ai-edge-torch-nightly 0.3.0.dev20241121__py3-none-any.whl → 0.3.0.dev20241122__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -39,7 +39,6 @@ def _func_to_torch_module(func: Callable[..., torch.Tensor]):
39
39
  return TestModule(func).eval()
40
40
 
41
41
 
42
- @googletest.skip('Temporary outage due to changes for b/377531086')
43
42
  class TestConvertComposites(googletest.TestCase):
44
43
  """Tests conversion modules that are meant to be wrapped as composites."""
45
44
 
@@ -13,6 +13,7 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  # Implementation for Rotary Position embedding. https://arxiv.org/pdf/2104.09864.pdf
16
+ from typing import Tuple
16
17
  import torch
17
18
 
18
19
 
@@ -36,3 +37,52 @@ def apply_rope(
36
37
  rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
37
38
  roped = (x * cos) + (rotated * sin)
38
39
  return roped.transpose(1, 2).type_as(x)
40
+
41
+
42
+ def apply_rope_inline(
43
+ q: torch.Tensor,
44
+ k: torch.Tensor,
45
+ input_pos: torch.Tensor,
46
+ n_elem: int,
47
+ base: int = 10_000,
48
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
49
+ """Computes rotary positional embedding inline for a query and key.
50
+
51
+ Args:
52
+ q: the query tensor.
53
+ k: the key tensor.
54
+ input_pos: the sequence indices for the query and key
55
+ n_elem: number of elements of the head dimension for RoPE computation
56
+
57
+ Returns:
58
+ output the RoPE'd query and key.
59
+ """
60
+
61
+ if n_elem <= 0:
62
+ return q, k
63
+
64
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2).float() / n_elem))
65
+ freq_exponents = (2.0 / n_elem) * torch.arange(
66
+ q.shape[-1] // 2, dtype=torch.float32
67
+ )
68
+ timescale = float(base) ** freq_exponents
69
+ radians = input_pos.clone().unsqueeze(0).unsqueeze(-1) / timescale.unsqueeze(
70
+ 0
71
+ ).unsqueeze(0)
72
+ cos = torch.cos(radians).type_as(q)
73
+ sin = torch.sin(radians).type_as(q)
74
+
75
+ def apply(x, sin, cos):
76
+ x = x.transpose(1, 2)
77
+ b, h, s, d = x.shape
78
+ ans = torch.split(x, d // 2, dim=-1)
79
+ x1, x2 = ans
80
+ left = x1 * cos - x2 * sin
81
+ right = x2 * cos + x1 * sin
82
+ res = torch.cat([left, right], dim=-1)
83
+ res = res.transpose(1, 2)
84
+ return res
85
+
86
+ q_roped = apply(q, sin, cos)
87
+ k_roped = apply(k, sin, cos)
88
+ return q_roped, k_roped
@@ -0,0 +1,107 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """A suite of tests to validate the Dynamic Update Slice Custom Op."""
17
+
18
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
19
+ import ai_edge_torch.generative.layers.model_config as cfg
20
+ import torch
21
+ from torch import nn
22
+
23
+ from absl.testing import absltest as googletest, parameterized
24
+
25
+
26
+ def updated_slice_matches(buffer, update, index):
27
+ indexer = [slice(i, i + d) for i, d in zip(index, update.shape)]
28
+ buf = buffer[indexer]
29
+ return torch.allclose(buf, update)
30
+
31
+
32
+ def intT(x):
33
+ return torch.tensor(x).int()
34
+
35
+
36
+ class DUSMod(nn.Module):
37
+
38
+ def forward(self, buffer, update, index):
39
+ out = dynamic_update_slice(buffer, update, index)
40
+ out = out * 2
41
+ return out
42
+
43
+
44
+ @googletest.skip('Enable this when odml_torch is default b/373387583')
45
+ class TestCustomDUS(parameterized.TestCase):
46
+
47
+ @parameterized.named_parameters(
48
+ (
49
+ 'DUS_whole_buffer',
50
+ torch.randn(1, 1280, 4, 64),
51
+ torch.randn([1, 1024, 4, 64]),
52
+ [intT(0), intT(0), intT(0), intT(0)],
53
+ ),
54
+ (
55
+ 'DUS_kv_example',
56
+ torch.randn(2, 1280, 4, 64),
57
+ torch.randn([2, 1024, 4, 64]),
58
+ [intT(0), intT(0), intT(0), intT(0)],
59
+ ),
60
+ (
61
+ 'DUS_3d',
62
+ torch.randn(2, 256, 4, 64),
63
+ torch.randn([2, 256, 2, 64]),
64
+ [intT(0), intT(0), intT(2), intT(0)],
65
+ ),
66
+ (
67
+ 'DUS_3d_v2',
68
+ torch.randn(2, 256, 4, 64),
69
+ torch.randn([2, 256, 3, 64]),
70
+ [intT(0), intT(0), intT(1), intT(0)],
71
+ ),
72
+ (
73
+ 'DUS_3d_v3',
74
+ torch.randn(6, 8, 32),
75
+ torch.randn([6, 3, 32]),
76
+ [intT(0), intT(5), intT(0)],
77
+ ),
78
+ (
79
+ 'DUS_2d',
80
+ torch.randn(8, 32),
81
+ torch.randn([8, 12]),
82
+ [intT(0), intT(20)],
83
+ ),
84
+ )
85
+ def test_opcheck_dynamic_update_slice(self, buffer, update, indices):
86
+ torch.library.opcheck(dynamic_update_slice, (buffer, update, indices))
87
+ out = dynamic_update_slice(buffer, update, indices)
88
+ self.assertTrue(updated_slice_matches(out, update, indices))
89
+
90
+ def test_exported_program(self):
91
+ buffer = torch.randn(1, 1280, 4, 64)
92
+ update = torch.randn([1, 1024, 4, 64])
93
+ index = [intT(0), intT(0), intT(0), intT(0)]
94
+ dm = DUSMod()
95
+ ep = torch.export.export(dm, (buffer, update, index))
96
+ dus_in_exported_program = False
97
+ for node in ep.graph.nodes:
98
+ if node.op == 'call_function':
99
+ if node.target.__name__.startswith('dynamic_update_slice'):
100
+ dus_in_exported_program = True
101
+ break
102
+
103
+ self.assertTrue(dus_in_exported_program)
104
+
105
+
106
+ if __name__ == '__main__':
107
+ googletest.main()
@@ -0,0 +1,56 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ # Common utility functions for data loading etc.
16
+ from dataclasses import dataclass
17
+ import glob
18
+ import os
19
+ from typing import Sequence
20
+ from ai_edge_torch.odml_torch import lowerings
21
+ from jax._src.lib.mlir import ir
22
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
23
+ import torch
24
+
25
+
26
+ # Use torch.library.custom_op to define a new custom operator.
27
+ # TODO: Update impl for multiple non-trivial start_indices
28
+ @torch.library.custom_op("ai_edge_torch::dynamic_update_slice", mutates_args=())
29
+ def dynamic_update_slice(
30
+ in_tensor: torch.Tensor,
31
+ update: torch.Tensor,
32
+ start_indices: Sequence[torch.Tensor],
33
+ ) -> torch.Tensor:
34
+ compare_size = torch.tensor(in_tensor.size()) == torch.tensor(update.size())
35
+ mismatch = torch.nonzero(~compare_size, as_tuple=False)
36
+ dim = mismatch[0].item() if len(mismatch) > 0 else 0
37
+ start = start_indices[dim].item()
38
+ end = start + update.shape[dim]
39
+ indices = torch.arange(start, end).to(torch.long)
40
+ return in_tensor.index_copy(dim, indices, update)
41
+
42
+
43
+ # Use register_fake to add a ``FakeTensor`` kernel for the operator
44
+ @dynamic_update_slice.register_fake
45
+ def _(in_tensor, update, start_indices):
46
+ return in_tensor.clone().detach()
47
+
48
+
49
+ @lowerings.lower(torch.ops.ai_edge_torch.dynamic_update_slice)
50
+ def _dynamic_update_slice_lower(
51
+ lctx,
52
+ in_tensor: ir.Value,
53
+ update: ir.Value,
54
+ start_indices: Sequence[ir.Value],
55
+ ):
56
+ return stablehlo.dynamic_update_slice(in_tensor, update, start_indices)
@@ -185,6 +185,7 @@ def merged_bundle_to_tfl_model(
185
185
  converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
186
186
  converter._set_original_model_type(conversion_metadata_fb.ModelType.PYTORCH)
187
187
  converter._experimental_enable_composite_direct_lowering = True
188
+ converter._experimental_enable_dynamic_update_slice = True
188
189
  converter.model_origin_framework = "PYTORCH"
189
190
 
190
191
  conversion_utils.set_tfl_converter_quant_flags(converter, quant_config)
@@ -24,6 +24,7 @@ from ai_edge_torch.odml_torch.jax_bridge import utils
24
24
  import jax
25
25
  from jax._src.lib.mlir import ir
26
26
  from jax._src.lib.mlir.dialects import func
27
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
27
28
  import torch.utils._pytree as pytree
28
29
 
29
30
  # Jax double (64bit) precision is required to generate StableHLO mlir with
@@ -143,8 +144,39 @@ def wrap(jaxfn: Callable[Any, Any], ir_input_names: list[str] = None):
143
144
  ir_inputs = []
144
145
 
145
146
  results = func.CallOp(cloned_func, ir_inputs).results
147
+
148
+ if lctx.node is None:
149
+ return results[0] if len(results) == 1 else results
150
+
151
+ out_avals = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
152
+
153
+ if out_avals is None:
154
+ return results[0] if len(results) == 1 else results
155
+
156
+ def sanitize_result_elty(result, aval):
157
+ # JAX implementation may not respect aten op's output dtype. For example,
158
+ # JAX may implement a slightly different dtype upcast rules, leads to
159
+ # different result's dtype from bridged lowering and torch op output.
160
+ # Here we add an additional `stablehlo.convert` op when dtype does not
161
+ # match, to ensure the lowering's result dtype will always be the same
162
+ # as torch op's output dtype.
163
+ if aval is None:
164
+ return result
165
+
166
+ target_elty = export_utils.torch_dtype_to_ir_element_type(
167
+ lctx.ir_context, aval.dtype
168
+ )
169
+ if result.type.element_type == target_elty:
170
+ return result
171
+ return stablehlo.convert(
172
+ ir.RankedTensorType.get(result.type.shape, target_elty), result
173
+ )
174
+
146
175
  if len(results) == 1:
147
- return results[0]
148
- return results
176
+ return sanitize_result_elty(results[0], out_avals)
177
+ return [
178
+ sanitize_result_elty(result, aval)
179
+ for result, aval in zip(results, out_avals)
180
+ ]
149
181
 
150
182
  return wrapped
@@ -223,18 +223,18 @@ def _aten_floor(lctx, x: ir.Value, *, out=None) -> ir.Value:
223
223
  def _aten_cat(lctx: LoweringContext, tensors, dim=0):
224
224
  assert tensors
225
225
  non_empty_tensors = [t for t in tensors if np.prod(t.type.shape) != 0]
226
- out_meta = lctx.node.meta["tensor_meta"]
226
+ out_aval = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
227
227
  if not non_empty_tensors:
228
228
  return utils.splat(
229
229
  0,
230
230
  export_utils.torch_dtype_to_ir_element_type(
231
- lctx.ir_context, out_meta.dtype
231
+ lctx.ir_context, out_aval.dtype
232
232
  ),
233
- out_meta.shape,
233
+ out_aval.shape,
234
234
  )
235
235
 
236
236
  if dim < 0:
237
- dim = dim + len(out_meta.shape)
237
+ dim = dim + len(out_aval.shape)
238
238
  dim = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), dim)
239
239
 
240
240
  return stablehlo.concatenate(non_empty_tensors, dim)
@@ -171,7 +171,6 @@ lower_by_torch_xla2(torch.ops.aten.mm)
171
171
  lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
172
172
  lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
173
173
  lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
174
- lower_by_torch_xla2(torch.ops.aten.native_group_norm)
175
174
  lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
176
175
  lower_by_torch_xla2(torch.ops.aten.ne)
177
176
  lower_by_torch_xla2(torch.ops.aten.neg)
@@ -61,6 +61,7 @@ global_registry.decompositions.update(
61
61
  torch.ops.aten._adaptive_avg_pool2d,
62
62
  torch.ops.aten._adaptive_avg_pool3d,
63
63
  torch.ops.aten.grid_sampler_2d,
64
+ torch.ops.aten.native_group_norm,
64
65
  torch.ops.aten.native_dropout,
65
66
  torch.ops.aten.reflection_pad1d,
66
67
  torch.ops.aten.reflection_pad2d,
ai_edge_torch/version.py CHANGED
@@ -13,4 +13,4 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- __version__ = "0.3.0.dev20241121"
16
+ __version__ = "0.3.0.dev20241122"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-torch-nightly
3
- Version: 0.3.0.dev20241121
3
+ Version: 0.3.0.dev20241122
4
4
  Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-torch
6
6
  Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
@@ -29,7 +29,7 @@ Requires-Dist: safetensors
29
29
  Requires-Dist: tabulate
30
30
  Requires-Dist: torch>=2.4.0
31
31
  Requires-Dist: torch-xla>=2.4.0
32
- Requires-Dist: tf-nightly>=2.19.0.dev20241001
32
+ Requires-Dist: tf-nightly>=2.19.0.dev20241121
33
33
  Requires-Dist: ai-edge-litert-nightly
34
34
  Requires-Dist: ai-edge-quantizer-nightly
35
35
 
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
5
5
  ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
6
- ai_edge_torch/version.py,sha256=6eLmEn5xqmozokHVWP7j-jjFiQlv2a1aZxDucMzXDh8,706
6
+ ai_edge_torch/version.py,sha256=B4r6opjqsPmDJdLbwvWto6dM-0KbsjszxSL6CXmi8K8,706
7
7
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
8
8
  ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
9
9
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -27,7 +27,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
27
27
  ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
28
28
  ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
29
29
  ai_edge_torch/_convert/test/test_convert.py,sha256=yXfeWDw9u_rTS3B6kvvFPo5E4XNT3zKTSLFSBSAI9Fc,15502
30
- ai_edge_torch/_convert/test/test_convert_composites.py,sha256=ELwHxTdTTCJm30aWg_PZXxg9HvDM4Hnf9lT0wwOWT6s,8060
30
+ ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
31
31
  ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
32
32
  ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
33
33
  ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyuKU,742
@@ -120,7 +120,7 @@ ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-m
120
120
  ai_edge_torch/generative/layers/kv_cache.py,sha256=lbm-yJ1jGPtcgWS4C3FmSnB1IlxqDE7g0BLRh3PN4N4,6324
121
121
  ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
122
122
  ai_edge_torch/generative/layers/normalization.py,sha256=eKAGst9rPuyRFExMcQFJO7R3iHdCtlmjeF_lITjLhwE,6498
123
- ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=CZqOoibLcHvUgrgaIIWAlmk3XgE2inzx340MN-npLoU,1347
123
+ ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=xxWtlVsGGJkEyXC6PwznubyhJnLPEfSpHOORE_hgxss,2670
124
124
  ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
125
125
  ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
126
126
  ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=9jKzOfiBQ66bp1ZnVIAoREIifVNFx4aTlQeYMAx2_pA,29062
@@ -134,6 +134,7 @@ ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC
134
134
  ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FBxkHM6RJ3C14B2I1mjItjc,2030
135
135
  ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
136
136
  ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
137
+ ai_edge_torch/generative/test/test_custom_dus.py,sha256=gxG78CcTpXF3iLzDR15Rlz1ey1tNTlSdkp6TeYEijp0,3301
137
138
  ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
138
139
  ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
139
140
  ai_edge_torch/generative/test/test_model_conversion.py,sha256=aZFaheg2sq7rEccch1TZM6W4BSfpJZjrM9Gyp4hVGYs,6351
@@ -142,6 +143,7 @@ ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0
142
143
  ai_edge_torch/generative/test/utils.py,sha256=eQ-hjd1eXuHJF3SJK6_CrjgOZVzmG_4VEdH7Z1gH_lA,1897
143
144
  ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
144
145
  ai_edge_torch/generative/utilities/converter.py,sha256=S14STbyxV6A9HKy1BdUo49f2jS6Ij0RL9mVAFUMWYV8,5291
146
+ ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
145
147
  ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
146
148
  ai_edge_torch/generative/utilities/model_builder.py,sha256=OcHJhEqc3LjI3STli6cyn71m1mdzr7QbzF9fqSNCXrg,5730
147
149
  ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
@@ -158,7 +160,7 @@ ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=j8WpeS-mz3Zr4
158
160
  ai_edge_torch/lowertools/__init__.py,sha256=A8WBXvWtuFYYWtNTqPD7waVntLaSVAnSMwx5ugjZBIw,761
159
161
  ai_edge_torch/lowertools/_shim.py,sha256=ilL7x1ebUBj1clg7bagrX4y_nVSHiGrvDrOVfuTeenE,3039
160
162
  ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjFXIGQbzjgwQo,4504
161
- ai_edge_torch/lowertools/odml_torch_utils.py,sha256=K5dZ_fFDL3GWKo0IoY4OC_GX5MY-guY-MqteolyV9hg,8098
163
+ ai_edge_torch/lowertools/odml_torch_utils.py,sha256=Smt7p62-lZ_3bBBfnbssAK5GAGxm3U_X7M-1qwsmc68,8161
162
164
  ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
163
165
  ai_edge_torch/lowertools/torch_xla_utils.py,sha256=XGZE0vZG9WSQT-6dFmPlU8W89z8rfXPRGjuZeuhXCIw,9205
164
166
  ai_edge_torch/lowertools/translate_recipe.py,sha256=ymkBpFqAUiupRWqrPOWiVphKcXR1K5vHK0RjgBFtxlE,5652
@@ -175,16 +177,16 @@ ai_edge_torch/odml_torch/debuginfo/__init__.py,sha256=9ag6-WWRG50rPCtIV7OpIokEKu
175
177
  ai_edge_torch/odml_torch/debuginfo/_build.py,sha256=1xCXOs3-9UcsOyLFH0uyQwLu7c06iYFTo0NQ7Ckbl2I,1465
176
178
  ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW-1YElU9BPWzKtJA2eKWOI,1739
177
179
  ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
178
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=drN3L0uTsSjkluKgt6Ngq7b5HLReE_7iAitHpZ9PKqE,5428
180
+ ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=oQo9nxH08NnEDeZaGoCUk1kRtoEOM_f0DUOyd9nfxjg,6673
179
181
  ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
180
182
  ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=dE_qzh-OnCNjWzqs1-PHs5PNlRF726qMQKM3tkwAzEs,959
181
- ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=mxNh20Z4ZeQMu0AAdXnNMXdm2PdAh3RmQPzq2SBpxQs,9954
183
+ ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=eH9eJqFO-BI9l4WdXfjsItODPRa18SAR_qSvJ6-7gxc,9987
182
184
  ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
183
185
  ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
184
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=MY6FFSJKYtD1M1l2q3hDKf3P4NpODqQ4NyWudYe1tTE,10772
186
+ ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=4UyNyaR2W-vCOvj-P5lywQ1_RfLIxVE7J_GONI6CQvI,10718
185
187
  ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
186
188
  ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
187
- ai_edge_torch/odml_torch/lowerings/registry.py,sha256=gqx3n1Mx8pnGQz3nkIF1T_8bkRabXLJBvUoJJn5kOUY,2911
189
+ ai_edge_torch/odml_torch/lowerings/registry.py,sha256=itTt8MLbq2LoHTzRidCF2TTbh0TP7L836u99qCjP3FA,2953
188
190
  ai_edge_torch/odml_torch/lowerings/utils.py,sha256=NczqpsSd3Fn7yVcPC3qllemiZxxDAZgcW1T5l8-W9fE,5593
189
191
  ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
190
192
  ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
@@ -194,8 +196,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
194
196
  ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
195
197
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
196
198
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
197
- ai_edge_torch_nightly-0.3.0.dev20241121.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
198
- ai_edge_torch_nightly-0.3.0.dev20241121.dist-info/METADATA,sha256=AJUg6jkWACMXVy7gopyMvlD0aJfw1BVnkZKbGS9cXX0,1897
199
- ai_edge_torch_nightly-0.3.0.dev20241121.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
200
- ai_edge_torch_nightly-0.3.0.dev20241121.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
201
- ai_edge_torch_nightly-0.3.0.dev20241121.dist-info/RECORD,,
199
+ ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
200
+ ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/METADATA,sha256=-YpC-ksRKR8hJ8pZET4Q2F5KbUiRmGOXPhBoEQgIuOA,1897
201
+ ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
202
+ ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
203
+ ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/RECORD,,