ai-edge-torch-nightly 0.3.0.dev20241027__py3-none-any.whl → 0.3.0.dev20241030__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +14 -2
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +21 -7
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +51 -19
- ai_edge_torch/generative/layers/unet/model_config.py +3 -0
- ai_edge_torch/generative/quantize/example.py +5 -2
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241030.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241030.dist-info}/RECORD +11 -11
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241030.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241030.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241030.dist-info}/top_level.txt +0 -0
@@ -61,6 +61,14 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
61
61
|
default=True,
|
62
62
|
)
|
63
63
|
|
64
|
+
_DEVICE_TYPE = flags.DEFINE_string(
|
65
|
+
'device_type',
|
66
|
+
None,
|
67
|
+
help='The device type of the model. Currently supported: cpu, gpu.',
|
68
|
+
default='cpu',
|
69
|
+
required=True,
|
70
|
+
)
|
71
|
+
|
64
72
|
|
65
73
|
@torch.inference_mode
|
66
74
|
def convert_stable_diffusion_to_tflite(
|
@@ -80,13 +88,17 @@ def convert_stable_diffusion_to_tflite(
|
|
80
88
|
)
|
81
89
|
loader.load(clip_model, strict=False)
|
82
90
|
|
83
|
-
diffusion_model = diffusion.Diffusion(
|
91
|
+
diffusion_model = diffusion.Diffusion(
|
92
|
+
diffusion.get_model_config(batch_size=2, device_type=_DEVICE_TYPE.value)
|
93
|
+
)
|
84
94
|
diffusion_loader = stable_diffusion_loader.DiffusionModelLoader(
|
85
95
|
diffusion_ckpt_path, diffusion.TENSOR_NAMES
|
86
96
|
)
|
87
97
|
diffusion_loader.load(diffusion_model, strict=False)
|
88
98
|
|
89
|
-
decoder_model = decoder.Decoder(
|
99
|
+
decoder_model = decoder.Decoder(
|
100
|
+
decoder.get_model_config(device_type=_DEVICE_TYPE.value)
|
101
|
+
)
|
90
102
|
decoder_loader = stable_diffusion_loader.AutoEncoderModelLoader(
|
91
103
|
decoder_ckpt_path, decoder.TENSOR_NAMES
|
92
104
|
)
|
@@ -270,8 +270,8 @@ class Decoder(nn.Module):
|
|
270
270
|
return x
|
271
271
|
|
272
272
|
|
273
|
-
def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
274
|
-
"""Get configs for the Decoder of Stable Diffusion v1.5"""
|
273
|
+
def get_model_config(device_type: str = "cpu") -> unet_cfg.AutoEncoderConfig:
|
274
|
+
"""Get configs for the Decoder of Stable Diffusion v1.5."""
|
275
275
|
in_channels = 3
|
276
276
|
latent_channels = 4
|
277
277
|
out_channels = 3
|
@@ -279,8 +279,14 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
279
279
|
scaling_factor = 0.18215
|
280
280
|
layers_per_block = 3
|
281
281
|
|
282
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
283
|
+
# performance. CPU should also switch to it once the support is done.
|
284
|
+
enable_hlfb = True if device_type == "gpu" else False
|
285
|
+
|
282
286
|
norm_config = layers_cfg.NormalizationConfig(
|
283
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
287
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
288
|
+
group_num=32,
|
289
|
+
enable_hlfb=enable_hlfb,
|
284
290
|
)
|
285
291
|
|
286
292
|
att_config = unet_cfg.AttentionBlock2DConfig(
|
@@ -298,7 +304,7 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
298
304
|
rotary_base=0,
|
299
305
|
rotary_percentage=0.0,
|
300
306
|
),
|
301
|
-
enable_hlfb=
|
307
|
+
enable_hlfb=enable_hlfb,
|
302
308
|
)
|
303
309
|
|
304
310
|
mid_block_config = unet_cfg.MidBlock2DConfig(
|
@@ -327,7 +333,9 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
327
333
|
return config
|
328
334
|
|
329
335
|
|
330
|
-
def get_fake_model_config(
|
336
|
+
def get_fake_model_config(
|
337
|
+
device_type: str = "cpu",
|
338
|
+
) -> unet_cfg.AutoEncoderConfig:
|
331
339
|
"""Get fake configs for the Decoder of Stable Diffusion v1.5 for testing."""
|
332
340
|
in_channels = 3
|
333
341
|
latent_channels = 4
|
@@ -336,8 +344,14 @@ def get_fake_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
336
344
|
scaling_factor = 0.18215
|
337
345
|
layers_per_block = 2
|
338
346
|
|
347
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
348
|
+
# performance. CPU should also switch to it once the support is done.
|
349
|
+
enable_hlfb = True if device_type == "gpu" else False
|
350
|
+
|
339
351
|
norm_config = layers_cfg.NormalizationConfig(
|
340
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
352
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
353
|
+
group_num=2,
|
354
|
+
enable_hlfb=enable_hlfb,
|
341
355
|
)
|
342
356
|
|
343
357
|
att_config = unet_cfg.AttentionBlock2DConfig(
|
@@ -355,7 +369,7 @@ def get_fake_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
355
369
|
rotary_base=0,
|
356
370
|
rotary_percentage=0.0,
|
357
371
|
),
|
358
|
-
enable_hlfb=
|
372
|
+
enable_hlfb=enable_hlfb,
|
359
373
|
)
|
360
374
|
|
361
375
|
mid_block_config = unet_cfg.MidBlock2DConfig(
|
@@ -333,7 +333,7 @@ class Diffusion(nn.Module):
|
|
333
333
|
dim=output_channel,
|
334
334
|
num_query_groups=config.transformer_num_attention_heads,
|
335
335
|
),
|
336
|
-
enable_hlfb=
|
336
|
+
enable_hlfb=config.enable_hlfb,
|
337
337
|
),
|
338
338
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
339
339
|
query_dim=output_channel,
|
@@ -347,7 +347,7 @@ class Diffusion(nn.Module):
|
|
347
347
|
dim=output_channel,
|
348
348
|
num_query_groups=config.transformer_num_attention_heads,
|
349
349
|
),
|
350
|
-
enable_hlfb=
|
350
|
+
enable_hlfb=config.enable_hlfb,
|
351
351
|
),
|
352
352
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
353
353
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -405,7 +405,7 @@ class Diffusion(nn.Module):
|
|
405
405
|
dim=mid_block_channels,
|
406
406
|
num_query_groups=config.transformer_num_attention_heads,
|
407
407
|
),
|
408
|
-
enable_hlfb=
|
408
|
+
enable_hlfb=config.enable_hlfb,
|
409
409
|
),
|
410
410
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
411
411
|
query_dim=mid_block_channels,
|
@@ -419,7 +419,7 @@ class Diffusion(nn.Module):
|
|
419
419
|
dim=mid_block_channels,
|
420
420
|
num_query_groups=config.transformer_num_attention_heads,
|
421
421
|
),
|
422
|
-
enable_hlfb=
|
422
|
+
enable_hlfb=config.enable_hlfb,
|
423
423
|
),
|
424
424
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
425
425
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -478,7 +478,7 @@ class Diffusion(nn.Module):
|
|
478
478
|
dim=output_channel,
|
479
479
|
num_query_groups=config.transformer_num_attention_heads,
|
480
480
|
),
|
481
|
-
enable_hlfb=
|
481
|
+
enable_hlfb=config.enable_hlfb,
|
482
482
|
),
|
483
483
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
484
484
|
query_dim=output_channel,
|
@@ -492,7 +492,7 @@ class Diffusion(nn.Module):
|
|
492
492
|
dim=output_channel,
|
493
493
|
num_query_groups=config.transformer_num_attention_heads,
|
494
494
|
),
|
495
|
-
enable_hlfb=
|
495
|
+
enable_hlfb=config.enable_hlfb,
|
496
496
|
),
|
497
497
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
498
498
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -581,13 +581,16 @@ class Diffusion(nn.Module):
|
|
581
581
|
return x
|
582
582
|
|
583
583
|
|
584
|
-
def get_model_config(
|
585
|
-
|
584
|
+
def get_model_config(
|
585
|
+
batch_size: int, device_type: str = "cpu"
|
586
|
+
) -> unet_cfg.DiffusionModelConfig:
|
587
|
+
"""Get configs for the Diffusion model of Stable Diffusion v1.5.
|
586
588
|
|
587
589
|
Args:
|
588
590
|
batch_size (int): the batch size of input.
|
591
|
+
device_type (str): the device type of the model. Default to "cpu".
|
589
592
|
|
590
|
-
|
593
|
+
Returns:
|
591
594
|
The configuration of diffusion model of Stable Diffusion v1.5.
|
592
595
|
"""
|
593
596
|
in_channels = 4
|
@@ -596,9 +599,15 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
596
599
|
layers_per_block = 2
|
597
600
|
downsample_padding = 1
|
598
601
|
|
602
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
603
|
+
# performance. CPU should also switch to it once the support is done.
|
604
|
+
enable_hlfb = True if device_type == "gpu" else False
|
605
|
+
|
599
606
|
# Residual configs.
|
600
607
|
residual_norm_config = layers_cfg.NormalizationConfig(
|
601
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
608
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
609
|
+
group_num=32,
|
610
|
+
enable_hlfb=enable_hlfb,
|
602
611
|
)
|
603
612
|
residual_activation_type = layers_cfg.ActivationType.SILU
|
604
613
|
|
@@ -607,10 +616,14 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
607
616
|
transformer_batch_size = batch_size
|
608
617
|
transformer_cross_attention_dim = 768 # Embedding from CLIP model
|
609
618
|
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
610
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
619
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
620
|
+
epsilon=1e-6,
|
621
|
+
group_num=32,
|
622
|
+
enable_hlfb=enable_hlfb,
|
611
623
|
)
|
612
624
|
transformer_norm_config = layers_cfg.NormalizationConfig(
|
613
|
-
layers_cfg.NormalizationType.LAYER_NORM
|
625
|
+
layers_cfg.NormalizationType.LAYER_NORM,
|
626
|
+
enable_hlfb=enable_hlfb,
|
614
627
|
)
|
615
628
|
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
616
629
|
|
@@ -623,7 +636,9 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
623
636
|
|
624
637
|
# Finaly layer configs.
|
625
638
|
final_norm_config = layers_cfg.NormalizationConfig(
|
626
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
639
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
640
|
+
group_num=32,
|
641
|
+
enable_hlfb=enable_hlfb,
|
627
642
|
)
|
628
643
|
final_activation_type = layers_cfg.ActivationType.SILU
|
629
644
|
|
@@ -646,16 +661,20 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
646
661
|
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
647
662
|
final_norm_config=final_norm_config,
|
648
663
|
final_activation_type=final_activation_type,
|
664
|
+
enable_hlfb=enable_hlfb,
|
649
665
|
)
|
650
666
|
|
651
667
|
|
652
|
-
def get_fake_model_config(
|
668
|
+
def get_fake_model_config(
|
669
|
+
batch_size: int, device_type: str = "cpu"
|
670
|
+
) -> unet_cfg.DiffusionModelConfig:
|
653
671
|
"""Get fake configs for the Diffusion model of Stable Diffusion v1.5 for testing.
|
654
672
|
|
655
673
|
Args:
|
656
674
|
batch_size (int): the batch size of input.
|
675
|
+
device_type (str): the device type of the model. Default to "cpu".
|
657
676
|
|
658
|
-
|
677
|
+
Returns:
|
659
678
|
The configuration of diffusion model of Stable Diffusion v1.5.
|
660
679
|
"""
|
661
680
|
in_channels = 4
|
@@ -664,9 +683,15 @@ def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
664
683
|
layers_per_block = 1
|
665
684
|
downsample_padding = 1
|
666
685
|
|
686
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
687
|
+
# performance. CPU should also switch to it once the support is done.
|
688
|
+
enable_hlfb = True if device_type == "gpu" else False
|
689
|
+
|
667
690
|
# Residual configs.
|
668
691
|
residual_norm_config = layers_cfg.NormalizationConfig(
|
669
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
692
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
693
|
+
group_num=2,
|
694
|
+
enable_hlfb=enable_hlfb,
|
670
695
|
)
|
671
696
|
residual_activation_type = layers_cfg.ActivationType.SILU
|
672
697
|
|
@@ -675,10 +700,14 @@ def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
675
700
|
transformer_batch_size = batch_size
|
676
701
|
transformer_cross_attention_dim = 4 # Embedding from CLIP model
|
677
702
|
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
678
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
703
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
704
|
+
epsilon=1e-6,
|
705
|
+
group_num=2,
|
706
|
+
enable_hlfb=enable_hlfb,
|
679
707
|
)
|
680
708
|
transformer_norm_config = layers_cfg.NormalizationConfig(
|
681
|
-
layers_cfg.NormalizationType.LAYER_NORM
|
709
|
+
layers_cfg.NormalizationType.LAYER_NORM,
|
710
|
+
enable_hlfb=enable_hlfb,
|
682
711
|
)
|
683
712
|
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
684
713
|
|
@@ -691,7 +720,9 @@ def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
691
720
|
|
692
721
|
# Finaly layer configs.
|
693
722
|
final_norm_config = layers_cfg.NormalizationConfig(
|
694
|
-
layers_cfg.NormalizationType.GROUP_NORM,
|
723
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
724
|
+
group_num=2,
|
725
|
+
enable_hlfb=enable_hlfb,
|
695
726
|
)
|
696
727
|
final_activation_type = layers_cfg.ActivationType.SILU
|
697
728
|
|
@@ -714,4 +745,5 @@ def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
714
745
|
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
715
746
|
final_norm_config=final_norm_config,
|
716
747
|
final_activation_type=final_activation_type,
|
748
|
+
enable_hlfb=enable_hlfb,
|
717
749
|
)
|
@@ -15,7 +15,9 @@
|
|
15
15
|
|
16
16
|
import ai_edge_torch
|
17
17
|
from ai_edge_torch.generative.examples.gemma import gemma1
|
18
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
18
19
|
from ai_edge_torch.generative.quantize import quant_recipes
|
20
|
+
from ai_edge_torch.generative.utilities import model_builder
|
19
21
|
import numpy as np
|
20
22
|
import torch
|
21
23
|
|
@@ -23,11 +25,12 @@ import torch
|
|
23
25
|
def main():
|
24
26
|
# Build a PyTorch model as usual
|
25
27
|
config = gemma1.get_fake_model_config()
|
26
|
-
model =
|
28
|
+
model = model_builder.DecoderOnlyModel(config).eval()
|
27
29
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
28
30
|
tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
|
29
31
|
tokens[0, :4] = idx
|
30
32
|
input_pos = torch.arange(0, 10, dtype=torch.int)
|
33
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
31
34
|
|
32
35
|
# Create a quantization recipe to be applied to the model
|
33
36
|
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
@@ -35,7 +38,7 @@ def main():
|
|
35
38
|
|
36
39
|
# Convert with quantization
|
37
40
|
edge_model = ai_edge_torch.convert(
|
38
|
-
model, (tokens, input_pos), quant_config=quant_config
|
41
|
+
model, (tokens, input_pos, kv), quant_config=quant_config
|
39
42
|
)
|
40
43
|
edge_model.export("/tmp/gemma_2b_quantized.tflite")
|
41
44
|
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241030
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=SrYveglaiA_DXPoRBqSXClWM1q7853I5ujRorq_MV0M,4251
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=MlL0epetNoc10jxbXPvsj8gL4DSmIQTJq51OGNz2Qhc,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -78,9 +78,9 @@ ai_edge_torch/generative/examples/smollm/verify.py,sha256=HXYcCjDJMylVL3Pc9HU-UX
|
|
78
78
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
79
79
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
80
80
|
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=5M4auM33SgCTODt0VT8TO-EVILruqGDRiNILBPeB83Y,6072
|
81
|
-
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=
|
82
|
-
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=
|
83
|
-
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=
|
81
|
+
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=Fw0ZsJSG8fM-07mEi6QLCn6LpRveGGL8vt7OIn0Av5c,5276
|
82
|
+
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=sQKQ-k6H9kG2brgwLsktjCMeN2h0POyfMP6iNsPNKWc,16271
|
83
|
+
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=6W58LxmHHkz2ctgpknQkyoDANZAnE9Byp_svfqLpQf0,34793
|
84
84
|
ai_edge_torch/generative/examples/stable_diffusion/encoder.py,sha256=CAPsW84A8f00nS6fLFeh_XUjCPsDCA5UxHOUsMrLfSU,3450
|
85
85
|
ai_edge_torch/generative/examples/stable_diffusion/pipeline.py,sha256=GnY3vPZ-obrWuJifuE5bUooKLqAI7v6q71oaTuLKeBE,8778
|
86
86
|
ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py,sha256=xychak9hdLd6ieXBYEwrK2BkF8NRZWZSSCijIsESpBA,3420
|
@@ -117,9 +117,9 @@ ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papK
|
|
117
117
|
ai_edge_torch/generative/layers/unet/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
118
118
|
ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=JwndhL3Z31TvkdGlAoTL5PQzmKfHdRWaaE1EbaMI4Gs,27540
|
119
119
|
ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
|
120
|
-
ai_edge_torch/generative/layers/unet/model_config.py,sha256=
|
120
|
+
ai_edge_torch/generative/layers/unet/model_config.py,sha256=raYm8Ol-EFi0zs5vNqmj2ZJCFsnQW2TfwhgDcClfwFA,9356
|
121
121
|
ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
122
|
-
ai_edge_torch/generative/quantize/example.py,sha256=
|
122
|
+
ai_edge_torch/generative/quantize/example.py,sha256=1lfVNUd2cEyRUnoZ7BLbRJ9IN-FTKiWBtZNPFUzAiWE,1747
|
123
123
|
ai_edge_torch/generative/quantize/quant_attrs.py,sha256=n1Fm8BFC8gJa_oiwwAOOghJyHtOXYZ4q-5ZRy4pHrIw,1957
|
124
124
|
ai_edge_torch/generative/quantize/quant_recipe.py,sha256=tKnuJq6hPD23JPCB9nPAlE1UHAwdbChkgPShiVaz4CE,5156
|
125
125
|
ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC9ZZXC12eO3DQZdrWDXRz5YXiwU,2270
|
@@ -186,8 +186,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
186
186
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
187
187
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
188
188
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
189
|
-
ai_edge_torch_nightly-0.3.0.
|
190
|
-
ai_edge_torch_nightly-0.3.0.
|
191
|
-
ai_edge_torch_nightly-0.3.0.
|
192
|
-
ai_edge_torch_nightly-0.3.0.
|
193
|
-
ai_edge_torch_nightly-0.3.0.
|
189
|
+
ai_edge_torch_nightly-0.3.0.dev20241030.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
190
|
+
ai_edge_torch_nightly-0.3.0.dev20241030.dist-info/METADATA,sha256=OmF5Xcg12MFdHCNcW_0A4l8s7mU0yUXSsjkGRHiRnBI,1897
|
191
|
+
ai_edge_torch_nightly-0.3.0.dev20241030.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
192
|
+
ai_edge_torch_nightly-0.3.0.dev20241030.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
193
|
+
ai_edge_torch_nightly-0.3.0.dev20241030.dist-info/RECORD,,
|
File without changes
|
File without changes
|