ai-edge-torch-nightly 0.3.0.dev20241027__py3-none-any.whl → 0.3.0.dev20241029__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,7 +15,9 @@
15
15
 
16
16
  import ai_edge_torch
17
17
  from ai_edge_torch.generative.examples.gemma import gemma1
18
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
18
19
  from ai_edge_torch.generative.quantize import quant_recipes
20
+ from ai_edge_torch.generative.utilities import model_builder
19
21
  import numpy as np
20
22
  import torch
21
23
 
@@ -23,11 +25,12 @@ import torch
23
25
  def main():
24
26
  # Build a PyTorch model as usual
25
27
  config = gemma1.get_fake_model_config()
26
- model = gemma1.Gemma(config)
28
+ model = model_builder.DecoderOnlyModel(config).eval()
27
29
  idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
28
30
  tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
29
31
  tokens[0, :4] = idx
30
32
  input_pos = torch.arange(0, 10, dtype=torch.int)
33
+ kv = kv_utils.KVCache.from_model_config(config)
31
34
 
32
35
  # Create a quantization recipe to be applied to the model
33
36
  quant_config = quant_recipes.full_int8_dynamic_recipe()
@@ -35,7 +38,7 @@ def main():
35
38
 
36
39
  # Convert with quantization
37
40
  edge_model = ai_edge_torch.convert(
38
- model, (tokens, input_pos), quant_config=quant_config
41
+ model, (tokens, input_pos, kv), quant_config=quant_config
39
42
  )
40
43
  edge_model.export("/tmp/gemma_2b_quantized.tflite")
41
44
 
ai_edge_torch/version.py CHANGED
@@ -13,4 +13,4 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- __version__ = "0.3.0.dev20241027"
16
+ __version__ = "0.3.0.dev20241029"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-torch-nightly
3
- Version: 0.3.0.dev20241027
3
+ Version: 0.3.0.dev20241029
4
4
  Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-torch
6
6
  Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
3
3
  ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
4
4
  ai_edge_torch/fx_pass_base.py,sha256=SrYveglaiA_DXPoRBqSXClWM1q7853I5ujRorq_MV0M,4251
5
5
  ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
6
- ai_edge_torch/version.py,sha256=VekzumwXByceYkTQ97jSNSKfX2vYBmx4ZSsHs9cyT-0,706
6
+ ai_edge_torch/version.py,sha256=BBJF2KL772nA3u0liHz3Awc8txMvaam40qeMeEdgqqo,706
7
7
  ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
8
8
  ai_edge_torch/_convert/conversion.py,sha256=HwzfRx_DX5TLtPqwEH1_NOm38_INvHzHl4_mX67KOdQ,5448
9
9
  ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
@@ -119,7 +119,7 @@ ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=JwndhL3Z31TvkdGlAoTL5PQ
119
119
  ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
120
120
  ai_edge_torch/generative/layers/unet/model_config.py,sha256=8ze9kVWMuyZVQcgK7hWYw9TM1W9lXD-2j0iMHlxoGX4,9267
121
121
  ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
122
- ai_edge_torch/generative/quantize/example.py,sha256=tlACaRsz6lqOxakzpXVFJZYfFKOiFqetcYVJqWVRdPE,1542
122
+ ai_edge_torch/generative/quantize/example.py,sha256=1lfVNUd2cEyRUnoZ7BLbRJ9IN-FTKiWBtZNPFUzAiWE,1747
123
123
  ai_edge_torch/generative/quantize/quant_attrs.py,sha256=n1Fm8BFC8gJa_oiwwAOOghJyHtOXYZ4q-5ZRy4pHrIw,1957
124
124
  ai_edge_torch/generative/quantize/quant_recipe.py,sha256=tKnuJq6hPD23JPCB9nPAlE1UHAwdbChkgPShiVaz4CE,5156
125
125
  ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC9ZZXC12eO3DQZdrWDXRz5YXiwU,2270
@@ -186,8 +186,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
186
186
  ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
187
187
  ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
188
188
  ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
189
- ai_edge_torch_nightly-0.3.0.dev20241027.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
190
- ai_edge_torch_nightly-0.3.0.dev20241027.dist-info/METADATA,sha256=WYTOBwCoMZ3Z8G223xG54Lj8PTR9HUW2Yr5dUVtF0nA,1897
191
- ai_edge_torch_nightly-0.3.0.dev20241027.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
192
- ai_edge_torch_nightly-0.3.0.dev20241027.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
193
- ai_edge_torch_nightly-0.3.0.dev20241027.dist-info/RECORD,,
189
+ ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
190
+ ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/METADATA,sha256=W7mORj6kIG6zf-dO9VElbtwjOl5RaxGz1W365OELbjY,1897
191
+ ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
192
+ ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
193
+ ai_edge_torch_nightly-0.3.0.dev20241029.dist-info/RECORD,,