ai-edge-torch-nightly 0.3.0.dev20241027__py3-none-any.whl → 0.3.0.dev20241029__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/quantize/example.py +5 -2
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241029.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241029.dist-info}/RECORD +7 -7
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241029.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241029.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241027.dist-info → ai_edge_torch_nightly-0.3.0.dev20241029.dist-info}/top_level.txt +0 -0
@@ -15,7 +15,9 @@
|
|
15
15
|
|
16
16
|
import ai_edge_torch
|
17
17
|
from ai_edge_torch.generative.examples.gemma import gemma1
|
18
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
18
19
|
from ai_edge_torch.generative.quantize import quant_recipes
|
20
|
+
from ai_edge_torch.generative.utilities import model_builder
|
19
21
|
import numpy as np
|
20
22
|
import torch
|
21
23
|
|
@@ -23,11 +25,12 @@ import torch
|
|
23
25
|
def main():
|
24
26
|
# Build a PyTorch model as usual
|
25
27
|
config = gemma1.get_fake_model_config()
|
26
|
-
model =
|
28
|
+
model = model_builder.DecoderOnlyModel(config).eval()
|
27
29
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
28
30
|
tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
|
29
31
|
tokens[0, :4] = idx
|
30
32
|
input_pos = torch.arange(0, 10, dtype=torch.int)
|
33
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
31
34
|
|
32
35
|
# Create a quantization recipe to be applied to the model
|
33
36
|
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
@@ -35,7 +38,7 @@ def main():
|
|
35
38
|
|
36
39
|
# Convert with quantization
|
37
40
|
edge_model = ai_edge_torch.convert(
|
38
|
-
model, (tokens, input_pos), quant_config=quant_config
|
41
|
+
model, (tokens, input_pos, kv), quant_config=quant_config
|
39
42
|
)
|
40
43
|
edge_model.export("/tmp/gemma_2b_quantized.tflite")
|
41
44
|
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241029
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=SrYveglaiA_DXPoRBqSXClWM1q7853I5ujRorq_MV0M,4251
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=BBJF2KL772nA3u0liHz3Awc8txMvaam40qeMeEdgqqo,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -119,7 +119,7 @@ ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=JwndhL3Z31TvkdGlAoTL5PQ
|
|
119
119
|
ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
|
120
120
|
ai_edge_torch/generative/layers/unet/model_config.py,sha256=8ze9kVWMuyZVQcgK7hWYw9TM1W9lXD-2j0iMHlxoGX4,9267
|
121
121
|
ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
122
|
-
ai_edge_torch/generative/quantize/example.py,sha256=
|
122
|
+
ai_edge_torch/generative/quantize/example.py,sha256=1lfVNUd2cEyRUnoZ7BLbRJ9IN-FTKiWBtZNPFUzAiWE,1747
|
123
123
|
ai_edge_torch/generative/quantize/quant_attrs.py,sha256=n1Fm8BFC8gJa_oiwwAOOghJyHtOXYZ4q-5ZRy4pHrIw,1957
|
124
124
|
ai_edge_torch/generative/quantize/quant_recipe.py,sha256=tKnuJq6hPD23JPCB9nPAlE1UHAwdbChkgPShiVaz4CE,5156
|
125
125
|
ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC9ZZXC12eO3DQZdrWDXRz5YXiwU,2270
|
@@ -186,8 +186,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
186
186
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
187
187
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
188
188
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
189
|
-
ai_edge_torch_nightly-0.3.0.
|
190
|
-
ai_edge_torch_nightly-0.3.0.
|
191
|
-
ai_edge_torch_nightly-0.3.0.
|
192
|
-
ai_edge_torch_nightly-0.3.0.
|
193
|
-
ai_edge_torch_nightly-0.3.0.
|
189
|
+
ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
190
|
+
ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/METADATA,sha256=W7mORj6kIG6zf-dO9VElbtwjOl5RaxGz1W365OELbjY,1897
|
191
|
+
ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
192
|
+
ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
193
|
+
ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/RECORD,,
|
File without changes
|
File without changes
|