71
  ai_edge_torch/generative/examples/paligemma/verify_decoder.py,sha256=al5wMPWri4IRVWrLmCplPi6uoCzwh0vBHMGnCt-XUqo,2690
72
72
  ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py,sha256=pSekf1BybhieQz3cQx_llbRQHxczXbTqool8fOyGj_0,3114
73
73
  ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
74
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=ruY-LLwpqBqVZ5z9h_sewYj04ukWRG4j804tUAyDdnA,2186
75
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=UdMk1SSkcWpv8gosUylx3JSCxdOJBjZNhuQQtT4-Ono,2184
76
- ai_edge_torch/generative/examples/phi/phi2.py,sha256=nbivDwZREd-sypy_ittO59-yaAdPvHv1YEV6Fo5buCo,3341
77
- ai_edge_torch/generative/examples/phi/phi3.py,sha256=GkHOaYfsFEbHvfZCaLlb3Us_h19ezqPDUakoz_DiG9A,7123
74
+ ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=cD8rtwgYeGrXB9sYVV_D1AB8Up1AWNS-1XtrRlyzE5o,2296
75
+ ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=G1i_ybDCTBaOD1OOCTk6jqOf__xYYZvhXcxY8MXhPHw,2294
76
+ ai_edge_torch/generative/examples/phi/phi2.py,sha256=c6PYCky7yJn6MVIYOCTx8S_CH27kOPmJbRZcI95nbZs,3477
77
+ ai_edge_torch/generative/examples/phi/phi3.py,sha256=7Y1E4XpRuZOiSbeZJ-C2uJjmlnDtWv6L0XvPRE8oEQs,7112
78
78
  ai_edge_torch/generative/examples/phi/verify.py,sha256=YPFCdbnfmvq38fbpBNr0kHPfSZo4p3_6WkLJAW3pLPo,2177
79
79
  ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=kVYaBVvddfQng0IyZGxyTJEzhiPO0G4VFJm2WOc2Q94,2360
80
80
  ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
81
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=1M3DTkf536TCLYcQB1lu-3TxQ6mV03dFhTdbk0p8i84,2523
82
- ai_edge_torch/generative/examples/qwen/qwen.py,sha256=oYm9hhALUQ4uOn-PO1bF7fCIGP8EWRNK4zClkx2RQs8,4070
81
+ ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=BHkDsivbbfVBPxknkgWwtLskvxyrd42TXuCB0aLVbMY,2633
82
+ ai_edge_torch/generative/examples/qwen/qwen.py,sha256=Zi_qiQ1JPokXZ95jgSEnQp3F-LKzFCvWvFLKhJjnASo,4199
83
83
  ai_edge_torch/generative/examples/qwen/verify.py,sha256=9_AyEJTeUfvhhID64Rto2bflFPyXMFokdQLsseLUMiI,2775
84
84
  ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
85
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=56CzCjyp9xh_2ZtXKN9tlEv6GayeSc4giTIZsi2Q59E,2194
86
- ai_edge_torch/generative/examples/smollm/smollm.py,sha256=M5qAcSUE5gxOSfq24a8lZku9kgvmlFCyIBar3kF2XEk,2570
85
+ ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=RKmSBMrup5A2bsPPaTdrBQb8NeRiUHy_1SUOA8DAs9U,2305
86
+ ai_edge_torch/generative/examples/smollm/smollm.py,sha256=kk3cB_qaCzbFOhHtJlLb7qvSEBQTsILnoAcSFE3AkpE,2711
87
87
  ai_edge_torch/generative/examples/smollm/verify.py,sha256=HXYcCjDJMylVL3Pc9HU-UXqtpjtIU25o1YhPiX30aPU,2361
88
88
  ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
89
89
  ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
@@ -107,21 +107,21 @@ ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqX
107
107
  ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
108
108
  ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
109
109
  ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=4113jZK-Hu3kYop__WTc8Bq-bG6YzQtADbxHtYPEB4w,5036
110
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=rRodLr-hEqAs_-8x06O8qO-hJ_cqr2AfhJZ9DCptvwo,4332
110
+ ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=WMl1iuCE8So9FDnxPV0OTMzuPngQUTO61g8rfnBLyB4,4664
111
111
  ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
112
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=WmEshoN9HgNLbV7NTjxdqWz9Olcim6r_vo4R9eYE98I,2228
113
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=10X8HwPx4akzclnIMOBNItKQemhRbvxBbTo7nwZtWjM,2650
112
+ ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=5rgbTIxHoFg8sTnzrGA_ekT-HJEt9p7Dla7cIY874jU,2338
113
+ ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=mhJ18rb9sxrYRzv1YSzhbNs97oUZck99avZDcUO2oV8,2800
114
114
  ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=7Bk8z033M-BCXJ299fpQNXYAudBbZoDQp9934xcvg50,2426
115
115
  ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
116
116
  ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
117
117
  ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
118
- ai_edge_torch/generative/layers/attention.py,sha256=zN3BQjA25Ej_aRU0rFnyx--K74xf5ykc02zGvUpYHeE,13295
118
+ ai_edge_torch/generative/layers/attention.py,sha256=aOoVM1hY7qjvzVQI1-m26p_f9qoTLzXXIy8dNtU8xC4,13199
119
119
  ai_edge_torch/generative/layers/attention_utils.py,sha256=zBVwlBUTs-nStIKCZG0ks5ra7tsqc9ShfakFJKH5rds,7344
120
120
  ai_edge_torch/generative/layers/builder.py,sha256=LXGuSHIx6QZAzLFm7aJvlzoMPgQwbXLFchGEKYwOOUA,5090
121
121
  ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
122
- ai_edge_torch/generative/layers/kv_cache.py,sha256=lbm-yJ1jGPtcgWS4C3FmSnB1IlxqDE7g0BLRh3PN4N4,6324
122
+ ai_edge_torch/generative/layers/kv_cache.py,sha256=DhHIggaOQ2IAY4aRuMAuCLWZv1dBz5PYtmOEjkx9EQY,6291
123
123
  ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
124
- ai_edge_torch/generative/layers/normalization.py,sha256=_2hps2m2MXEHQWbM-1B4he90hbq8wqOnIDIf-qXHhpc,7589
124
+ ai_edge_torch/generative/layers/normalization.py,sha256=h2btgRHMMjOcyLm8adEmcT0pG6imq4QcWblKJK5MYXA,7479
125
125
  ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=xxWtlVsGGJkEyXC6PwznubyhJnLPEfSpHOORE_hgxss,2670
126
126
  ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
127
127
  ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
@@ -137,34 +137,33 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FB
137
137
  ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
138
138
  ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
139
139
  ai_edge_torch/generative/test/test_custom_dus.py,sha256=gxG78CcTpXF3iLzDR15Rlz1ey1tNTlSdkp6TeYEijp0,3301
140
- ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
140
+ ai_edge_torch/generative/test/test_kv_cache.py,sha256=2AulHBS3hC4b_68PNNBkRVOrypy4IM5YjC4p-6dgCMM,3793
141
141
  ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
142
- ai_edge_torch/generative/test/test_model_conversion.py,sha256=aZFaheg2sq7rEccch1TZM6W4BSfpJZjrM9Gyp4hVGYs,6351
143
- ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=xWV9O2wuRHc4VNBWuWipiuqXa3AJhiV1nmjewAZHHWM,11177
142
+ ai_edge_torch/generative/test/test_model_conversion.py,sha256=jfqkECCX7XKHeBAuDXrkwQJf0vM72eG3LMc5rluha84,6191
143
+ ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=mVuax3MPRmuNjnDRKXqtc9YmswCy7MnhD1CHADK-3nk,11501
144
144
  ai_edge_torch/generative/test/test_quantize.py,sha256=bEJMhpQ9bIDUZVBXTW888728FcH-i3SyE4JSZZUgU0A,6071
145
- ai_edge_torch/generative/test/utils.py,sha256=eQ-hjd1eXuHJF3SJK6_CrjgOZVzmG_4VEdH7Z1gH_lA,1897
145
+ ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
146
146
  ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
147
- ai_edge_torch/generative/utilities/converter.py,sha256=S14STbyxV6A9HKy1BdUo49f2jS6Ij0RL9mVAFUMWYV8,5291
147
+ ai_edge_torch/generative/utilities/converter.py,sha256=hIwWUWjgPvWLATtsYYG6RWbFQWhOr2RpPlMrd-4Am9U,5959
148
148
  ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
149
149
  ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
150
- ai_edge_torch/generative/utilities/model_builder.py,sha256=OcHJhEqc3LjI3STli6cyn71m1mdzr7QbzF9fqSNCXrg,5730
150
+ ai_edge_torch/generative/utilities/model_builder.py,sha256=rfD6INxunvDVdiUfTUxD7yy0dRxL74W7kVmZsxUjpOQ,6379
151
151
  ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
152
152
  ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
153
153
  ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
154
154
  ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=8sp9m_FMcXn7nqOrochtu2jIANkJKhnhIBUmH0ZTDR4,1549
155
- ai_edge_torch/generative/utilities/verifier.py,sha256=GLh7h8pcpSKtCKoPyxJhv3TmvENd2h6ek_cnbe2s3Ak,11418
155
+ ai_edge_torch/generative/utilities/verifier.py,sha256=ESSA8W1EYNsd4ntwmXbr-dn-BcIS27hf53XL5RTwjEU,11941
156
156
  ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
157
157
  ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
158
158
  ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
159
159
  ai_edge_torch/hlfb/mark_pattern/pattern.py,sha256=NP2mYhe5D2GjtqQfqqldp-ko3xtNghuFKKJOQskUJFI,10041
160
160
  ai_edge_torch/hlfb/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
161
161
  ai_edge_torch/hlfb/test/test_mark_pattern.py,sha256=ivq0eVjuf31idfNY0E12F4FxdkSI9hwYXapLJBkIf8Q,4831
162
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=j8WpeS-mz3Zr4I7p7NwanQzkQNeH0asZ7lz5y7twgQ4,8447
163
162
  ai_edge_torch/lowertools/__init__.py,sha256=A8WBXvWtuFYYWtNTqPD7waVntLaSVAnSMwx5ugjZBIw,761
164
- ai_edge_torch/lowertools/_shim.py,sha256=ilL7x1ebUBj1clg7bagrX4y_nVSHiGrvDrOVfuTeenE,3039
163
+ ai_edge_torch/lowertools/_shim.py,sha256=xJIHDSWNoF4PkkT0JkjeJxgguQ9JGEwooJf9xZNkVRU,3058
165
164
  ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjFXIGQbzjgwQo,4504
166
165
  ai_edge_torch/lowertools/odml_torch_utils.py,sha256=Smt7p62-lZ_3bBBfnbssAK5GAGxm3U_X7M-1qwsmc68,8161
167
- ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
166
+ ai_edge_torch/lowertools/test_utils.py,sha256=mdxTlhqHABZEQ_GEmPFCL8LIAWtqRtYZUGdSY1ieZjw,1949
168
167
  ai_edge_torch/lowertools/torch_xla_utils.py,sha256=XGZE0vZG9WSQT-6dFmPlU8W89z8rfXPRGjuZeuhXCIw,9205
169
168
  ai_edge_torch/lowertools/translate_recipe.py,sha256=ymkBpFqAUiupRWqrPOWiVphKcXR1K5vHK0RjgBFtxlE,5652
170
169
  ai_edge_torch/odml_torch/__init__.py,sha256=S8jOzE9nLof-6es3XDiGJRN-9H_XTxsVm9dE7lD3RWo,812
@@ -182,15 +181,16 @@ ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW
182
181
  ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
183
182
  ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=LqwZ1vCJTSOzgzvH8LUAN-sAkF-l_pGj1AMEIzAqHCA,6638
184
183
  ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
185
- ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=1lMKPoStK3SUA8yYTPZBRhESN33BghGXnfqOOg4oeVk,995
186
- ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=ufvnaAh6rM_yfoc8ybI3VErHEVBv5W_p4iOe9slfwKM,9948
184
+ ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=0GytV1dGnqe1mKityqQDNFNS8T4QBg3UZuRJcGHwGyA,993
185
+ ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=8mZTp_ybcMO3tDRQdlDP68BVeTw560XsTR4XH-ldTdc,9987
187
186
  ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
188
- ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
189
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=4UyNyaR2W-vCOvj-P5lywQ1_RfLIxVE7J_GONI6CQvI,10718
190
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
191
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py,sha256=rFmzqcdjYrwhcxH8j9zCFStPy21HFF7hkUV_GQ8FPAk,6056
187
+ ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=Q0aDzyUcZMoSzSbOU-r3LJMgPe6fble0QwdYVIOHHHk,6887
188
+ ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=OVmlPGwyhDXKhmG4SAeEsa6iLpJHEHV_jKqwfjYvetA,11643
189
+ ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=khJIvDVk2s332Nd2Be-5dM6-wp5DGff61HCV5lskHmQ,3011
190
+ ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py,sha256=GEs83mtEjh8GOW_OATI_ur11VKujrOL2xdZeZ0l1HtM,6100
192
191
  ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
193
- ai_edge_torch/odml_torch/lowerings/registry.py,sha256=itTt8MLbq2LoHTzRidCF2TTbh0TP7L836u99qCjP3FA,2953
192
+ ai_edge_torch/odml_torch/lowerings/decomp.py,sha256=UoJeZVcr4zAN_11i-HzfOhxGCxUm-7b1JXPVBxR2hSs,2414
193
+ ai_edge_torch/odml_torch/lowerings/registry.py,sha256=Tp2h11l5uTifO0aIkuUOWAF_ibEjmd65Xx99w3EXuGE,1924
194
194
  ai_edge_torch/odml_torch/lowerings/utils.py,sha256=pqM6mumpviFDHRaabp93CUAngzEZmWcAHl0nTDgyI2g,6167
195
195
  ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
196
196
  ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
@@ -200,8 +200,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
200
200
  ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
201
201
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
202
202
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
203
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
204
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/METADATA,sha256=eg5hEpY3CvgsLN4nd_IPdW2Jd047fRrbFsr4hZRxvrM,1897
205
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
206
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
207
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/RECORD,,
203
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
204
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/METADATA,sha256=fUbq26zB0WUU1l6eUud8vq3Nm3KSIhox74pzFSFTmoM,1966
205
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
206
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
207
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/RECORD,,
ai_edge_torch/config.py DELETED
@@ -1,27 +0,0 @@
1
- # Copyright 2024 The AI Edge Torch Authors.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- """Provides a configuration for the AI Edge Torch library."""
17
-
18
- import dataclasses
19
- import os
20
-
21
-
22
- @dataclasses.dataclass
23
- class Config:
24
- use_torch_xla: bool = os.environ.get("USE_TORCH_XLA", "true").lower() in (
25
- "1",
26
- "true",
27
- )
@@ -1,283 +0,0 @@
1
- # Copyright 2024 The AI Edge Torch Authors.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Tests for StableHLOCompositeBuilder."""
16
-
17
- import math
18
-
19
- from ai_edge_torch import config
20
- from ai_edge_torch import lowertools
21
- from ai_edge_torch.hlfb import StableHLOCompositeBuilder
22
- import torch
23
- import torch.nn.functional as F
24
-
25
- from absl.testing import absltest as googletest
26
-
27
-
28
- def _export_stablehlo_mlir(model, args):
29
- ep = torch.export.export(model, args)
30
- return lowertools.exported_program_to_mlir_text(ep)
31
-
32
-
33
- @googletest.skipIf(
34
- not config.Config.use_torch_xla,
35
- reason="The odml_torch counter part is in odml_torch.",
36
- )
37
- class TestStableHLOCompositeBuilder(googletest.TestCase):
38
-
39
- def test_build_composite(self):
40
- class SampleModel(torch.nn.Module):
41
-
42
- def forward(self, x):
43
- builder = StableHLOCompositeBuilder(name="test.plus_two")
44
- y = x + 1
45
- y = builder.mark_inputs(y)
46
- z = y + 2
47
- z = builder.mark_outputs(z)
48
- return z
49
-
50
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
51
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_two"'), 1)
52
-
53
- def test_build_multiple_composites(self):
54
- class SampleModel(torch.nn.Module):
55
-
56
- def plus_one(self, x: torch.Tensor):
57
- builder = StableHLOCompositeBuilder("test.plus_one")
58
- x = builder.mark_inputs(x)
59
- y = x + 1
60
- y = builder.mark_outputs(y)
61
- return y
62
-
63
- def plus_two(self, x: torch.Tensor):
64
- builder = StableHLOCompositeBuilder("test.plus_two")
65
- x = builder.mark_inputs(x)
66
- y = x + 2
67
- y = builder.mark_outputs(y)
68
- return y
69
-
70
- def forward(self, x):
71
- x = self.plus_two(x)
72
- x = x + 3
73
- x = self.plus_one(x)
74
- x = x + 4
75
- x = self.plus_two(x)
76
- return x
77
-
78
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
79
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_one"'), 1)
80
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_two"'), 2)
81
-
82
- def test_build_composite_with_attr(self):
83
- class SampleModel(torch.nn.Module):
84
-
85
- def __init__(self):
86
- super().__init__()
87
-
88
- def log_softmax(self, x: torch.Tensor, dim: int):
89
- builder = StableHLOCompositeBuilder(
90
- name="test.log_softmax", attr={"dim": dim}
91
- )
92
- x = builder.mark_inputs(x)
93
- y = torch.nn.functional.log_softmax(x, dim=dim)
94
- y = builder.mark_outputs(y)
95
- return y
96
-
97
- def forward(self, x):
98
- x = x + 1
99
- x = self.log_softmax(x, 0)
100
- x = self.log_softmax(x, 1)
101
- return x
102
-
103
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
104
- self.assertEqual(mlir.count('stablehlo.composite "test.log_softmax"'), 2)
105
- self.assertEqual(mlir.count("composite_attributes = {dim = 0 : i64}"), 1)
106
- self.assertEqual(mlir.count("composite_attributes = {dim = 1 : i64}"), 1)
107
-
108
- def test_build_composite_with_mix_type_attrs(self):
109
- class SampleModel(torch.nn.Module):
110
-
111
- def __init__(self):
112
- super().__init__()
113
-
114
- def log_softmax(self, x: torch.Tensor, dim: int):
115
- builder = StableHLOCompositeBuilder(
116
- name="test.log_softmax",
117
- attr={
118
- "dim": dim,
119
- "source": "torch.nn",
120
- "version": 1.0,
121
- },
122
- )
123
- x = builder.mark_inputs(x)
124
- y = torch.nn.functional.log_softmax(x, dim=dim)
125
- y = builder.mark_outputs(y)
126
- return y
127
-
128
- def forward(self, x):
129
- x = x + 1
130
- x = self.log_softmax(x, 0)
131
- return x
132
-
133
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
134
- self.assertEqual(mlir.count('stablehlo.composite "test.log_softmax"'), 1)
135
- self.assertEqual(
136
- mlir.count(
137
- 'composite_attributes = {dim = 0 : i64, source = "torch.nn",'
138
- " version = 1.000000e+00 : f32}"
139
- ),
140
- 1,
141
- )
142
-
143
- def test_sdpa_composite(self):
144
- class SDPAModel(torch.nn.Module):
145
-
146
- def scaled_dot_product_attention(
147
- self,
148
- q: torch.Tensor,
149
- k: torch.Tensor,
150
- v: torch.Tensor,
151
- head_size: int,
152
- mask: torch.Tensor,
153
- ):
154
- builder = StableHLOCompositeBuilder("test.scaled_dot_product_attention")
155
- q, k, v, mask = builder.mark_inputs(q, k, v, mask)
156
-
157
- scale = 1.0 / math.sqrt(head_size)
158
-
159
- q = q.transpose(1, 2)
160
- k = k.transpose(1, 2)
161
- v = v.transpose(1, 2)
162
- y = F.scaled_dot_product_attention(
163
- q,
164
- k,
165
- v,
166
- attn_mask=mask,
167
- dropout_p=0.0,
168
- is_causal=mask is None,
169
- scale=scale,
170
- )
171
- result = y.transpose(1, 2)
172
- result = builder.mark_outputs(result)
173
- return result
174
-
175
- def forward(self, q, k, v, mask):
176
- x = self.scaled_dot_product_attention(
177
- q,
178
- k,
179
- v,
180
- 8,
181
- mask,
182
- )
183
- return x
184
-
185
- query = torch.rand(1, 1, 32, 4)
186
- key = torch.rand(1, 500, 1, 4)
187
- value = torch.rand(1, 500, 1, 4)
188
- mask = torch.rand(1, 1, 1, 500)
189
-
190
- mlir = _export_stablehlo_mlir(
191
- SDPAModel().eval(),
192
- (query, key, value, mask),
193
- )
194
- self.assertEqual(
195
- mlir.count('stablehlo.composite "test.scaled_dot_product_attention"'), 1
196
- )
197
-
198
- def test_sdpa_composite_with_attr(self):
199
- class SDPAModel(torch.nn.Module):
200
-
201
- def scaled_dot_product_attention(
202
- self,
203
- q: torch.Tensor,
204
- k: torch.Tensor,
205
- v: torch.Tensor,
206
- head_size: int,
207
- include_captanh: bool,
208
- ):
209
- builder = StableHLOCompositeBuilder(
210
- name="test.scaled_dot_product_attention",
211
- attr={"include_captanh": include_captanh},
212
- )
213
- q, k, v = builder.mark_inputs(q, k, v)
214
-
215
- scale = 1.0 / math.sqrt(head_size)
216
-
217
- q = q.transpose(1, 2)
218
- k = k.transpose(1, 2)
219
- v = v.transpose(1, 2)
220
- y = F.scaled_dot_product_attention(
221
- q,
222
- k,
223
- v,
224
- attn_mask=None,
225
- dropout_p=0.0,
226
- is_causal=True,
227
- scale=scale,
228
- )
229
- result = y.transpose(1, 2)
230
- result = builder.mark_outputs(result)
231
- return result
232
-
233
- def forward(self, q, k, v):
234
- x = self.scaled_dot_product_attention(q, k, v, 8, True)
235
- y = self.scaled_dot_product_attention(q, k, v, 8, False)
236
- return x + y
237
-
238
- query = torch.rand(1, 1, 32, 4)
239
- key = torch.rand(1, 500, 1, 4)
240
- value = torch.rand(1, 500, 1, 4)
241
- mlir = _export_stablehlo_mlir(
242
- SDPAModel().eval(),
243
- (query, key, value),
244
- )
245
- self.assertEqual(
246
- mlir.count('stablehlo.composite "test.scaled_dot_product_attention"'), 2
247
- )
248
- self.assertEqual(
249
- mlir.count("composite_attributes = {include_captanh = true}"), 1
250
- )
251
- self.assertEqual(
252
- mlir.count("composite_attributes = {include_captanh = false}"), 1
253
- )
254
-
255
- def test_build_composite_with_multiple_inputs_outputs(self):
256
- class SampleModel(torch.nn.Module):
257
-
258
- def mimo_sample(self, a, b, c):
259
- builder = StableHLOCompositeBuilder(name="test.mimo_sample")
260
-
261
- a, b, c = builder.mark_inputs(a, b, c)
262
- x = a + b + c
263
- y = (a - b) * x
264
- z = (c + 1.0) * a
265
- x, y, z = builder.mark_outputs(x, y, z)
266
-
267
- result = x + y * z
268
- return result
269
-
270
- def forward(self, a, b, c):
271
- x = self.mimo_sample(a, b, c)
272
- x = self.mimo_sample(a, b, x)
273
- x = self.mimo_sample(x, x, c)
274
- return x
275
-
276
- mlir = _export_stablehlo_mlir(
277
- SampleModel().eval(), (torch.rand(2), torch.rand(2), torch.rand(2))
278
- )
279
- self.assertEqual(mlir.count('stablehlo.composite "test.mimo_sample"'), 3)
280
-
281
-
282
- if __name__ == "__main__":
283
- googletest.main()