ai-edge-torch-nightly 0.3.0.dev20241206__py3-none-any.whl → 0.3.0.dev20241214__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. ai_edge_torch/__init__.py +1 -1
  2. ai_edge_torch/_config.py +52 -0
  3. ai_edge_torch/_convert/test/test_convert.py +1 -2
  4. ai_edge_torch/debug/test/test_culprit.py +8 -3
  5. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +8 -3
  6. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +2 -0
  7. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +2 -0
  8. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +2 -0
  9. ai_edge_torch/generative/examples/gemma/gemma1.py +8 -3
  10. ai_edge_torch/generative/examples/gemma/gemma2.py +15 -8
  11. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +2 -0
  12. ai_edge_torch/generative/examples/llama/llama.py +11 -17
  13. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +2 -0
  14. ai_edge_torch/generative/examples/openelm/openelm.py +8 -3
  15. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +2 -0
  16. ai_edge_torch/generative/examples/paligemma/decoder.py +10 -9
  17. ai_edge_torch/generative/examples/paligemma/paligemma.py +11 -1
  18. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +2 -0
  19. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +2 -0
  20. ai_edge_torch/generative/examples/phi/phi2.py +8 -3
  21. ai_edge_torch/generative/examples/phi/phi3.py +7 -9
  22. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +2 -0
  23. ai_edge_torch/generative/examples/qwen/qwen.py +12 -9
  24. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +3 -0
  25. ai_edge_torch/generative/examples/smollm/smollm.py +8 -3
  26. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +12 -2
  27. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +2 -0
  28. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +8 -3
  29. ai_edge_torch/generative/layers/attention.py +2 -6
  30. ai_edge_torch/generative/layers/kv_cache.py +24 -18
  31. ai_edge_torch/generative/layers/normalization.py +1 -3
  32. ai_edge_torch/generative/test/test_kv_cache.py +3 -3
  33. ai_edge_torch/generative/test/test_model_conversion.py +12 -14
  34. ai_edge_torch/generative/test/test_model_conversion_large.py +63 -59
  35. ai_edge_torch/generative/test/utils.py +31 -6
  36. ai_edge_torch/generative/utilities/converter.py +25 -4
  37. ai_edge_torch/generative/utilities/model_builder.py +24 -4
  38. ai_edge_torch/generative/utilities/verifier.py +16 -2
  39. ai_edge_torch/lowertools/_shim.py +4 -2
  40. ai_edge_torch/lowertools/test_utils.py +4 -2
  41. ai_edge_torch/odml_torch/lowerings/__init__.py +1 -1
  42. ai_edge_torch/odml_torch/lowerings/_basic.py +5 -3
  43. ai_edge_torch/odml_torch/lowerings/_convolution.py +3 -1
  44. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +28 -2
  45. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +11 -2
  46. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +9 -9
  47. ai_edge_torch/odml_torch/lowerings/decomp.py +65 -0
  48. ai_edge_torch/odml_torch/lowerings/registry.py +0 -32
  49. ai_edge_torch/version.py +1 -1
  50. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/METADATA +7 -5
  51. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/RECORD +54 -54
  52. ai_edge_torch/config.py +0 -27
  53. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +0 -283
  54. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/LICENSE +0 -0
  55. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/WHEEL +0 -0
  56. {ai_edge_torch_nightly-0.3.0.dev20241206.dist-info → ai_edge_torch_nightly-0.3.0.dev20241214.dist-info}/top_level.txt +0 -0
@@ -1,9 +1,9 @@
1
- ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,1168
2
- ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
1
+ ai_edge_torch/__init__.py,sha256=rq9ZtMJLG8yYNC4tNE4rpl94UAUClZW7f4GAr6HBVDQ,1208
2
+ ai_edge_torch/_config.py,sha256=QIrerb6uHMahRvMilmhodJ_6jfiRps3qgLOBeidPnS4,1614
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
5
5
  ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
6
- ai_edge_torch/version.py,sha256=t0bO5q_PrmOZRLB-Ctr76SvnlQe4yxlDMh9MrXR25p8,706
6
+ ai_edge_torch/version.py,sha256=iCH8lnlOrtbGwvxnT3knpY_keeu2UnrJ_ZXNK2LSvf4,706
7
7
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
8
8
  ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
9
9
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -26,7 +26,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
26
26
  ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
27
27
  ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
28
28
  ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
29
- ai_edge_torch/_convert/test/test_convert.py,sha256=v6AhfWqRBuHT7uBDueTbntaQtDSMMrvQOqlIDXNUaMA,17250
29
+ ai_edge_torch/_convert/test/test_convert.py,sha256=gK9QJuLbpjXt0l6tVnzl9Miq6GLkJR-hB67i3VE13Og,17224
30
30
  ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
31
31
  ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
32
32
  ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
@@ -34,56 +34,56 @@ ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyu
34
34
  ai_edge_torch/debug/culprit.py,sha256=7UYVpVWpiCXbMAyThVtHt_kc_poT7sCTh5UUPvcycgk,14832
35
35
  ai_edge_torch/debug/utils.py,sha256=vOAL4t6Lj47uhKapfEsc_WHmvwew3eKO9hSJyzvPXnU,1625
36
36
  ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
37
- ai_edge_torch/debug/test/test_culprit.py,sha256=SLX4rC-5Dlna8MWHhGRNe72K71AHTFufDrWLlFQn50c,3773
37
+ ai_edge_torch/debug/test/test_culprit.py,sha256=fRN-8jJicawJ2mhPRQNAQUZ8AdGg-s0tYMXyhnLAlWw,3875
38
38
  ai_edge_torch/debug/test/test_search_model.py,sha256=-RuU0QsjqkfzZF2IbeA55MoeVOawhbgiSEu96PmioPE,1668
39
39
  ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
40
40
  ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
41
41
  ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
42
42
  ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
43
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=bkq2ZknJfuY7WC8wLVg92Z6eA_aMDbkgwaMxvmDW4_0,2618
44
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=-n79r6yFnCACpms5eMkXNpyQsCn2PYVRdB-jOoIqn14,2227
43
+ ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=urNif89PyCXbdXT5spOeDvdM5luJ-a5HaXHM86v4JnU,2766
44
+ ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=Oqlg5ZoUuG2aU3067QaPpmEXWOdB8GEq7u_NWoBpoB4,2337
45
45
  ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=-9Nb9D818YSJR3olVtBwoLNeMMD5qE58YBnsA67hlHg,2421
46
46
  ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
47
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=mrG96_WEGD4NQ4uFEKrHRMAQvVVliOcj1zbI3drGDjI,2199
48
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=I_tvwCYmtf08D1HqDxYx7dpvj2q5_eaYnuI_3rI6Dlw,2201
49
- ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=oSbysiPvwp5efMbNYZop3HrxDMGiD15Tmz-HiQuTr2E,3315
50
- ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=RQFQDMEnIVp8PefcCTr7P0CvllKI7FVoIJLXbPLLIsc,9056
47
+ ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=GhwtQZ1xuMyKJl8qdxU6uKavQnlm5US9xhKJvdmgACc,2309
48
+ ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=hsy4Gd7Inchi0p_Cc5yecH6vr9A7X4MvmQNfTt8N2sQ,2311
49
+ ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=N0jKVZA3qWKOaHVbIM3WmQh3u0Sq7MTw_oO3Zo16wCw,3456
50
+ ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=whQ6DEnmhmj9hd5OyaoEI-FUNJ4m302vY3Swo_IqQcA,9285
51
51
  ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
52
52
  ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=IoBhEMwH07-tFm5-U6F2hpCsI8xynglhq1x9tIOdaPQ,1322
53
53
  ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=tR8RflXocDZqvuStyw9aFlzuiTllEC8rNnjrxms6_Is,5727
54
54
  ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
55
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=Brb83sbqBfStUiIZFhfWnYtN7LcNmkKyFn96cZK4sGo,2426
56
- ai_edge_torch/generative/examples/llama/llama.py,sha256=AMcCbuDBxEfbO-l3KiEXbUaXEJ3RLLwkHii7to7UhVo,6854
55
+ ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=ck7tXN0U25wAbbRjDcf-aqiS2YhismkmoZIsMpjIsjc,2536
56
+ ai_edge_torch/generative/examples/llama/llama.py,sha256=BMjpdw6oOXmtqXCAfW9o7Iewaj-Hxd57xVrvSLBuHTk,6656
57
57
  ai_edge_torch/generative/examples/llama/verify.py,sha256=X7oKQi85M789ugBrOlMvzk8eSRR3Kf1Mprfl-U-WIpo,2842
58
58
  ai_edge_torch/generative/examples/moonshine/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
59
59
  ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py,sha256=7m3rYRzThRDYb-7pGnpLr3ACi4PWX07Mg20Q98ArPc4,1714
60
60
  ai_edge_torch/generative/examples/moonshine/moonshine.py,sha256=nZ2b8u4TmsB5sgdClgAuH8E78bcTv9RCnF9666HqP2M,3394
61
61
  ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
62
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=-qDBu3bjUq0jx73SPDMsPIBP0BT1nA_0UgtFKeSuM18,2213
63
- ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sFakstoPDcOHSak0IGFEEq_HQMBBSMcx-WVCDZqcVDo,4411
62
+ ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=nji1oDgf6xImvGh95--8cNl3QPs-Xml2XBgNJB_c2hY,2323
63
+ ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sIJ8Ie1oxFrJM-1jvv2ukiJbQOTIUGuMEZvmwZbt3n0,4556
64
64
  ai_edge_torch/generative/examples/openelm/verify.py,sha256=VkigoqhAr8ew95neb3TifYv-SLOSheaWKv2AH0iKDrc,2441
65
65
  ai_edge_torch/generative/examples/paligemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
66
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=dT7dnx1dzGzFiH5gQJ4M6zcTLSRFvSDpi3IuZ9_vd78,2706
67
- ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=XMeznGBbjRJidv725L6_7XzkYskS2cDjf8NGB18FNhg,4944
66
+ ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=rPFqcsv8RHvjmgfBW9OL6EKxMtVX-ySjBsMP4N8FErk,2816
67
+ ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=eICKQkJsJuEUkuvn5ymUsI9CGB-oNbgV7VH7BlmklfQ,4961
68
68
  ai_edge_torch/generative/examples/paligemma/image_encoder.py,sha256=yKPWG8aBp-GuzeyQntlzwTTcGBBjvUywVGRjnlNprmo,5574
69
- ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=pIjsS-IUFevRjFA9153YT1vtWXATGWHsgVQQX_nWaZQ,5280
69
+ ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=nDyI-wUFJSawu57uLbFENei5l4cciqZ8lM5S5beN0FU,5604
70
70
  ai_edge_torch/generative/examples/paligemma/verify.py,sha256=Bkbgy-GFjnMNYjduWUM7YLWarPTwmj1v38eHY-PdBlM,4874
71
71
  ai_edge_torch/generative/examples/paligemma/verify_decoder.py,sha256=al5wMPWri4IRVWrLmCplPi6uoCzwh0vBHMGnCt-XUqo,2690
72
72
  ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py,sha256=pSekf1BybhieQz3cQx_llbRQHxczXbTqool8fOyGj_0,3114
73
73
  ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
74
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=ruY-LLwpqBqVZ5z9h_sewYj04ukWRG4j804tUAyDdnA,2186
75
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=UdMk1SSkcWpv8gosUylx3JSCxdOJBjZNhuQQtT4-Ono,2184
76
- ai_edge_torch/generative/examples/phi/phi2.py,sha256=nbivDwZREd-sypy_ittO59-yaAdPvHv1YEV6Fo5buCo,3341
77
- ai_edge_torch/generative/examples/phi/phi3.py,sha256=GkHOaYfsFEbHvfZCaLlb3Us_h19ezqPDUakoz_DiG9A,7123
74
+ ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=cD8rtwgYeGrXB9sYVV_D1AB8Up1AWNS-1XtrRlyzE5o,2296
75
+ ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=G1i_ybDCTBaOD1OOCTk6jqOf__xYYZvhXcxY8MXhPHw,2294
76
+ ai_edge_torch/generative/examples/phi/phi2.py,sha256=c6PYCky7yJn6MVIYOCTx8S_CH27kOPmJbRZcI95nbZs,3477
77
+ ai_edge_torch/generative/examples/phi/phi3.py,sha256=7Y1E4XpRuZOiSbeZJ-C2uJjmlnDtWv6L0XvPRE8oEQs,7112
78
78
  ai_edge_torch/generative/examples/phi/verify.py,sha256=YPFCdbnfmvq38fbpBNr0kHPfSZo4p3_6WkLJAW3pLPo,2177
79
79
  ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=kVYaBVvddfQng0IyZGxyTJEzhiPO0G4VFJm2WOc2Q94,2360
80
80
  ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
81
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=1M3DTkf536TCLYcQB1lu-3TxQ6mV03dFhTdbk0p8i84,2523
82
- ai_edge_torch/generative/examples/qwen/qwen.py,sha256=oYm9hhALUQ4uOn-PO1bF7fCIGP8EWRNK4zClkx2RQs8,4070
81
+ ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=BHkDsivbbfVBPxknkgWwtLskvxyrd42TXuCB0aLVbMY,2633
82
+ ai_edge_torch/generative/examples/qwen/qwen.py,sha256=Zi_qiQ1JPokXZ95jgSEnQp3F-LKzFCvWvFLKhJjnASo,4199
83
83
  ai_edge_torch/generative/examples/qwen/verify.py,sha256=9_AyEJTeUfvhhID64Rto2bflFPyXMFokdQLsseLUMiI,2775
84
84
  ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
85
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=56CzCjyp9xh_2ZtXKN9tlEv6GayeSc4giTIZsi2Q59E,2194
86
- ai_edge_torch/generative/examples/smollm/smollm.py,sha256=M5qAcSUE5gxOSfq24a8lZku9kgvmlFCyIBar3kF2XEk,2570
85
+ ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=RKmSBMrup5A2bsPPaTdrBQb8NeRiUHy_1SUOA8DAs9U,2305
86
+ ai_edge_torch/generative/examples/smollm/smollm.py,sha256=kk3cB_qaCzbFOhHtJlLb7qvSEBQTsILnoAcSFE3AkpE,2711
87
87
  ai_edge_torch/generative/examples/smollm/verify.py,sha256=HXYcCjDJMylVL3Pc9HU-UXqtpjtIU25o1YhPiX30aPU,2361
88
88
  ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
89
89
  ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
@@ -107,21 +107,21 @@ ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqX
107
107
  ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
108
108
  ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
109
109
  ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=4113jZK-Hu3kYop__WTc8Bq-bG6YzQtADbxHtYPEB4w,5036
110
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=rRodLr-hEqAs_-8x06O8qO-hJ_cqr2AfhJZ9DCptvwo,4332
110
+ ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=WMl1iuCE8So9FDnxPV0OTMzuPngQUTO61g8rfnBLyB4,4664
111
111
  ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
112
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=WmEshoN9HgNLbV7NTjxdqWz9Olcim6r_vo4R9eYE98I,2228
113
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=10X8HwPx4akzclnIMOBNItKQemhRbvxBbTo7nwZtWjM,2650
112
+ ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=5rgbTIxHoFg8sTnzrGA_ekT-HJEt9p7Dla7cIY874jU,2338
113
+ ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=mhJ18rb9sxrYRzv1YSzhbNs97oUZck99avZDcUO2oV8,2800
114
114
  ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=7Bk8z033M-BCXJ299fpQNXYAudBbZoDQp9934xcvg50,2426
115
115
  ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
116
116
  ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
117
117
  ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
118
- ai_edge_torch/generative/layers/attention.py,sha256=zN3BQjA25Ej_aRU0rFnyx--K74xf5ykc02zGvUpYHeE,13295
118
+ ai_edge_torch/generative/layers/attention.py,sha256=aOoVM1hY7qjvzVQI1-m26p_f9qoTLzXXIy8dNtU8xC4,13199
119
119
  ai_edge_torch/generative/layers/attention_utils.py,sha256=zBVwlBUTs-nStIKCZG0ks5ra7tsqc9ShfakFJKH5rds,7344
120
120
  ai_edge_torch/generative/layers/builder.py,sha256=LXGuSHIx6QZAzLFm7aJvlzoMPgQwbXLFchGEKYwOOUA,5090
121
121
  ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
122
- ai_edge_torch/generative/layers/kv_cache.py,sha256=lbm-yJ1jGPtcgWS4C3FmSnB1IlxqDE7g0BLRh3PN4N4,6324
122
+ ai_edge_torch/generative/layers/kv_cache.py,sha256=DhHIggaOQ2IAY4aRuMAuCLWZv1dBz5PYtmOEjkx9EQY,6291
123
123
  ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
124
- ai_edge_torch/generative/layers/normalization.py,sha256=_2hps2m2MXEHQWbM-1B4he90hbq8wqOnIDIf-qXHhpc,7589
124
+ ai_edge_torch/generative/layers/normalization.py,sha256=h2btgRHMMjOcyLm8adEmcT0pG6imq4QcWblKJK5MYXA,7479
125
125
  ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=xxWtlVsGGJkEyXC6PwznubyhJnLPEfSpHOORE_hgxss,2670
126
126
  ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
127
127
  ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
@@ -137,34 +137,33 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FB
137
137
  ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
138
138
  ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
139
139
  ai_edge_torch/generative/test/test_custom_dus.py,sha256=gxG78CcTpXF3iLzDR15Rlz1ey1tNTlSdkp6TeYEijp0,3301
140
- ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
140
+ ai_edge_torch/generative/test/test_kv_cache.py,sha256=2AulHBS3hC4b_68PNNBkRVOrypy4IM5YjC4p-6dgCMM,3793
141
141
  ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
142
- ai_edge_torch/generative/test/test_model_conversion.py,sha256=aZFaheg2sq7rEccch1TZM6W4BSfpJZjrM9Gyp4hVGYs,6351
143
- ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=xWV9O2wuRHc4VNBWuWipiuqXa3AJhiV1nmjewAZHHWM,11177
142
+ ai_edge_torch/generative/test/test_model_conversion.py,sha256=jfqkECCX7XKHeBAuDXrkwQJf0vM72eG3LMc5rluha84,6191
143
+ ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=mVuax3MPRmuNjnDRKXqtc9YmswCy7MnhD1CHADK-3nk,11501
144
144
  ai_edge_torch/generative/test/test_quantize.py,sha256=bEJMhpQ9bIDUZVBXTW888728FcH-i3SyE4JSZZUgU0A,6071
145
- ai_edge_torch/generative/test/utils.py,sha256=eQ-hjd1eXuHJF3SJK6_CrjgOZVzmG_4VEdH7Z1gH_lA,1897
145
+ ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
146
146
  ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
147
- ai_edge_torch/generative/utilities/converter.py,sha256=S14STbyxV6A9HKy1BdUo49f2jS6Ij0RL9mVAFUMWYV8,5291
147
+ ai_edge_torch/generative/utilities/converter.py,sha256=hIwWUWjgPvWLATtsYYG6RWbFQWhOr2RpPlMrd-4Am9U,5959
148
148
  ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
149
149
  ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
150
- ai_edge_torch/generative/utilities/model_builder.py,sha256=OcHJhEqc3LjI3STli6cyn71m1mdzr7QbzF9fqSNCXrg,5730
150
+ ai_edge_torch/generative/utilities/model_builder.py,sha256=rfD6INxunvDVdiUfTUxD7yy0dRxL74W7kVmZsxUjpOQ,6379
151
151
  ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
152
152
  ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
153
153
  ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
154
154
  ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=8sp9m_FMcXn7nqOrochtu2jIANkJKhnhIBUmH0ZTDR4,1549
155
- ai_edge_torch/generative/utilities/verifier.py,sha256=GLh7h8pcpSKtCKoPyxJhv3TmvENd2h6ek_cnbe2s3Ak,11418
155
+ ai_edge_torch/generative/utilities/verifier.py,sha256=ESSA8W1EYNsd4ntwmXbr-dn-BcIS27hf53XL5RTwjEU,11941
156
156
  ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
157
157
  ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
158
158
  ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
159
159
  ai_edge_torch/hlfb/mark_pattern/pattern.py,sha256=NP2mYhe5D2GjtqQfqqldp-ko3xtNghuFKKJOQskUJFI,10041
160
160
  ai_edge_torch/hlfb/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
161
161
  ai_edge_torch/hlfb/test/test_mark_pattern.py,sha256=ivq0eVjuf31idfNY0E12F4FxdkSI9hwYXapLJBkIf8Q,4831
162
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=j8WpeS-mz3Zr4I7p7NwanQzkQNeH0asZ7lz5y7twgQ4,8447
163
162
  ai_edge_torch/lowertools/__init__.py,sha256=A8WBXvWtuFYYWtNTqPD7waVntLaSVAnSMwx5ugjZBIw,761
164
- ai_edge_torch/lowertools/_shim.py,sha256=ilL7x1ebUBj1clg7bagrX4y_nVSHiGrvDrOVfuTeenE,3039
163
+ ai_edge_torch/lowertools/_shim.py,sha256=xJIHDSWNoF4PkkT0JkjeJxgguQ9JGEwooJf9xZNkVRU,3058
165
164
  ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjFXIGQbzjgwQo,4504
166
165
  ai_edge_torch/lowertools/odml_torch_utils.py,sha256=Smt7p62-lZ_3bBBfnbssAK5GAGxm3U_X7M-1qwsmc68,8161
167
- ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
166
+ ai_edge_torch/lowertools/test_utils.py,sha256=mdxTlhqHABZEQ_GEmPFCL8LIAWtqRtYZUGdSY1ieZjw,1949
168
167
  ai_edge_torch/lowertools/torch_xla_utils.py,sha256=XGZE0vZG9WSQT-6dFmPlU8W89z8rfXPRGjuZeuhXCIw,9205
169
168
  ai_edge_torch/lowertools/translate_recipe.py,sha256=ymkBpFqAUiupRWqrPOWiVphKcXR1K5vHK0RjgBFtxlE,5652
170
169
  ai_edge_torch/odml_torch/__init__.py,sha256=S8jOzE9nLof-6es3XDiGJRN-9H_XTxsVm9dE7lD3RWo,812
@@ -182,15 +181,16 @@ ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW
182
181
  ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
183
182
  ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=LqwZ1vCJTSOzgzvH8LUAN-sAkF-l_pGj1AMEIzAqHCA,6638
184
183
  ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
185
- ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=1lMKPoStK3SUA8yYTPZBRhESN33BghGXnfqOOg4oeVk,995
186
- ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=ufvnaAh6rM_yfoc8ybI3VErHEVBv5W_p4iOe9slfwKM,9948
184
+ ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=0GytV1dGnqe1mKityqQDNFNS8T4QBg3UZuRJcGHwGyA,993
185
+ ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=8mZTp_ybcMO3tDRQdlDP68BVeTw560XsTR4XH-ldTdc,9987
187
186
  ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
188
- ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
189
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=4UyNyaR2W-vCOvj-P5lywQ1_RfLIxVE7J_GONI6CQvI,10718
190
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
191
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py,sha256=rFmzqcdjYrwhcxH8j9zCFStPy21HFF7hkUV_GQ8FPAk,6056
187
+ ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=Q0aDzyUcZMoSzSbOU-r3LJMgPe6fble0QwdYVIOHHHk,6887
188
+ ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=OVmlPGwyhDXKhmG4SAeEsa6iLpJHEHV_jKqwfjYvetA,11643
189
+ ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=khJIvDVk2s332Nd2Be-5dM6-wp5DGff61HCV5lskHmQ,3011
190
+ ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py,sha256=GEs83mtEjh8GOW_OATI_ur11VKujrOL2xdZeZ0l1HtM,6100
192
191
  ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
193
- ai_edge_torch/odml_torch/lowerings/registry.py,sha256=itTt8MLbq2LoHTzRidCF2TTbh0TP7L836u99qCjP3FA,2953
192
+ ai_edge_torch/odml_torch/lowerings/decomp.py,sha256=UoJeZVcr4zAN_11i-HzfOhxGCxUm-7b1JXPVBxR2hSs,2414
193
+ ai_edge_torch/odml_torch/lowerings/registry.py,sha256=Tp2h11l5uTifO0aIkuUOWAF_ibEjmd65Xx99w3EXuGE,1924
194
194
  ai_edge_torch/odml_torch/lowerings/utils.py,sha256=pqM6mumpviFDHRaabp93CUAngzEZmWcAHl0nTDgyI2g,6167
195
195
  ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
196
196
  ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
@@ -200,8 +200,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
200
200
  ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
201
201
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
202
202
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
203
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
204
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/METADATA,sha256=eg5hEpY3CvgsLN4nd_IPdW2Jd047fRrbFsr4hZRxvrM,1897
205
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
206
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
207
- ai_edge_torch_nightly-0.3.0.dev20241206.dist-info/RECORD,,
203
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
204
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/METADATA,sha256=fUbq26zB0WUU1l6eUud8vq3Nm3KSIhox74pzFSFTmoM,1966
205
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
206
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
207
+ ai_edge_torch_nightly-0.3.0.dev20241214.dist-info/RECORD,,
ai_edge_torch/config.py DELETED
@@ -1,27 +0,0 @@
1
- # Copyright 2024 The AI Edge Torch Authors.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- """Provides a configuration for the AI Edge Torch library."""
17
-
18
- import dataclasses
19
- import os
20
-
21
-
22
- @dataclasses.dataclass
23
- class Config:
24
- use_torch_xla: bool = os.environ.get("USE_TORCH_XLA", "true").lower() in (
25
- "1",
26
- "true",
27
- )
@@ -1,283 +0,0 @@
1
- # Copyright 2024 The AI Edge Torch Authors.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- """Tests for StableHLOCompositeBuilder."""
16
-
17
- import math
18
-
19
- from ai_edge_torch import config
20
- from ai_edge_torch import lowertools
21
- from ai_edge_torch.hlfb import StableHLOCompositeBuilder
22
- import torch
23
- import torch.nn.functional as F
24
-
25
- from absl.testing import absltest as googletest
26
-
27
-
28
- def _export_stablehlo_mlir(model, args):
29
- ep = torch.export.export(model, args)
30
- return lowertools.exported_program_to_mlir_text(ep)
31
-
32
-
33
- @googletest.skipIf(
34
- not config.Config.use_torch_xla,
35
- reason="The odml_torch counter part is in odml_torch.",
36
- )
37
- class TestStableHLOCompositeBuilder(googletest.TestCase):
38
-
39
- def test_build_composite(self):
40
- class SampleModel(torch.nn.Module):
41
-
42
- def forward(self, x):
43
- builder = StableHLOCompositeBuilder(name="test.plus_two")
44
- y = x + 1
45
- y = builder.mark_inputs(y)
46
- z = y + 2
47
- z = builder.mark_outputs(z)
48
- return z
49
-
50
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
51
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_two"'), 1)
52
-
53
- def test_build_multiple_composites(self):
54
- class SampleModel(torch.nn.Module):
55
-
56
- def plus_one(self, x: torch.Tensor):
57
- builder = StableHLOCompositeBuilder("test.plus_one")
58
- x = builder.mark_inputs(x)
59
- y = x + 1
60
- y = builder.mark_outputs(y)
61
- return y
62
-
63
- def plus_two(self, x: torch.Tensor):
64
- builder = StableHLOCompositeBuilder("test.plus_two")
65
- x = builder.mark_inputs(x)
66
- y = x + 2
67
- y = builder.mark_outputs(y)
68
- return y
69
-
70
- def forward(self, x):
71
- x = self.plus_two(x)
72
- x = x + 3
73
- x = self.plus_one(x)
74
- x = x + 4
75
- x = self.plus_two(x)
76
- return x
77
-
78
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
79
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_one"'), 1)
80
- self.assertEqual(mlir.count('stablehlo.composite "test.plus_two"'), 2)
81
-
82
- def test_build_composite_with_attr(self):
83
- class SampleModel(torch.nn.Module):
84
-
85
- def __init__(self):
86
- super().__init__()
87
-
88
- def log_softmax(self, x: torch.Tensor, dim: int):
89
- builder = StableHLOCompositeBuilder(
90
- name="test.log_softmax", attr={"dim": dim}
91
- )
92
- x = builder.mark_inputs(x)
93
- y = torch.nn.functional.log_softmax(x, dim=dim)
94
- y = builder.mark_outputs(y)
95
- return y
96
-
97
- def forward(self, x):
98
- x = x + 1
99
- x = self.log_softmax(x, 0)
100
- x = self.log_softmax(x, 1)
101
- return x
102
-
103
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
104
- self.assertEqual(mlir.count('stablehlo.composite "test.log_softmax"'), 2)
105
- self.assertEqual(mlir.count("composite_attributes = {dim = 0 : i64}"), 1)
106
- self.assertEqual(mlir.count("composite_attributes = {dim = 1 : i64}"), 1)
107
-
108
- def test_build_composite_with_mix_type_attrs(self):
109
- class SampleModel(torch.nn.Module):
110
-
111
- def __init__(self):
112
- super().__init__()
113
-
114
- def log_softmax(self, x: torch.Tensor, dim: int):
115
- builder = StableHLOCompositeBuilder(
116
- name="test.log_softmax",
117
- attr={
118
- "dim": dim,
119
- "source": "torch.nn",
120
- "version": 1.0,
121
- },
122
- )
123
- x = builder.mark_inputs(x)
124
- y = torch.nn.functional.log_softmax(x, dim=dim)
125
- y = builder.mark_outputs(y)
126
- return y
127
-
128
- def forward(self, x):
129
- x = x + 1
130
- x = self.log_softmax(x, 0)
131
- return x
132
-
133
- mlir = _export_stablehlo_mlir(SampleModel().eval(), (torch.rand((2, 2)),))
134
- self.assertEqual(mlir.count('stablehlo.composite "test.log_softmax"'), 1)
135
- self.assertEqual(
136
- mlir.count(
137
- 'composite_attributes = {dim = 0 : i64, source = "torch.nn",'
138
- " version = 1.000000e+00 : f32}"
139
- ),
140
- 1,
141
- )
142
-
143
- def test_sdpa_composite(self):
144
- class SDPAModel(torch.nn.Module):
145
-
146
- def scaled_dot_product_attention(
147
- self,
148
- q: torch.Tensor,
149
- k: torch.Tensor,
150
- v: torch.Tensor,
151
- head_size: int,
152
- mask: torch.Tensor,
153
- ):
154
- builder = StableHLOCompositeBuilder("test.scaled_dot_product_attention")
155
- q, k, v, mask = builder.mark_inputs(q, k, v, mask)
156
-
157
- scale = 1.0 / math.sqrt(head_size)
158
-
159
- q = q.transpose(1, 2)
160
- k = k.transpose(1, 2)
161
- v = v.transpose(1, 2)
162
- y = F.scaled_dot_product_attention(
163
- q,
164
- k,
165
- v,
166
- attn_mask=mask,
167
- dropout_p=0.0,
168
- is_causal=mask is None,
169
- scale=scale,
170
- )
171
- result = y.transpose(1, 2)
172
- result = builder.mark_outputs(result)
173
- return result
174
-
175
- def forward(self, q, k, v, mask):
176
- x = self.scaled_dot_product_attention(
177
- q,
178
- k,
179
- v,
180
- 8,
181
- mask,
182
- )
183
- return x
184
-
185
- query = torch.rand(1, 1, 32, 4)
186
- key = torch.rand(1, 500, 1, 4)
187
- value = torch.rand(1, 500, 1, 4)
188
- mask = torch.rand(1, 1, 1, 500)
189
-
190
- mlir = _export_stablehlo_mlir(
191
- SDPAModel().eval(),
192
- (query, key, value, mask),
193
- )
194
- self.assertEqual(
195
- mlir.count('stablehlo.composite "test.scaled_dot_product_attention"'), 1
196
- )
197
-
198
- def test_sdpa_composite_with_attr(self):
199
- class SDPAModel(torch.nn.Module):
200
-
201
- def scaled_dot_product_attention(
202
- self,
203
- q: torch.Tensor,
204
- k: torch.Tensor,
205
- v: torch.Tensor,
206
- head_size: int,
207
- include_captanh: bool,
208
- ):
209
- builder = StableHLOCompositeBuilder(
210
- name="test.scaled_dot_product_attention",
211
- attr={"include_captanh": include_captanh},
212
- )
213
- q, k, v = builder.mark_inputs(q, k, v)
214
-
215
- scale = 1.0 / math.sqrt(head_size)
216
-
217
- q = q.transpose(1, 2)
218
- k = k.transpose(1, 2)
219
- v = v.transpose(1, 2)
220
- y = F.scaled_dot_product_attention(
221
- q,
222
- k,
223
- v,
224
- attn_mask=None,
225
- dropout_p=0.0,
226
- is_causal=True,
227
- scale=scale,
228
- )
229
- result = y.transpose(1, 2)
230
- result = builder.mark_outputs(result)
231
- return result
232
-
233
- def forward(self, q, k, v):
234
- x = self.scaled_dot_product_attention(q, k, v, 8, True)
235
- y = self.scaled_dot_product_attention(q, k, v, 8, False)
236
- return x + y
237
-
238
- query = torch.rand(1, 1, 32, 4)
239
- key = torch.rand(1, 500, 1, 4)
240
- value = torch.rand(1, 500, 1, 4)
241
- mlir = _export_stablehlo_mlir(
242
- SDPAModel().eval(),
243
- (query, key, value),
244
- )
245
- self.assertEqual(
246
- mlir.count('stablehlo.composite "test.scaled_dot_product_attention"'), 2
247
- )
248
- self.assertEqual(
249
- mlir.count("composite_attributes = {include_captanh = true}"), 1
250
- )
251
- self.assertEqual(
252
- mlir.count("composite_attributes = {include_captanh = false}"), 1
253
- )
254
-
255
- def test_build_composite_with_multiple_inputs_outputs(self):
256
- class SampleModel(torch.nn.Module):
257
-
258
- def mimo_sample(self, a, b, c):
259
- builder = StableHLOCompositeBuilder(name="test.mimo_sample")
260
-
261
- a, b, c = builder.mark_inputs(a, b, c)
262
- x = a + b + c
263
- y = (a - b) * x
264
- z = (c + 1.0) * a
265
- x, y, z = builder.mark_outputs(x, y, z)
266
-
267
- result = x + y * z
268
- return result
269
-
270
- def forward(self, a, b, c):
271
- x = self.mimo_sample(a, b, c)
272
- x = self.mimo_sample(a, b, x)
273
- x = self.mimo_sample(x, x, c)
274
- return x
275
-
276
- mlir = _export_stablehlo_mlir(
277
- SampleModel().eval(), (torch.rand(2), torch.rand(2), torch.rand(2))
278
- )
279
- self.assertEqual(mlir.count('stablehlo.composite "test.mimo_sample"'), 3)
280
-
281
-
282
- if __name__ == "__main__":
283
- googletest.main()