ai-edge-torch-nightly 0.3.0.dev20241002__py3-none-any.whl → 0.3.0.dev20241005__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/gemma/gemma1.py +10 -93
- ai_edge_torch/generative/examples/gemma/gemma2.py +0 -1
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +13 -2
- ai_edge_torch/generative/examples/llama/llama.py +19 -24
- ai_edge_torch/generative/examples/llama/verify.py +18 -3
- ai_edge_torch/generative/examples/openelm/openelm.py +9 -90
- ai_edge_torch/generative/examples/phi/phi2.py +10 -86
- ai_edge_torch/generative/examples/phi/phi3.py +9 -69
- ai_edge_torch/generative/examples/qwen/qwen.py +26 -36
- ai_edge_torch/generative/examples/smollm/smollm.py +10 -30
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +1 -3
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +40 -32
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +11 -101
- ai_edge_torch/generative/layers/model_config.py +6 -0
- ai_edge_torch/generative/test/test_loader.py +2 -1
- ai_edge_torch/generative/test/test_model_conversion.py +39 -17
- ai_edge_torch/generative/test/test_model_conversion_large.py +6 -5
- ai_edge_torch/generative/utilities/model_builder.py +141 -0
- ai_edge_torch/lowertools/translate_recipe.py +2 -2
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241005.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241005.dist-info}/RECORD +25 -26
- ai_edge_torch/generative/examples/llama/convert_3b_to_tflite.py +0 -68
- ai_edge_torch/generative/examples/llama/verify_3b.py +0 -73
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241005.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241005.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241005.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,141 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utilities to be used for re-authoring transformer models."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import attention
|
21
|
+
from ai_edge_torch.generative.layers import builder
|
22
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
23
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
26
|
+
import torch
|
27
|
+
from torch import nn
|
28
|
+
|
29
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
30
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
31
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
32
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
33
|
+
attn_query_proj="model.layers.{}.self_attn.q_proj",
|
34
|
+
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
35
|
+
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
36
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
37
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
38
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
39
|
+
embedding="model.embed_tokens",
|
40
|
+
final_norm="model.norm",
|
41
|
+
)
|
42
|
+
|
43
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD = copy.copy(TENSOR_NAMES)
|
44
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD.lm_head = "lm_head"
|
45
|
+
|
46
|
+
|
47
|
+
class DecoderOnlyModel(nn.Module):
|
48
|
+
"""A simple decoder-only transformer model built from the Edge Generative API.
|
49
|
+
|
50
|
+
This model is used for re-authoring. model_config is used to specify the
|
51
|
+
details of model architecture and parameters.
|
52
|
+
|
53
|
+
It assumes that the attention configs for ROPE, i.e. head_dim, rotary_base,
|
54
|
+
and rotary_percentage are the same for all layers.
|
55
|
+
"""
|
56
|
+
|
57
|
+
def __init__(self, config: cfg.ModelConfig):
|
58
|
+
super().__init__()
|
59
|
+
|
60
|
+
# Construct model layers.
|
61
|
+
self.tok_embedding = nn.Embedding(
|
62
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
63
|
+
)
|
64
|
+
self.lm_head = nn.Linear(
|
65
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
66
|
+
)
|
67
|
+
if config.lm_head_share_weight_with_embedding:
|
68
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
69
|
+
self.transformer_blocks = nn.ModuleList(
|
70
|
+
attention.TransformerBlock(config.block_config(idx), config)
|
71
|
+
for idx in range(config.num_layers)
|
72
|
+
)
|
73
|
+
self.final_norm = builder.build_norm(
|
74
|
+
config.embedding_dim,
|
75
|
+
config.final_norm_config,
|
76
|
+
)
|
77
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
78
|
+
attn_config = config.block_config(0).attn_config
|
79
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
80
|
+
size=config.kv_cache_max,
|
81
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
82
|
+
base=attn_config.rotary_base,
|
83
|
+
)
|
84
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
85
|
+
size=config.kv_cache_max,
|
86
|
+
)
|
87
|
+
self.config = config
|
88
|
+
|
89
|
+
@torch.inference_mode
|
90
|
+
def forward(
|
91
|
+
self,
|
92
|
+
tokens: torch.Tensor,
|
93
|
+
input_pos: torch.Tensor,
|
94
|
+
kv_cache: kv_utils.KVCache,
|
95
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
96
|
+
_, seq_len = tokens.size()
|
97
|
+
assert self.config.max_seq_len >= seq_len, (
|
98
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
99
|
+
f" {self.config.max_seq_len}"
|
100
|
+
)
|
101
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
102
|
+
"The number of transformer blocks and the number of KV cache entries"
|
103
|
+
" must be the same."
|
104
|
+
)
|
105
|
+
|
106
|
+
cos, sin = self.rope_cache
|
107
|
+
cos = cos.index_select(0, input_pos)
|
108
|
+
sin = sin.index_select(0, input_pos)
|
109
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
110
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
111
|
+
|
112
|
+
# token embeddings of shape (b, t, n_embd)
|
113
|
+
x = self.tok_embedding(tokens)
|
114
|
+
if self.config.embedding_scale is not None:
|
115
|
+
x = x * self.config.embedding_scale
|
116
|
+
|
117
|
+
updated_kv_entires = []
|
118
|
+
for i, block in enumerate(self.transformer_blocks):
|
119
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
120
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
121
|
+
if kv_entry:
|
122
|
+
updated_kv_entires.append(kv_entry)
|
123
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
124
|
+
|
125
|
+
x = self.final_norm(x)
|
126
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
127
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
128
|
+
|
129
|
+
|
130
|
+
def build_decoder_only_model(
|
131
|
+
checkpoint_path: str,
|
132
|
+
config: cfg.ModelConfig,
|
133
|
+
tensor_names: loading_utils.ModelLoader.TensorNames,
|
134
|
+
) -> DecoderOnlyModel:
|
135
|
+
transformer = DecoderOnlyModel(config)
|
136
|
+
loader = loading_utils.ModelLoader(checkpoint_path, tensor_names)
|
137
|
+
loader.load(
|
138
|
+
transformer, strict=not config.lm_head_share_weight_with_embedding
|
139
|
+
)
|
140
|
+
transformer.eval()
|
141
|
+
return transformer
|
@@ -156,8 +156,8 @@ def translate_to_ai_edge_recipe(
|
|
156
156
|
|
157
157
|
|
158
158
|
def quantize_model(
|
159
|
-
model:
|
159
|
+
model: bytes, recipe: quantizer.recipe_manager.ModelQuantizationRecipe
|
160
160
|
) -> bytearray:
|
161
|
-
qt = quantizer.Quantizer(
|
161
|
+
qt = quantizer.Quantizer(model, recipe)
|
162
162
|
result = qt.quantize()
|
163
163
|
return result.quantized_model
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241005
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=D86Gw3pIRcpnTebUPKlnPbPGJae1S6Fw4DZZ3ZkD0zw,3730
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=y5TOP0Z8qFsjIuJuJtSmzOUpHyTa9UH46RdJjtRWYQA,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=5uPwHhmc6kwiIz-CqaiHDejf2SOWMHrb-rYEHm69wKc,3801
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -41,40 +41,38 @@ ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQe
|
|
41
41
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
42
42
|
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=evmUj_4yygQthSRU-ke-Xn1qFNDCZKbegqINWfruKwU,2184
|
43
43
|
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=RZDs6oY-NLYrPNtfuJDweIHzGUL2kzpIc3AW_1p8gGg,2186
|
44
|
-
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=
|
45
|
-
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=
|
44
|
+
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=oSbysiPvwp5efMbNYZop3HrxDMGiD15Tmz-HiQuTr2E,3315
|
45
|
+
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=RQFQDMEnIVp8PefcCTr7P0CvllKI7FVoIJLXbPLLIsc,9056
|
46
46
|
ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=ip-Gmk4CI5f0GWSdAIdrectxQWJ0t328KCsA4nfHuGg,1736
|
47
47
|
ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=K77k-JpdhIwm3tbBnzpw8HQsFRwAVyszxRo82fR6-q4,1762
|
48
48
|
ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=sqltZbnyKemNvKqqi9d09i74gP-PPQFodRYfDfnhycQ,4933
|
49
49
|
ai_edge_torch/generative/examples/llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
50
|
-
ai_edge_torch/generative/examples/llama/
|
51
|
-
ai_edge_torch/generative/examples/llama/
|
52
|
-
ai_edge_torch/generative/examples/llama/
|
53
|
-
ai_edge_torch/generative/examples/llama/verify.py,sha256=7xwKM_yzLCrmFsYj1UbsjW58ZG8Yic0xw1GFkdydrCU,2525
|
54
|
-
ai_edge_torch/generative/examples/llama/verify_3b.py,sha256=IijBWqLXINOfwayM-8EIpc7OcC6Nj5CnberStx-vDSk,2528
|
50
|
+
ai_edge_torch/generative/examples/llama/convert_to_tflite.py,sha256=P0-pByTM5tslE23ILgo7nd0nOGE25ciBRG5wKJj0bBk,2411
|
51
|
+
ai_edge_torch/generative/examples/llama/llama.py,sha256=AMcCbuDBxEfbO-l3KiEXbUaXEJ3RLLwkHii7to7UhVo,6854
|
52
|
+
ai_edge_torch/generative/examples/llama/verify.py,sha256=X7oKQi85M789ugBrOlMvzk8eSRR3Kf1Mprfl-U-WIpo,2842
|
55
53
|
ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
56
54
|
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=85FVEt6cKFP2UzCLC78tAkbwGlGhAArtG7Wa75NxJik,2185
|
57
|
-
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=
|
55
|
+
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=JsrtuUY4q1Rovxsht2cGCuANUj1sUKnah6bAoSe8AoU,4387
|
58
56
|
ai_edge_torch/generative/examples/openelm/verify.py,sha256=VkigoqhAr8ew95neb3TifYv-SLOSheaWKv2AH0iKDrc,2441
|
59
57
|
ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
60
58
|
ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py,sha256=rkbTtMaqSVG48cm-NTxR_LDgZmXAEBqayTm9O49oMXc,2171
|
61
59
|
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=3go690yX6PFeXMdpY7y4JZorAwxX0HT_b_pKZieauvk,2169
|
62
|
-
ai_edge_torch/generative/examples/phi/phi2.py,sha256=
|
63
|
-
ai_edge_torch/generative/examples/phi/phi3.py,sha256=
|
60
|
+
ai_edge_torch/generative/examples/phi/phi2.py,sha256=CQ55KfOdoOM43CxF7yNQsgq8b-j0S50bXpxYzgq-keM,3418
|
61
|
+
ai_edge_torch/generative/examples/phi/phi3.py,sha256=GkHOaYfsFEbHvfZCaLlb3Us_h19ezqPDUakoz_DiG9A,7123
|
64
62
|
ai_edge_torch/generative/examples/phi/verify.py,sha256=YPFCdbnfmvq38fbpBNr0kHPfSZo4p3_6WkLJAW3pLPo,2177
|
65
63
|
ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=kVYaBVvddfQng0IyZGxyTJEzhiPO0G4VFJm2WOc2Q94,2360
|
66
64
|
ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
67
65
|
ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=QAAVoSKDVf2rHAChzumGloVCWIU0Oe5UYKgv3T192Iw,2496
|
68
|
-
ai_edge_torch/generative/examples/qwen/qwen.py,sha256=
|
66
|
+
ai_edge_torch/generative/examples/qwen/qwen.py,sha256=oYm9hhALUQ4uOn-PO1bF7fCIGP8EWRNK4zClkx2RQs8,4070
|
69
67
|
ai_edge_torch/generative/examples/qwen/verify.py,sha256=9_AyEJTeUfvhhID64Rto2bflFPyXMFokdQLsseLUMiI,2775
|
70
68
|
ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
71
69
|
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=zPrDTDeRVWFi9DS32uNi-RLpzOStFOk5MhNla4ixeew,2179
|
72
|
-
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=
|
70
|
+
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=M5qAcSUE5gxOSfq24a8lZku9kgvmlFCyIBar3kF2XEk,2570
|
73
71
|
ai_edge_torch/generative/examples/smollm/verify.py,sha256=HXYcCjDJMylVL3Pc9HU-UXqtpjtIU25o1YhPiX30aPU,2361
|
74
72
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
75
73
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
76
|
-
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=
|
77
|
-
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=
|
74
|
+
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=5M4auM33SgCTODt0VT8TO-EVILruqGDRiNILBPeB83Y,6072
|
75
|
+
ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=i9mcBITt4jJqKLA4Qdt3uFotCrglv14tPg8VnqsVnaI,5004
|
78
76
|
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=ClXNntmh0PF3s6U3C7SW3tyVrsSSrV2kyz-_RF4BcqA,15715
|
79
77
|
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=mBEAUYjV1qDJy9ZAsHtm9RGce0Mbzv0VoPZpdcQl1mk,33730
|
80
78
|
ai_edge_torch/generative/examples/stable_diffusion/encoder.py,sha256=CAPsW84A8f00nS6fLFeh_XUjCPsDCA5UxHOUsMrLfSU,3450
|
@@ -96,7 +94,7 @@ ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=4113jZK-Hu3kYo
|
|
96
94
|
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=ZpjSIiayjTEVwg5Q1vI9Iy5tq1YSF5zaVDF4HTp_Z2s,4353
|
97
95
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
98
96
|
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=ekxd8efjMgEvauUu3PidWOC-DszPHn5sqU753F7sJIM,2201
|
99
|
-
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=
|
97
|
+
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=10X8HwPx4akzclnIMOBNItKQemhRbvxBbTo7nwZtWjM,2650
|
100
98
|
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=7Bk8z033M-BCXJ299fpQNXYAudBbZoDQp9934xcvg50,2426
|
101
99
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
|
102
100
|
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
|
@@ -106,7 +104,7 @@ ai_edge_torch/generative/layers/attention_utils.py,sha256=68GXGR2HSWBFViTxX7cHif
|
|
106
104
|
ai_edge_torch/generative/layers/builder.py,sha256=oE8DdqLA-oWkBC2zySSCh8JNAJg_hk8-W_UoMSrgDVk,5088
|
107
105
|
ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
|
108
106
|
ai_edge_torch/generative/layers/kv_cache.py,sha256=2El7kZYnQRCRcVc63xgiAdBh9oVOksDu35p9XggvaGE,6148
|
109
|
-
ai_edge_torch/generative/layers/model_config.py,sha256=
|
107
|
+
ai_edge_torch/generative/layers/model_config.py,sha256=xZt4xaNZJPvtdy4hfbnRencEENr689zO0WnZbhpNTIs,7137
|
110
108
|
ai_edge_torch/generative/layers/normalization.py,sha256=cpo88JUXbF9j3sJTU4JuwOap9ryGV05C1QkPij-YQwU,6999
|
111
109
|
ai_edge_torch/generative/layers/rotary_position_embedding.py,sha256=CZqOoibLcHvUgrgaIIWAlmk3XgE2inzx340MN-npLoU,1347
|
112
110
|
ai_edge_torch/generative/layers/scaled_dot_product_attention.py,sha256=gXxh3papKy4FBpGEX7VyZ7rZ1Js6aHK70Q6DKrVSckY,4154
|
@@ -123,14 +121,15 @@ ai_edge_torch/generative/quantize/quant_recipes.py,sha256=0Kvr_o7pbMnE8VMe6Ml0FB
|
|
123
121
|
ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVufetPvkDoD7rUowIOSKV9oV5Kk,1418
|
124
122
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
125
123
|
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
126
|
-
ai_edge_torch/generative/test/test_loader.py,sha256=
|
127
|
-
ai_edge_torch/generative/test/test_model_conversion.py,sha256=
|
128
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
124
|
+
ai_edge_torch/generative/test/test_loader.py,sha256=9mQUeeZKOVApOWSWl2cN9c10axZjMKM1-0Zd823CCS4,3449
|
125
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=a4TzSw8KMxEafirxqkykZi-WgTs5Z7wHp-J1AfjRDzA,6353
|
126
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=bVCm_mubuGszCBON6oRjQXcBgPZqlVmmOaLWwhZJLio,9060
|
129
127
|
ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0lZKNtCB04SOLO18y4,5980
|
130
128
|
ai_edge_torch/generative/test/utils.py,sha256=YvEhO2HIj1LkBs5du1UxY-cGRW9HMyAYsOUhgsTrTpA,1796
|
131
129
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
132
130
|
ai_edge_torch/generative/utilities/converter.py,sha256=MQUg2ZLmfk_2csWmQWKD_II0bXq4X3McI5i-qWraieE,2987
|
133
131
|
ai_edge_torch/generative/utilities/loader.py,sha256=b9iotIhVDX-Zc9XjIDUaLxnV395AyBnkQe3dV5YA7Co,13297
|
132
|
+
ai_edge_torch/generative/utilities/model_builder.py,sha256=89jt80UUfDzYBi-x077HBavWeuNJuYPXym9fiKCY1Tk,5278
|
134
133
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
135
134
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
136
135
|
ai_edge_torch/generative/utilities/transformers_verifier.py,sha256=8sp9m_FMcXn7nqOrochtu2jIANkJKhnhIBUmH0ZTDR4,1549
|
@@ -148,7 +147,7 @@ ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjF
|
|
148
147
|
ai_edge_torch/lowertools/odml_torch_utils.py,sha256=K5dZ_fFDL3GWKo0IoY4OC_GX5MY-guY-MqteolyV9hg,8098
|
149
148
|
ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
|
150
149
|
ai_edge_torch/lowertools/torch_xla_utils.py,sha256=S7RWzauts-15xP6VYuM3aAd9cyAGHstYD2A4dlv3d30,9059
|
151
|
-
ai_edge_torch/lowertools/translate_recipe.py,sha256=
|
150
|
+
ai_edge_torch/lowertools/translate_recipe.py,sha256=ymkBpFqAUiupRWqrPOWiVphKcXR1K5vHK0RjgBFtxlE,5652
|
152
151
|
ai_edge_torch/odml_torch/__init__.py,sha256=S8jOzE9nLof-6es3XDiGJRN-9H_XTxsVm9dE7lD3RWo,812
|
153
152
|
ai_edge_torch/odml_torch/_torch_future.py,sha256=jSYHf1CMTJzMizPMbu2b39hAt0ZTR6gQLq67GMe9KTo,2336
|
154
153
|
ai_edge_torch/odml_torch/_torch_library.py,sha256=Lw1gqL2HWNRspdTwNhIkYAHDyafHedHtkXyKKxn-Wss,805
|
@@ -181,8 +180,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
181
180
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
182
181
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
183
182
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
184
|
-
ai_edge_torch_nightly-0.3.0.
|
185
|
-
ai_edge_torch_nightly-0.3.0.
|
186
|
-
ai_edge_torch_nightly-0.3.0.
|
187
|
-
ai_edge_torch_nightly-0.3.0.
|
188
|
-
ai_edge_torch_nightly-0.3.0.
|
183
|
+
ai_edge_torch_nightly-0.3.0.dev20241005.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
184
|
+
ai_edge_torch_nightly-0.3.0.dev20241005.dist-info/METADATA,sha256=O3P5ofz2aERMO1xbvIC7Z4RWsUNLJOZgn4pxEH3ftRc,1897
|
185
|
+
ai_edge_torch_nightly-0.3.0.dev20241005.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
186
|
+
ai_edge_torch_nightly-0.3.0.dev20241005.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
187
|
+
ai_edge_torch_nightly-0.3.0.dev20241005.dist-info/RECORD,,
|
@@ -1,68 +0,0 @@
|
|
1
|
-
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
"""Example of converting Llama 3.2 3B model to multi-signature tflite model."""
|
17
|
-
|
18
|
-
import os
|
19
|
-
import pathlib
|
20
|
-
|
21
|
-
from absl import app
|
22
|
-
from absl import flags
|
23
|
-
from ai_edge_torch.generative.examples.llama import llama
|
24
|
-
from ai_edge_torch.generative.utilities import converter
|
25
|
-
|
26
|
-
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
-
'checkpoint_path',
|
28
|
-
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/llama'),
|
29
|
-
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
-
)
|
31
|
-
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
-
'tflite_path',
|
33
|
-
'/tmp/',
|
34
|
-
'The tflite file path to export.',
|
35
|
-
)
|
36
|
-
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
-
'prefill_seq_len',
|
38
|
-
1024,
|
39
|
-
'The maximum size of prefill input tensor.',
|
40
|
-
)
|
41
|
-
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
-
'kv_cache_max_len',
|
43
|
-
1280,
|
44
|
-
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
-
)
|
46
|
-
_QUANTIZE = flags.DEFINE_bool(
|
47
|
-
'quantize',
|
48
|
-
True,
|
49
|
-
'Whether the model should be quantized.',
|
50
|
-
)
|
51
|
-
|
52
|
-
|
53
|
-
def main(_):
|
54
|
-
pytorch_model = llama.build_3b_model(
|
55
|
-
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
-
)
|
57
|
-
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
-
output_filename = f'llama_3b_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
-
converter.convert_to_tflite(
|
60
|
-
pytorch_model,
|
61
|
-
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
-
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
-
quantize=_QUANTIZE.value,
|
64
|
-
)
|
65
|
-
|
66
|
-
|
67
|
-
if __name__ == '__main__':
|
68
|
-
app.run(main)
|
@@ -1,73 +0,0 @@
|
|
1
|
-
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
"""Verifies the reauthored Llama 3.2-3B model."""
|
17
|
-
|
18
|
-
import logging
|
19
|
-
import pathlib
|
20
|
-
|
21
|
-
from absl import app
|
22
|
-
from absl import flags
|
23
|
-
from ai_edge_torch.generative.examples.llama import llama
|
24
|
-
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
-
from ai_edge_torch.generative.utilities import verifier
|
26
|
-
import transformers
|
27
|
-
|
28
|
-
|
29
|
-
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
-
"prompts",
|
31
|
-
"What is the meaning of life?",
|
32
|
-
"The input prompts to generate answers.",
|
33
|
-
)
|
34
|
-
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
-
"max_new_tokens",
|
36
|
-
30,
|
37
|
-
"The maximum size of the generated tokens.",
|
38
|
-
)
|
39
|
-
|
40
|
-
|
41
|
-
def main(_):
|
42
|
-
checkpoint = "meta-llama/Llama-3.2-3B-Instruct"
|
43
|
-
logging.info("Loading the original model from: %s", checkpoint)
|
44
|
-
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
45
|
-
|
46
|
-
# Locate the cached dir.
|
47
|
-
cached_config_file = transformers.utils.cached_file(
|
48
|
-
checkpoint, transformers.utils.CONFIG_NAME
|
49
|
-
)
|
50
|
-
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
51
|
-
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
52
|
-
reauthored_model = llama.build_3b_model(reauthored_checkpoint)
|
53
|
-
|
54
|
-
logging.info("Loading the tokenizer from: %s", checkpoint)
|
55
|
-
# Llama tokenizer_config.json sets a fast tokenizer class explicitly,
|
56
|
-
# "PreTrainedTokenizerFast". It works only when the fast tokenizer is
|
57
|
-
# available.
|
58
|
-
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
59
|
-
|
60
|
-
verifier.verify_reauthored_model(
|
61
|
-
original_model=transformers_verifier.TransformersModelWrapper(
|
62
|
-
original_model
|
63
|
-
),
|
64
|
-
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
65
|
-
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
66
|
-
generate_prompts=_PROMPTS.value,
|
67
|
-
max_new_tokens=_MAX_NEW_TOKENS.value,
|
68
|
-
atol=1e-04,
|
69
|
-
)
|
70
|
-
|
71
|
-
|
72
|
-
if __name__ == "__main__":
|
73
|
-
app.run(main)
|
File without changes
|
File without changes
|