ai-edge-torch-nightly 0.3.0.dev20241205__py3-none-any.whl → 0.3.0.dev20241213__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (45) hide show
  1. ai_edge_torch/debug/test/test_culprit.py +8 -3
  2. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +8 -3
  3. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +2 -0
  4. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +2 -0
  5. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +2 -0
  6. ai_edge_torch/generative/examples/gemma/gemma1.py +8 -3
  7. ai_edge_torch/generative/examples/gemma/gemma2.py +15 -8
  8. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +2 -0
  9. ai_edge_torch/generative/examples/llama/llama.py +11 -17
  10. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +2 -0
  11. ai_edge_torch/generative/examples/openelm/openelm.py +8 -3
  12. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +2 -0
  13. ai_edge_torch/generative/examples/paligemma/decoder.py +10 -9
  14. ai_edge_torch/generative/examples/paligemma/paligemma.py +11 -1
  15. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +2 -0
  16. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +2 -0
  17. ai_edge_torch/generative/examples/phi/phi2.py +8 -3
  18. ai_edge_torch/generative/examples/phi/phi3.py +7 -9
  19. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +2 -0
  20. ai_edge_torch/generative/examples/qwen/qwen.py +12 -9
  21. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +3 -0
  22. ai_edge_torch/generative/examples/smollm/smollm.py +8 -3
  23. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +12 -2
  24. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +2 -0
  25. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +8 -3
  26. ai_edge_torch/generative/layers/attention.py +2 -6
  27. ai_edge_torch/generative/layers/kv_cache.py +25 -18
  28. ai_edge_torch/generative/layers/normalization.py +1 -3
  29. ai_edge_torch/generative/test/test_kv_cache.py +3 -3
  30. ai_edge_torch/generative/test/test_model_conversion.py +4 -5
  31. ai_edge_torch/generative/test/test_model_conversion_large.py +37 -32
  32. ai_edge_torch/generative/test/utils.py +31 -6
  33. ai_edge_torch/generative/utilities/converter.py +25 -4
  34. ai_edge_torch/generative/utilities/model_builder.py +24 -4
  35. ai_edge_torch/generative/utilities/verifier.py +16 -2
  36. ai_edge_torch/odml_torch/lowerings/__init__.py +1 -1
  37. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +28 -2
  38. ai_edge_torch/odml_torch/lowerings/decomp.py +65 -0
  39. ai_edge_torch/odml_torch/lowerings/registry.py +0 -32
  40. ai_edge_torch/version.py +1 -1
  41. {ai_edge_torch_nightly-0.3.0.dev20241205.dist-info → ai_edge_torch_nightly-0.3.0.dev20241213.dist-info}/METADATA +2 -2
  42. {ai_edge_torch_nightly-0.3.0.dev20241205.dist-info → ai_edge_torch_nightly-0.3.0.dev20241213.dist-info}/RECORD +45 -44
  43. {ai_edge_torch_nightly-0.3.0.dev20241205.dist-info → ai_edge_torch_nightly-0.3.0.dev20241213.dist-info}/LICENSE +0 -0
  44. {ai_edge_torch_nightly-0.3.0.dev20241205.dist-info → ai_edge_torch_nightly-0.3.0.dev20241213.dist-info}/WHEEL +0 -0
  45. {ai_edge_torch_nightly-0.3.0.dev20241205.dist-info → ai_edge_torch_nightly-0.3.0.dev20241213.dist-info}/top_level.txt +0 -0
@@ -16,12 +16,15 @@ import functools
16
16
  import logging
17
17
 
18
18
  from ai_edge_torch.odml_torch import jax_bridge
19
+ from ai_edge_torch.odml_torch.lowerings import context
20
+ from ai_edge_torch.odml_torch.lowerings import registry
21
+ import jax.numpy as jnp
22
+ from jax._src.lib.mlir import ir
19
23
  import torch
20
24
  import torch_xla2.ops.jaten # Import to load torch_xla2 ops
21
25
  import torch_xla2.ops.ops_registry # Import to load torch_xla2 ops
22
26
 
23
- from . import registry
24
-
27
+ LoweringContext = context.LoweringContext
25
28
 
26
29
  @functools.cache
27
30
  def _log_usage(op):
@@ -258,3 +261,26 @@ def _aten_copy(self, *args, **kwargs):
258
261
  @lower_by_jax(torch.ops.aten.copy, ir_input_names=["src"])
259
262
  def _aten_copy(self, src, **kwargs):
260
263
  return _TORCH_XLA2_IMPLS[torch.ops.aten.copy](self, src)
264
+
265
+
266
+ # Schema:
267
+ # - aten::einsum(str equation, Tensor[] tensors, *, int[]? path=None)
268
+ # -> Tensor
269
+ # Torch Reference:
270
+ # - https://pytorch.org/docs/stable/generated/torch.einsum.html
271
+ # - https://github.com/pytorch/pytorch/blob/1b3f8b75896720e88362cbec7db32abc52afa83e/aten/src/ATen/native/Linear.cpp#L255
272
+ @registry.lower(torch.ops.aten.einsum.default)
273
+ def _aten_einsum_default(
274
+ lctx: LoweringContext,
275
+ equation: str,
276
+ tensors: list[ir.Value],
277
+ path=None,
278
+ ):
279
+ _log_usage(torch.ops.aten.einsum.default)
280
+
281
+ @jax_bridge.wrap
282
+ def jax_lowering(operands):
283
+ # Ignore the input path and let JAX determine the path.
284
+ return jnp.einsum(equation, *operands, optimize="optimal")
285
+
286
+ return jax_lowering(lctx, tuple(tensors))
@@ -0,0 +1,65 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Torch export decompositions to run before lowering."""
16
+
17
+ import functools
18
+
19
+ import torch
20
+
21
+
22
+ @functools.cache
23
+ def decompositions():
24
+ # Base: Core ATen decompositions
25
+ decompositions = torch._decomp.core_aten_decompositions()
26
+
27
+ decompositions.update(
28
+ torch._decomp.get_decompositions([
29
+ torch.ops.aten.upsample_nearest2d,
30
+ torch.ops.aten._native_batch_norm_legit.no_stats,
31
+ torch.ops.aten._native_batch_norm_legit_functional,
32
+ torch.ops.aten._adaptive_avg_pool2d,
33
+ torch.ops.aten._adaptive_avg_pool3d,
34
+ torch.ops.aten.grid_sampler_2d,
35
+ torch.ops.aten.native_group_norm,
36
+ torch.ops.aten.native_dropout,
37
+ torch.ops.aten.reflection_pad1d,
38
+ torch.ops.aten.reflection_pad2d,
39
+ torch.ops.aten.reflection_pad3d,
40
+ torch.ops.aten.replication_pad1d,
41
+ torch.ops.aten.replication_pad2d,
42
+ torch.ops.aten.replication_pad3d,
43
+ torch.ops.aten.addmm,
44
+ ])
45
+ )
46
+
47
+ torch._decomp.remove_decompositions(
48
+ decompositions,
49
+ [
50
+ torch.ops.aten.roll,
51
+ # Torch's default einsum impl/decompositions is less efficient and
52
+ # optimized through converter than JAX's impl. Disable einsum
53
+ # decomposition to use JAX bridge for a more efficient lowering.
54
+ torch.ops.aten.einsum.default,
55
+ ],
56
+ )
57
+
58
+ # Override _safe_softmax decompositions with regular softmax.
59
+ # _safe_softmax introduces additional check-select ops to guard extreme
60
+ # input values to softmax, which could make the converted model inefficient
61
+ # on-device.
62
+ if hasattr(torch.ops.aten, "_safe_softmax"):
63
+ decompositions[torch.ops.aten._safe_softmax.default] = torch.softmax
64
+
65
+ return decompositions
@@ -26,7 +26,6 @@ class LoweringRegistry:
26
26
 
27
27
  def __init__(self):
28
28
  self.registered_ops = {}
29
- self.decompositions = {}
30
29
 
31
30
  def lookup(self, op_or_name):
32
31
  candidate = self._get_lowering(op_or_name)
@@ -52,33 +51,6 @@ class LoweringRegistry:
52
51
 
53
52
 
54
53
  global_registry = LoweringRegistry()
55
- global_registry.decompositions.update(torch._decomp.core_aten_decompositions())
56
- global_registry.decompositions.update(
57
- torch._decomp.get_decompositions([
58
- torch.ops.aten.upsample_nearest2d,
59
- torch.ops.aten._native_batch_norm_legit.no_stats,
60
- torch.ops.aten._native_batch_norm_legit_functional,
61
- torch.ops.aten._adaptive_avg_pool2d,
62
- torch.ops.aten._adaptive_avg_pool3d,
63
- torch.ops.aten.grid_sampler_2d,
64
- torch.ops.aten.native_group_norm,
65
- torch.ops.aten.native_dropout,
66
- torch.ops.aten.reflection_pad1d,
67
- torch.ops.aten.reflection_pad2d,
68
- torch.ops.aten.reflection_pad3d,
69
- torch.ops.aten.replication_pad1d,
70
- torch.ops.aten.replication_pad2d,
71
- torch.ops.aten.replication_pad3d,
72
- torch.ops.aten.addmm,
73
- ])
74
- )
75
-
76
- torch._decomp.remove_decompositions(
77
- global_registry.decompositions,
78
- [
79
- torch.ops.aten.roll,
80
- ],
81
- )
82
54
 
83
55
 
84
56
  def lookup(op):
@@ -91,7 +63,3 @@ def lower(op):
91
63
  return lowering
92
64
 
93
65
  return inner
94
-
95
-
96
- def decompositions():
97
- return global_registry.decompositions
ai_edge_torch/version.py CHANGED
@@ -13,4 +13,4 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- __version__ = "0.3.0.dev20241205"
16
+ __version__ = "0.3.0.dev20241213"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-torch-nightly
3
- Version: 0.3.0.dev20241205
3
+ Version: 0.3.0.dev20241213
4
4
  Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-torch
6
6
  Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
@@ -29,7 +29,7 @@ Requires-Dist: safetensors
29
29
  Requires-Dist: tabulate
30
30
  Requires-Dist: torch>=2.4.0
31
31
  Requires-Dist: torch-xla>=2.4.0
32
- Requires-Dist: tf-nightly>=2.19.0.dev20241121
32
+ Requires-Dist: tf-nightly>=2.19.0.dev20241201
33
33
  Requires-Dist: ai-edge-litert-nightly
34
34
  Requires-Dist: ai-edge-quantizer-nightly
35
35
 
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
5
5
  ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
6
- ai_edge_torch/version.py,sha256=UKNQIv9LGNIpDQkZXBrHuhDFIYET3G8pLZ5njXu6KJc,706
6
+ ai_edge_torch/version.py,sha256=ZKmpBJjKnl93nlPyg2RYz15citIW0ntqZ-0diRjwTt8,706
7
7
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
8
8
  ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
9
9
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -34,56 +34,56 @@ ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyu
34
34
  ai_edge_torch/debug/culprit.py,sha256=7UYVpVWpiCXbMAyThVtHt_kc_poT7sCTh5UUPvcycgk,14832
35
35
  ai_edge_torch/debug/utils.py,sha256=vOAL4t6Lj47uhKapfEsc_WHmvwew3eKO9hSJyzvPXnU,1625
36
36
  ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
37
- ai_edge_torch/debug/test/test_culprit.py,sha256=SLX4rC-5Dlna8MWHhGRNe72K71AHTFufDrWLlFQn50c,3773
37
+ ai_edge_torch/debug/test/test_culprit.py,sha256=fRN-8jJicawJ2mhPRQNAQUZ8AdGg-s0tYMXyhnLAlWw,3875
38
38
  ai_edge_torch/debug/test/test_search_model.py,sha256=-RuU0QsjqkfzZF2IbeA55MoeVOawhbgiSEu96PmioPE,1668
39
39
  ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
40
40
  ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
41
41
  ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
42
42
  ai_edge_torch/generative/examples/amd_llama_135m/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
43
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=bkq2ZknJfuY7WC8wLVg92Z6eA_aMDbkgwaMxvmDW4_0,2618
44
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=-n79r6yFnCACpms5eMkXNpyQsCn2PYVRdB-jOoIqn14,2227
43
+ ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py,sha256=urNif89PyCXbdXT5spOeDvdM5luJ-a5HaXHM86v4JnU,2766
44
+ ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py,sha256=Oqlg5ZoUuG2aU3067QaPpmEXWOdB8GEq7u_NWoBpoB4,2337
45
45
  ai_edge_torch/generative/examples/amd_llama_135m/verify.py,sha256=-9Nb9D818YSJR3olVtBwoLNeMMD5qE58YBnsA67hlHg,2421
46
46
  ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
47
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=mrG96_WEGD4NQ4uFEKrHRMAQvVVliOcj1zbI3drGDjI,2199
48
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=I_tvwCYmtf08D1HqDxYx7dpvj2q5_eaYnuI_3rI6Dlw,2201
49
- ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=oSbysiPvwp5efMbNYZop3HrxDMGiD15Tmz-HiQuTr2E,3315
50
- ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=RQFQDMEnIVp8PefcCTr7P0CvllKI7FVoIJLXbPLLIsc,9056
47
+ ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=GhwtQZ1xuMyKJl8qdxU6uKavQnlm5US9xhKJvdmgACc,2309
48
+ ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=hsy4Gd7Inchi0p_Cc5yecH6vr9A7X4MvmQNfTt8N2sQ,2311
49
+ ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=N0jKVZA3qWKOaHVbIM3WmQh3u0Sq7MTw_oO3Zo16wCw,3456
50
+ ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=whQ6DEnmhmj9hd5OyaoEI-FUNJ4m302vY3Swo_IqQcA,9285
51
51
  ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
52
52
  ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=IoBhEMwH07-tFm5-U6F2hpCsI8xynglhq1x9tIOdaPQ,1322
53
53
  ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=tR8RflXocDZqvuStyw9aFlzuiTllEC8rNnjrxms6_Is,5727
54
54
  ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
55
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=Brb83sbqBfStUiIZFhfWnYtN7LcNmkKyFn96cZK4sGo,2426
56
- ai_edge_torch/generative/examples/llama/llama.py,sha256=AMcCbuDBxEfbO-l3KiEXbUaXEJ3RLLwkHii7to7UhVo,6854
55
+ ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=ck7tXN0U25wAbbRjDcf-aqiS2YhismkmoZIsMpjIsjc,2536
56
+ ai_edge_torch/generative/examples/llama/llama.py,sha256=BMjpdw6oOXmtqXCAfW9o7Iewaj-Hxd57xVrvSLBuHTk,6656
57
57
  ai_edge_torch/generative/examples/llama/verify.py,sha256=X7oKQi85M789ugBrOlMvzk8eSRR3Kf1Mprfl-U-WIpo,2842
58
58
  ai_edge_torch/generative/examples/moonshine/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
59
59
  ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py,sha256=7m3rYRzThRDYb-7pGnpLr3ACi4PWX07Mg20Q98ArPc4,1714
60
60
  ai_edge_torch/generative/examples/moonshine/moonshine.py,sha256=nZ2b8u4TmsB5sgdClgAuH8E78bcTv9RCnF9666HqP2M,3394
61
61
  ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
62
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=-qDBu3bjUq0jx73SPDMsPIBP0BT1nA_0UgtFKeSuM18,2213
63
- ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sFakstoPDcOHSak0IGFEEq_HQMBBSMcx-WVCDZqcVDo,4411
62
+ ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=nji1oDgf6xImvGh95--8cNl3QPs-Xml2XBgNJB_c2hY,2323
63
+ ai_edge_torch/generative/examples/openelm/openelm.py,sha256=sIJ8Ie1oxFrJM-1jvv2ukiJbQOTIUGuMEZvmwZbt3n0,4556
64
64
  ai_edge_torch/generative/examples/openelm/verify.py,sha256=VkigoqhAr8ew95neb3TifYv-SLOSheaWKv2AH0iKDrc,2441
65
65
  ai_edge_torch/generative/examples/paligemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
66
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=dT7dnx1dzGzFiH5gQJ4M6zcTLSRFvSDpi3IuZ9_vd78,2706
67
- ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=XMeznGBbjRJidv725L6_7XzkYskS2cDjf8NGB18FNhg,4944
66
+ ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py,sha256=rPFqcsv8RHvjmgfBW9OL6EKxMtVX-ySjBsMP4N8FErk,2816
67
+ ai_edge_torch/generative/examples/paligemma/decoder.py,sha256=eICKQkJsJuEUkuvn5ymUsI9CGB-oNbgV7VH7BlmklfQ,4961
68
68
  ai_edge_torch/generative/examples/paligemma/image_encoder.py,sha256=yKPWG8aBp-GuzeyQntlzwTTcGBBjvUywVGRjnlNprmo,5574
69
- ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=pIjsS-IUFevRjFA9153YT1vtWXATGWHsgVQQX_nWaZQ,5280
69
+ ai_edge_torch/generative/examples/paligemma/paligemma.py,sha256=nDyI-wUFJSawu57uLbFENei5l4cciqZ8lM5S5beN0FU,5604
70
70
  ai_edge_torch/generative/examples/paligemma/verify.py,sha256=Bkbgy-GFjnMNYjduWUM7YLWarPTwmj1v38eHY-PdBlM,4874
71
71
  ai_edge_torch/generative/examples/paligemma/verify_decoder.py,sha256=al5wMPWri4IRVWrLmCplPi6uoCzwh0vBHMGnCt-XUqo,2690
72
72
  ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py,sha256=pSekf1BybhieQz3cQx_llbRQHxczXbTqool8fOyGj_0,3114
73
73
  ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
74
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=ruY-LLwpqBqVZ5z9h_sewYj04ukWRG4j804tUAyDdnA,2186
75
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=UdMk1SSkcWpv8gosUylx3JSCxdOJBjZNhuQQtT4-Ono,2184
76
- ai_edge_torch/generative/examples/phi/phi2.py,sha256=nbivDwZREd-sypy_ittO59-yaAdPvHv1YEV6Fo5buCo,3341
77
- ai_edge_torch/generative/examples/phi/phi3.py,sha256=GkHOaYfsFEbHvfZCaLlb3Us_h19ezqPDUakoz_DiG9A,7123
74
+ ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=cD8rtwgYeGrXB9sYVV_D1AB8Up1AWNS-1XtrRlyzE5o,2296
75
+ ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=G1i_ybDCTBaOD1OOCTk6jqOf__xYYZvhXcxY8MXhPHw,2294
76
+ ai_edge_torch/generative/examples/phi/phi2.py,sha256=c6PYCky7yJn6MVIYOCTx8S_CH27kOPmJbRZcI95nbZs,3477
77
+ ai_edge_torch/generative/examples/phi/phi3.py,sha256=7Y1E4XpRuZOiSbeZJ-C2uJjmlnDtWv6L0XvPRE8oEQs,7112
78
78
  ai_edge_torch/generative/examples/phi/verify.py,sha256=YPFCdbnfmvq38fbpBNr0kHPfSZo4p3_6WkLJAW3pLPo,2177
79
79
  ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=kVYaBVvddfQng0IyZGxyTJEzhiPO0G4VFJm2WOc2Q94,2360
80
80
  ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
81
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=1M3DTkf536TCLYcQB1lu-3TxQ6mV03dFhTdbk0p8i84,2523
82
- ai_edge_torch/generative/examples/qwen/qwen.py,sha256=oYm9hhALUQ4uOn-PO1bF7fCIGP8EWRNK4zClkx2RQs8,4070
81
+ ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=BHkDsivbbfVBPxknkgWwtLskvxyrd42TXuCB0aLVbMY,2633
82
+ ai_edge_torch/generative/examples/qwen/qwen.py,sha256=Zi_qiQ1JPokXZ95jgSEnQp3F-LKzFCvWvFLKhJjnASo,4199
83
83
  ai_edge_torch/generative/examples/qwen/verify.py,sha256=9_AyEJTeUfvhhID64Rto2bflFPyXMFokdQLsseLUMiI,2775
84
84
  ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
85
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=56CzCjyp9xh_2ZtXKN9tlEv6GayeSc4giTIZsi2Q59E,2194
86
- ai_edge_torch/generative/examples/smollm/smollm.py,sha256=M5qAcSUE5gxOSfq24a8lZku9kgvmlFCyIBar3kF2XEk,2570
85
+ ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=RKmSBMrup5A2bsPPaTdrBQb8NeRiUHy_1SUOA8DAs9U,2305
86
+ ai_edge_torch/generative/examples/smollm/smollm.py,sha256=kk3cB_qaCzbFOhHtJlLb7qvSEBQTsILnoAcSFE3AkpE,2711
87
87
  ai_edge_torch/generative/examples/smollm/verify.py,sha256=HXYcCjDJMylVL3Pc9HU-UXqtpjtIU25o1YhPiX30aPU,2361
88
88
  ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
89
89
  ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
@@ -107,21 +107,21 @@ ai_edge_torch/generative/examples/t5/t5_attention.py,sha256=l01oYyJo77INzRwN4xqX
107
107
  ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
108
108
  ai_edge_torch/generative/examples/test_models/convert_toy_model.py,sha256=6-WaNHckq_LlXMVTh8x90MGWeWq2bu_T_XQd3w9FnGg,3261
109
109
  ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=4113jZK-Hu3kYop__WTc8Bq-bG6YzQtADbxHtYPEB4w,5036
110
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=rRodLr-hEqAs_-8x06O8qO-hJ_cqr2AfhJZ9DCptvwo,4332
110
+ ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=WMl1iuCE8So9FDnxPV0OTMzuPngQUTO61g8rfnBLyB4,4664
111
111
  ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
112
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=WmEshoN9HgNLbV7NTjxdqWz9Olcim6r_vo4R9eYE98I,2228
113
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=10X8HwPx4akzclnIMOBNItKQemhRbvxBbTo7nwZtWjM,2650
112
+ ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=5rgbTIxHoFg8sTnzrGA_ekT-HJEt9p7Dla7cIY874jU,2338
113
+ ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=mhJ18rb9sxrYRzv1YSzhbNs97oUZck99avZDcUO2oV8,2800
114
114
  ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=7Bk8z033M-BCXJ299fpQNXYAudBbZoDQp9934xcvg50,2426
115
115
  ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
116
116
  ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
117
117
  ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
118
- ai_edge_torch/generative/layers/attention.py,sha256=zN3BQjA25Ej_aRU0rFnyx--K74xf5ykc02zGvUpYHeE,13295
118
+ ai_edge_torch/generative/layers/attention.py,sha256=aOoVM1hY7qjvzVQI1-m26p_f9qoTLzXXIy8dNtU8xC4,13199
119
119
  ai_edge_torch/generative/layers/attention_utils.py,sha256=zBVwlBUTs-nStIKCZG0ks5ra7tsqc9ShfakFJKH5rds,7344
120
120
  ai_edge_torch/generative/layers/builder.py,sha256=LXGuSHIx6QZAzLFm7aJvlzoMPgQwbXLFchGEKYwOOUA,5090
121
121
  ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
122
- ai_edge_torch/generative/layers/kv_cache.py,sha256=lbm-yJ1jGPtcgWS4C3FmSnB1IlxqDE7g0BLRh3PN4N4,6324
122
+ ai_edge_torch/generative/layers/kv_cache.py,sha256=dOhk3ec21189uPyCDYyxuznYQL6s4od-ln-FoDQ2cE0,6269
123
123
  ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
124
- ai_edge_torch/generative/layers/normalization.py,sha256=_2hps2m2MXEHQWbM-1B4he90hbq8wqOnIDIf-qXHhpc,7589
124
+ ai_edge_torch/generative/layers/normalization.py,sha256=h2btgRHMMjOcyLm8adEmcT0pG6imq4QcWblKJK5MYXA,7479
125
125
  ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=xxWtlVsGGJkEyXC6PwznubyhJnLPEfSpHOORE_hgxss,2670
126
126
  ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
127
127
  ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
@@ -137,22 +137,22 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FB
137
137
  ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
138
138
  ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
139
139
  ai_edge_torch/generative/test/test_custom_dus.py,sha256=gxG78CcTpXF3iLzDR15Rlz1ey1tNTlSdkp6TeYEijp0,3301
140
- ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
140
+ ai_edge_torch/generative/test/test_kv_cache.py,sha256=2AulHBS3hC4b_68PNNBkRVOrypy4IM5YjC4p-6dgCMM,3793
141
141
  ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
142
- ai_edge_torch/generative/test/test_model_conversion.py,sha256=aZFaheg2sq7rEccch1TZM6W4BSfpJZjrM9Gyp4hVGYs,6351
143
- ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=xWV9O2wuRHc4VNBWuWipiuqXa3AJhiV1nmjewAZHHWM,11177
142
+ ai_edge_torch/generative/test/test_model_conversion.py,sha256=4d_UF19KYf5xFa3yhQGe1nu3TKzmXrbr9PFiEZpPlyk,6274
143
+ ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=4lfZXjXqfjiyxc2s8vMuYbdOZzD8VuPelr2AQo9PFNI,11656
144
144
  ai_edge_torch/generative/test/test_quantize.py,sha256=bEJMhpQ9bIDUZVBXTW888728FcH-i3SyE4JSZZUgU0A,6071
145
- ai_edge_torch/generative/test/utils.py,sha256=eQ-hjd1eXuHJF3SJK6_CrjgOZVzmG_4VEdH7Z1gH_lA,1897
145
+ ai_edge_torch/generative/test/utils.py,sha256=tF6aCfAGJnc9dmzCnZCEOuKNVimfWOqscv9og0DDLHU,2656
146
146
  ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
147
- ai_edge_torch/generative/utilities/converter.py,sha256=S14STbyxV6A9HKy1BdUo49f2jS6Ij0RL9mVAFUMWYV8,5291
147
+ ai_edge_torch/generative/utilities/converter.py,sha256=hIwWUWjgPvWLATtsYYG6RWbFQWhOr2RpPlMrd-4Am9U,5959
148
148
  ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
149
149
  ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
150
- ai_edge_torch/generative/utilities/model_builder.py,sha256=OcHJhEqc3LjI3STli6cyn71m1mdzr7QbzF9fqSNCXrg,5730
150
+ ai_edge_torch/generative/utilities/model_builder.py,sha256=rfD6INxunvDVdiUfTUxD7yy0dRxL74W7kVmZsxUjpOQ,6379
151
151
  ai_edge_torch/generative/utilities/moonshine_loader.py,sha256=_RpFabSqtGH5PHiP3_1f6QfO14qMADUxr_HGRlVDFB0,4891
152
152
  ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
153
153
  ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
154
154
  ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=8sp9m_FMcXn7nqOrochtu2jIANkJKhnhIBUmH0ZTDR4,1549
155
- ai_edge_torch/generative/utilities/verifier.py,sha256=GLh7h8pcpSKtCKoPyxJhv3TmvENd2h6ek_cnbe2s3Ak,11418
155
+ ai_edge_torch/generative/utilities/verifier.py,sha256=ESSA8W1EYNsd4ntwmXbr-dn-BcIS27hf53XL5RTwjEU,11941
156
156
  ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
157
157
  ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
158
158
  ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
@@ -182,15 +182,16 @@ ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW
182
182
  ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
183
183
  ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=LqwZ1vCJTSOzgzvH8LUAN-sAkF-l_pGj1AMEIzAqHCA,6638
184
184
  ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
185
- ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=1lMKPoStK3SUA8yYTPZBRhESN33BghGXnfqOOg4oeVk,995
185
+ ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=0GytV1dGnqe1mKityqQDNFNS8T4QBg3UZuRJcGHwGyA,993
186
186
  ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=ufvnaAh6rM_yfoc8ybI3VErHEVBv5W_p4iOe9slfwKM,9948
187
187
  ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
188
188
  ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
189
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=4UyNyaR2W-vCOvj-P5lywQ1_RfLIxVE7J_GONI6CQvI,10718
189
+ ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=OVmlPGwyhDXKhmG4SAeEsa6iLpJHEHV_jKqwfjYvetA,11643
190
190
  ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
191
191
  ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py,sha256=rFmzqcdjYrwhcxH8j9zCFStPy21HFF7hkUV_GQ8FPAk,6056
192
192
  ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
193
- ai_edge_torch/odml_torch/lowerings/registry.py,sha256=itTt8MLbq2LoHTzRidCF2TTbh0TP7L836u99qCjP3FA,2953
193
+ ai_edge_torch/odml_torch/lowerings/decomp.py,sha256=UoJeZVcr4zAN_11i-HzfOhxGCxUm-7b1JXPVBxR2hSs,2414
194
+ ai_edge_torch/odml_torch/lowerings/registry.py,sha256=Tp2h11l5uTifO0aIkuUOWAF_ibEjmd65Xx99w3EXuGE,1924
194
195
  ai_edge_torch/odml_torch/lowerings/utils.py,sha256=pqM6mumpviFDHRaabp93CUAngzEZmWcAHl0nTDgyI2g,6167
195
196
  ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
196
197
  ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
@@ -200,8 +201,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
200
201
  ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
201
202
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
202
203
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
203
- ai_edge_torch_nightly-0.3.0.dev20241205.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
204
- ai_edge_torch_nightly-0.3.0.dev20241205.dist-info/METADATA,sha256=q0YQggf3bWL7q67R2IpsvyUlncZRjjJRfsqL8yLNJ_Y,1897
205
- ai_edge_torch_nightly-0.3.0.dev20241205.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
206
- ai_edge_torch_nightly-0.3.0.dev20241205.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
207
- ai_edge_torch_nightly-0.3.0.dev20241205.dist-info/RECORD,,
204
+ ai_edge_torch_nightly-0.3.0.dev20241213.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
205
+ ai_edge_torch_nightly-0.3.0.dev20241213.dist-info/METADATA,sha256=Yzw2YkrbFAe1EbxfoKBDME5NQe0GIzzseUOVylqFpnM,1897
206
+ ai_edge_torch_nightly-0.3.0.dev20241213.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
207
+ ai_edge_torch_nightly-0.3.0.dev20241213.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
208
+ ai_edge_torch_nightly-0.3.0.dev20241213.dist-info/RECORD,,