ai-edge-torch-nightly 0.3.0.dev20241120__py3-none-any.whl → 0.3.0.dev20241122__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/_convert/test/test_convert_composites.py +0 -1
- ai_edge_torch/generative/layers/rotary_position_embedding.py +50 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +1 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +34 -2
- ai_edge_torch/odml_torch/lowerings/_basic.py +30 -1
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -2
- ai_edge_torch/odml_torch/lowerings/registry.py +1 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241120.dist-info → ai_edge_torch_nightly-0.3.0.dev20241122.dist-info}/METADATA +2 -2
- {ai_edge_torch_nightly-0.3.0.dev20241120.dist-info → ai_edge_torch_nightly-0.3.0.dev20241122.dist-info}/RECORD +15 -13
- {ai_edge_torch_nightly-0.3.0.dev20241120.dist-info → ai_edge_torch_nightly-0.3.0.dev20241122.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241120.dist-info → ai_edge_torch_nightly-0.3.0.dev20241122.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241120.dist-info → ai_edge_torch_nightly-0.3.0.dev20241122.dist-info}/top_level.txt +0 -0
@@ -39,7 +39,6 @@ def _func_to_torch_module(func: Callable[..., torch.Tensor]):
|
|
39
39
|
return TestModule(func).eval()
|
40
40
|
|
41
41
|
|
42
|
-
@googletest.skip('Temporary outage due to changes for b/377531086')
|
43
42
|
class TestConvertComposites(googletest.TestCase):
|
44
43
|
"""Tests conversion modules that are meant to be wrapped as composites."""
|
45
44
|
|
@@ -13,6 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
# Implementation for Rotary Position embedding. https://arxiv.org/pdf/2104.09864.pdf
|
16
|
+
from typing import Tuple
|
16
17
|
import torch
|
17
18
|
|
18
19
|
|
@@ -36,3 +37,52 @@ def apply_rope(
|
|
36
37
|
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
|
37
38
|
roped = (x * cos) + (rotated * sin)
|
38
39
|
return roped.transpose(1, 2).type_as(x)
|
40
|
+
|
41
|
+
|
42
|
+
def apply_rope_inline(
|
43
|
+
q: torch.Tensor,
|
44
|
+
k: torch.Tensor,
|
45
|
+
input_pos: torch.Tensor,
|
46
|
+
n_elem: int,
|
47
|
+
base: int = 10_000,
|
48
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
49
|
+
"""Computes rotary positional embedding inline for a query and key.
|
50
|
+
|
51
|
+
Args:
|
52
|
+
q: the query tensor.
|
53
|
+
k: the key tensor.
|
54
|
+
input_pos: the sequence indices for the query and key
|
55
|
+
n_elem: number of elements of the head dimension for RoPE computation
|
56
|
+
|
57
|
+
Returns:
|
58
|
+
output the RoPE'd query and key.
|
59
|
+
"""
|
60
|
+
|
61
|
+
if n_elem <= 0:
|
62
|
+
return q, k
|
63
|
+
|
64
|
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2).float() / n_elem))
|
65
|
+
freq_exponents = (2.0 / n_elem) * torch.arange(
|
66
|
+
q.shape[-1] // 2, dtype=torch.float32
|
67
|
+
)
|
68
|
+
timescale = float(base) ** freq_exponents
|
69
|
+
radians = input_pos.clone().unsqueeze(0).unsqueeze(-1) / timescale.unsqueeze(
|
70
|
+
0
|
71
|
+
).unsqueeze(0)
|
72
|
+
cos = torch.cos(radians).type_as(q)
|
73
|
+
sin = torch.sin(radians).type_as(q)
|
74
|
+
|
75
|
+
def apply(x, sin, cos):
|
76
|
+
x = x.transpose(1, 2)
|
77
|
+
b, h, s, d = x.shape
|
78
|
+
ans = torch.split(x, d // 2, dim=-1)
|
79
|
+
x1, x2 = ans
|
80
|
+
left = x1 * cos - x2 * sin
|
81
|
+
right = x2 * cos + x1 * sin
|
82
|
+
res = torch.cat([left, right], dim=-1)
|
83
|
+
res = res.transpose(1, 2)
|
84
|
+
return res
|
85
|
+
|
86
|
+
q_roped = apply(q, sin, cos)
|
87
|
+
k_roped = apply(k, sin, cos)
|
88
|
+
return q_roped, k_roped
|
@@ -0,0 +1,107 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""A suite of tests to validate the Dynamic Update Slice Custom Op."""
|
17
|
+
|
18
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
19
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
20
|
+
import torch
|
21
|
+
from torch import nn
|
22
|
+
|
23
|
+
from absl.testing import absltest as googletest, parameterized
|
24
|
+
|
25
|
+
|
26
|
+
def updated_slice_matches(buffer, update, index):
|
27
|
+
indexer = [slice(i, i + d) for i, d in zip(index, update.shape)]
|
28
|
+
buf = buffer[indexer]
|
29
|
+
return torch.allclose(buf, update)
|
30
|
+
|
31
|
+
|
32
|
+
def intT(x):
|
33
|
+
return torch.tensor(x).int()
|
34
|
+
|
35
|
+
|
36
|
+
class DUSMod(nn.Module):
|
37
|
+
|
38
|
+
def forward(self, buffer, update, index):
|
39
|
+
out = dynamic_update_slice(buffer, update, index)
|
40
|
+
out = out * 2
|
41
|
+
return out
|
42
|
+
|
43
|
+
|
44
|
+
@googletest.skip('Enable this when odml_torch is default b/373387583')
|
45
|
+
class TestCustomDUS(parameterized.TestCase):
|
46
|
+
|
47
|
+
@parameterized.named_parameters(
|
48
|
+
(
|
49
|
+
'DUS_whole_buffer',
|
50
|
+
torch.randn(1, 1280, 4, 64),
|
51
|
+
torch.randn([1, 1024, 4, 64]),
|
52
|
+
[intT(0), intT(0), intT(0), intT(0)],
|
53
|
+
),
|
54
|
+
(
|
55
|
+
'DUS_kv_example',
|
56
|
+
torch.randn(2, 1280, 4, 64),
|
57
|
+
torch.randn([2, 1024, 4, 64]),
|
58
|
+
[intT(0), intT(0), intT(0), intT(0)],
|
59
|
+
),
|
60
|
+
(
|
61
|
+
'DUS_3d',
|
62
|
+
torch.randn(2, 256, 4, 64),
|
63
|
+
torch.randn([2, 256, 2, 64]),
|
64
|
+
[intT(0), intT(0), intT(2), intT(0)],
|
65
|
+
),
|
66
|
+
(
|
67
|
+
'DUS_3d_v2',
|
68
|
+
torch.randn(2, 256, 4, 64),
|
69
|
+
torch.randn([2, 256, 3, 64]),
|
70
|
+
[intT(0), intT(0), intT(1), intT(0)],
|
71
|
+
),
|
72
|
+
(
|
73
|
+
'DUS_3d_v3',
|
74
|
+
torch.randn(6, 8, 32),
|
75
|
+
torch.randn([6, 3, 32]),
|
76
|
+
[intT(0), intT(5), intT(0)],
|
77
|
+
),
|
78
|
+
(
|
79
|
+
'DUS_2d',
|
80
|
+
torch.randn(8, 32),
|
81
|
+
torch.randn([8, 12]),
|
82
|
+
[intT(0), intT(20)],
|
83
|
+
),
|
84
|
+
)
|
85
|
+
def test_opcheck_dynamic_update_slice(self, buffer, update, indices):
|
86
|
+
torch.library.opcheck(dynamic_update_slice, (buffer, update, indices))
|
87
|
+
out = dynamic_update_slice(buffer, update, indices)
|
88
|
+
self.assertTrue(updated_slice_matches(out, update, indices))
|
89
|
+
|
90
|
+
def test_exported_program(self):
|
91
|
+
buffer = torch.randn(1, 1280, 4, 64)
|
92
|
+
update = torch.randn([1, 1024, 4, 64])
|
93
|
+
index = [intT(0), intT(0), intT(0), intT(0)]
|
94
|
+
dm = DUSMod()
|
95
|
+
ep = torch.export.export(dm, (buffer, update, index))
|
96
|
+
dus_in_exported_program = False
|
97
|
+
for node in ep.graph.nodes:
|
98
|
+
if node.op == 'call_function':
|
99
|
+
if node.target.__name__.startswith('dynamic_update_slice'):
|
100
|
+
dus_in_exported_program = True
|
101
|
+
break
|
102
|
+
|
103
|
+
self.assertTrue(dus_in_exported_program)
|
104
|
+
|
105
|
+
|
106
|
+
if __name__ == '__main__':
|
107
|
+
googletest.main()
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common utility functions for data loading etc.
|
16
|
+
from dataclasses import dataclass
|
17
|
+
import glob
|
18
|
+
import os
|
19
|
+
from typing import Sequence
|
20
|
+
from ai_edge_torch.odml_torch import lowerings
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
# Use torch.library.custom_op to define a new custom operator.
|
27
|
+
# TODO: Update impl for multiple non-trivial start_indices
|
28
|
+
@torch.library.custom_op("ai_edge_torch::dynamic_update_slice", mutates_args=())
|
29
|
+
def dynamic_update_slice(
|
30
|
+
in_tensor: torch.Tensor,
|
31
|
+
update: torch.Tensor,
|
32
|
+
start_indices: Sequence[torch.Tensor],
|
33
|
+
) -> torch.Tensor:
|
34
|
+
compare_size = torch.tensor(in_tensor.size()) == torch.tensor(update.size())
|
35
|
+
mismatch = torch.nonzero(~compare_size, as_tuple=False)
|
36
|
+
dim = mismatch[0].item() if len(mismatch) > 0 else 0
|
37
|
+
start = start_indices[dim].item()
|
38
|
+
end = start + update.shape[dim]
|
39
|
+
indices = torch.arange(start, end).to(torch.long)
|
40
|
+
return in_tensor.index_copy(dim, indices, update)
|
41
|
+
|
42
|
+
|
43
|
+
# Use register_fake to add a ``FakeTensor`` kernel for the operator
|
44
|
+
@dynamic_update_slice.register_fake
|
45
|
+
def _(in_tensor, update, start_indices):
|
46
|
+
return in_tensor.clone().detach()
|
47
|
+
|
48
|
+
|
49
|
+
@lowerings.lower(torch.ops.ai_edge_torch.dynamic_update_slice)
|
50
|
+
def _dynamic_update_slice_lower(
|
51
|
+
lctx,
|
52
|
+
in_tensor: ir.Value,
|
53
|
+
update: ir.Value,
|
54
|
+
start_indices: Sequence[ir.Value],
|
55
|
+
):
|
56
|
+
return stablehlo.dynamic_update_slice(in_tensor, update, start_indices)
|
@@ -185,6 +185,7 @@ def merged_bundle_to_tfl_model(
|
|
185
185
|
converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
|
186
186
|
converter._set_original_model_type(conversion_metadata_fb.ModelType.PYTORCH)
|
187
187
|
converter._experimental_enable_composite_direct_lowering = True
|
188
|
+
converter._experimental_enable_dynamic_update_slice = True
|
188
189
|
converter.model_origin_framework = "PYTORCH"
|
189
190
|
|
190
191
|
conversion_utils.set_tfl_converter_quant_flags(converter, quant_config)
|
@@ -24,6 +24,7 @@ from ai_edge_torch.odml_torch.jax_bridge import utils
|
|
24
24
|
import jax
|
25
25
|
from jax._src.lib.mlir import ir
|
26
26
|
from jax._src.lib.mlir.dialects import func
|
27
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
27
28
|
import torch.utils._pytree as pytree
|
28
29
|
|
29
30
|
# Jax double (64bit) precision is required to generate StableHLO mlir with
|
@@ -143,8 +144,39 @@ def wrap(jaxfn: Callable[Any, Any], ir_input_names: list[str] = None):
|
|
143
144
|
ir_inputs = []
|
144
145
|
|
145
146
|
results = func.CallOp(cloned_func, ir_inputs).results
|
147
|
+
|
148
|
+
if lctx.node is None:
|
149
|
+
return results[0] if len(results) == 1 else results
|
150
|
+
|
151
|
+
out_avals = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
|
152
|
+
|
153
|
+
if out_avals is None:
|
154
|
+
return results[0] if len(results) == 1 else results
|
155
|
+
|
156
|
+
def sanitize_result_elty(result, aval):
|
157
|
+
# JAX implementation may not respect aten op's output dtype. For example,
|
158
|
+
# JAX may implement a slightly different dtype upcast rules, leads to
|
159
|
+
# different result's dtype from bridged lowering and torch op output.
|
160
|
+
# Here we add an additional `stablehlo.convert` op when dtype does not
|
161
|
+
# match, to ensure the lowering's result dtype will always be the same
|
162
|
+
# as torch op's output dtype.
|
163
|
+
if aval is None:
|
164
|
+
return result
|
165
|
+
|
166
|
+
target_elty = export_utils.torch_dtype_to_ir_element_type(
|
167
|
+
lctx.ir_context, aval.dtype
|
168
|
+
)
|
169
|
+
if result.type.element_type == target_elty:
|
170
|
+
return result
|
171
|
+
return stablehlo.convert(
|
172
|
+
ir.RankedTensorType.get(result.type.shape, target_elty), result
|
173
|
+
)
|
174
|
+
|
146
175
|
if len(results) == 1:
|
147
|
-
return results[0]
|
148
|
-
return
|
176
|
+
return sanitize_result_elty(results[0], out_avals)
|
177
|
+
return [
|
178
|
+
sanitize_result_elty(result, aval)
|
179
|
+
for result, aval in zip(results, out_avals)
|
180
|
+
]
|
149
181
|
|
150
182
|
return wrapped
|
@@ -15,13 +15,17 @@
|
|
15
15
|
import math
|
16
16
|
from typing import Optional, Union
|
17
17
|
|
18
|
+
from ai_edge_torch.odml_torch import export_utils
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import context
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
18
21
|
from ai_edge_torch.odml_torch.lowerings import utils
|
19
22
|
from jax._src.lib.mlir import ir
|
20
23
|
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
21
24
|
import numpy as np
|
22
25
|
import torch
|
23
26
|
|
24
|
-
|
27
|
+
LoweringContext = context.LoweringContext
|
28
|
+
lower = registry.lower
|
25
29
|
|
26
30
|
|
27
31
|
# add(Tensor self, Tensor other) -> Tensor
|
@@ -211,6 +215,31 @@ def _aten_floor(lctx, x: ir.Value, *, out=None) -> ir.Value:
|
|
211
215
|
return stablehlo.floor(x)
|
212
216
|
|
213
217
|
|
218
|
+
# Schema:
|
219
|
+
# - aten::cat(Tensor[] tensors, int dim=0) -> Tensor
|
220
|
+
# Torch Reference:
|
221
|
+
# - https://pytorch.org/docs/main/generated/torch.cat.html
|
222
|
+
@lower(torch.ops.aten.cat.default)
|
223
|
+
def _aten_cat(lctx: LoweringContext, tensors, dim=0):
|
224
|
+
assert tensors
|
225
|
+
non_empty_tensors = [t for t in tensors if np.prod(t.type.shape) != 0]
|
226
|
+
out_aval = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
|
227
|
+
if not non_empty_tensors:
|
228
|
+
return utils.splat(
|
229
|
+
0,
|
230
|
+
export_utils.torch_dtype_to_ir_element_type(
|
231
|
+
lctx.ir_context, out_aval.dtype
|
232
|
+
),
|
233
|
+
out_aval.shape,
|
234
|
+
)
|
235
|
+
|
236
|
+
if dim < 0:
|
237
|
+
dim = dim + len(out_aval.shape)
|
238
|
+
dim = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), dim)
|
239
|
+
|
240
|
+
return stablehlo.concatenate(non_empty_tensors, dim)
|
241
|
+
|
242
|
+
|
214
243
|
# Schema:
|
215
244
|
# - aten::slice_scatter(Tensor self, Tensor src, int dim=0, SymInt?
|
216
245
|
# start=None, SymInt? end=None, SymInt step=1) -> Tensor
|
@@ -105,7 +105,6 @@ lower_by_torch_xla2(torch.ops.aten.bitwise_not)
|
|
105
105
|
lower_by_torch_xla2(torch.ops.aten.bitwise_or)
|
106
106
|
lower_by_torch_xla2(torch.ops.aten.bitwise_xor)
|
107
107
|
lower_by_torch_xla2(torch.ops.aten.bmm)
|
108
|
-
lower_by_torch_xla2(torch.ops.aten.cat)
|
109
108
|
lower_by_torch_xla2(torch.ops.aten.ceil)
|
110
109
|
lower_by_torch_xla2(torch.ops.aten.clamp.Tensor)
|
111
110
|
lower_by_torch_xla2(torch.ops.aten.clamp.default)
|
@@ -172,7 +171,6 @@ lower_by_torch_xla2(torch.ops.aten.mm)
|
|
172
171
|
lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
|
173
172
|
lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
|
174
173
|
lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
|
175
|
-
lower_by_torch_xla2(torch.ops.aten.native_group_norm)
|
176
174
|
lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
|
177
175
|
lower_by_torch_xla2(torch.ops.aten.ne)
|
178
176
|
lower_by_torch_xla2(torch.ops.aten.neg)
|
@@ -61,6 +61,7 @@ global_registry.decompositions.update(
|
|
61
61
|
torch.ops.aten._adaptive_avg_pool2d,
|
62
62
|
torch.ops.aten._adaptive_avg_pool3d,
|
63
63
|
torch.ops.aten.grid_sampler_2d,
|
64
|
+
torch.ops.aten.native_group_norm,
|
64
65
|
torch.ops.aten.native_dropout,
|
65
66
|
torch.ops.aten.reflection_pad1d,
|
66
67
|
torch.ops.aten.reflection_pad2d,
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241122
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -29,7 +29,7 @@ Requires-Dist: safetensors
|
|
29
29
|
Requires-Dist: tabulate
|
30
30
|
Requires-Dist: torch>=2.4.0
|
31
31
|
Requires-Dist: torch-xla>=2.4.0
|
32
|
-
Requires-Dist: tf-nightly>=2.19.0.
|
32
|
+
Requires-Dist: tf-nightly>=2.19.0.dev20241121
|
33
33
|
Requires-Dist: ai-edge-litert-nightly
|
34
34
|
Requires-Dist: ai-edge-quantizer-nightly
|
35
35
|
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=518ziQ0TUxqum2qZXqlD8qr65pHPh8ZNLnwFC6zvK3k,4253
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=B4r6opjqsPmDJdLbwvWto6dM-0KbsjszxSL6CXmi8K8,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -27,7 +27,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
|
|
27
27
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
|
28
28
|
ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
29
29
|
ai_edge_torch/_convert/test/test_convert.py,sha256=yXfeWDw9u_rTS3B6kvvFPo5E4XNT3zKTSLFSBSAI9Fc,15502
|
30
|
-
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=
|
30
|
+
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
|
31
31
|
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
|
32
32
|
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
|
33
33
|
ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyuKU,742
|
@@ -120,7 +120,7 @@ ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-m
|
|
120
120
|
ai_edge_torch/generative/layers/kv_cache.py,sha256=lbm-yJ1jGPtcgWS4C3FmSnB1IlxqDE7g0BLRh3PN4N4,6324
|
121
121
|
ai_edge_torch/generative/layers/model_config.py,sha256=viX51T_naJ9sPpPxPoMnSueBPYE2zxWNOD0xn0f-_bM,7510
|
122
122
|
ai_edge_torch/generative/layers/normalization.py,sha256=eKAGst9rPuyRFExMcQFJO7R3iHdCtlmjeF_lITjLhwE,6498
|
123
|
-
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=
|
123
|
+
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=xxWtlVsGGJkEyXC6PwznubyhJnLPEfSpHOORE_hgxss,2670
|
124
124
|
ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
|
125
125
|
ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
126
126
|
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=9jKzOfiBQ66bp1ZnVIAoREIifVNFx4aTlQeYMAx2_pA,29062
|
@@ -134,6 +134,7 @@ ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC
|
|
134
134
|
ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FBxkHM6RJ3C14B2I1mjItjc,2030
|
135
135
|
ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
|
136
136
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
137
|
+
ai_edge_torch/generative/test/test_custom_dus.py,sha256=gxG78CcTpXF3iLzDR15Rlz1ey1tNTlSdkp6TeYEijp0,3301
|
137
138
|
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
138
139
|
ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
|
139
140
|
ai_edge_torch/generative/test/test_model_conversion.py,sha256=aZFaheg2sq7rEccch1TZM6W4BSfpJZjrM9Gyp4hVGYs,6351
|
@@ -142,6 +143,7 @@ ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0
|
|
142
143
|
ai_edge_torch/generative/test/utils.py,sha256=eQ-hjd1eXuHJF3SJK6_CrjgOZVzmG_4VEdH7Z1gH_lA,1897
|
143
144
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
144
145
|
ai_edge_torch/generative/utilities/converter.py,sha256=S14STbyxV6A9HKy1BdUo49f2jS6Ij0RL9mVAFUMWYV8,5291
|
146
|
+
ai_edge_torch/generative/utilities/dynamic_update_slice.py,sha256=e2mhx-Vp8sUK4EXoPtpZLSx3TViqLAKs67EhKcXBjAQ,2121
|
145
147
|
ai_edge_torch/generative/utilities/loader.py,sha256=A3SOjPXp--AsvoP1hqj5QKWE4sgxoFc3H5EBUz_Eogc,13531
|
146
148
|
ai_edge_torch/generative/utilities/model_builder.py,sha256=OcHJhEqc3LjI3STli6cyn71m1mdzr7QbzF9fqSNCXrg,5730
|
147
149
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
@@ -158,7 +160,7 @@ ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=j8WpeS-mz3Zr4
|
|
158
160
|
ai_edge_torch/lowertools/__init__.py,sha256=A8WBXvWtuFYYWtNTqPD7waVntLaSVAnSMwx5ugjZBIw,761
|
159
161
|
ai_edge_torch/lowertools/_shim.py,sha256=ilL7x1ebUBj1clg7bagrX4y_nVSHiGrvDrOVfuTeenE,3039
|
160
162
|
ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjFXIGQbzjgwQo,4504
|
161
|
-
ai_edge_torch/lowertools/odml_torch_utils.py,sha256=
|
163
|
+
ai_edge_torch/lowertools/odml_torch_utils.py,sha256=Smt7p62-lZ_3bBBfnbssAK5GAGxm3U_X7M-1qwsmc68,8161
|
162
164
|
ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
|
163
165
|
ai_edge_torch/lowertools/torch_xla_utils.py,sha256=XGZE0vZG9WSQT-6dFmPlU8W89z8rfXPRGjuZeuhXCIw,9205
|
164
166
|
ai_edge_torch/lowertools/translate_recipe.py,sha256=ymkBpFqAUiupRWqrPOWiVphKcXR1K5vHK0RjgBFtxlE,5652
|
@@ -175,16 +177,16 @@ ai_edge_torch/odml_torch/debuginfo/__init__.py,sha256=9ag6-WWRG50rPCtIV7OpIokEKu
|
|
175
177
|
ai_edge_torch/odml_torch/debuginfo/_build.py,sha256=1xCXOs3-9UcsOyLFH0uyQwLu7c06iYFTo0NQ7Ckbl2I,1465
|
176
178
|
ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW-1YElU9BPWzKtJA2eKWOI,1739
|
177
179
|
ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
|
178
|
-
ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=
|
180
|
+
ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=oQo9nxH08NnEDeZaGoCUk1kRtoEOM_f0DUOyd9nfxjg,6673
|
179
181
|
ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
|
180
182
|
ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=dE_qzh-OnCNjWzqs1-PHs5PNlRF726qMQKM3tkwAzEs,959
|
181
|
-
ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=
|
183
|
+
ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=eH9eJqFO-BI9l4WdXfjsItODPRa18SAR_qSvJ6-7gxc,9987
|
182
184
|
ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
|
183
185
|
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
|
184
|
-
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=
|
186
|
+
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=4UyNyaR2W-vCOvj-P5lywQ1_RfLIxVE7J_GONI6CQvI,10718
|
185
187
|
ai_edge_torch/odml_torch/lowerings/_layer_norm.py,sha256=1ePJs7oIdUkVdMddFsXMc53qTkEKqGz0ZhQQoNzBa10,2862
|
186
188
|
ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
|
187
|
-
ai_edge_torch/odml_torch/lowerings/registry.py,sha256=
|
189
|
+
ai_edge_torch/odml_torch/lowerings/registry.py,sha256=itTt8MLbq2LoHTzRidCF2TTbh0TP7L836u99qCjP3FA,2953
|
188
190
|
ai_edge_torch/odml_torch/lowerings/utils.py,sha256=NczqpsSd3Fn7yVcPC3qllemiZxxDAZgcW1T5l8-W9fE,5593
|
189
191
|
ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
|
190
192
|
ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
|
@@ -194,8 +196,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
194
196
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
195
197
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
196
198
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
197
|
-
ai_edge_torch_nightly-0.3.0.
|
198
|
-
ai_edge_torch_nightly-0.3.0.
|
199
|
-
ai_edge_torch_nightly-0.3.0.
|
200
|
-
ai_edge_torch_nightly-0.3.0.
|
201
|
-
ai_edge_torch_nightly-0.3.0.
|
199
|
+
ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
200
|
+
ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/METADATA,sha256=-YpC-ksRKR8hJ8pZET4Q2F5KbUiRmGOXPhBoEQgIuOA,1897
|
201
|
+
ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
|
202
|
+
ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
203
|
+
ai_edge_torch_nightly-0.3.0.dev20241122.dist-info/RECORD,,
|
File without changes
|
File without changes
|