ai-edge-torch-nightly 0.3.0.dev20241002__py3-none-any.whl → 0.3.0.dev20241004__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/gemma/gemma1.py +10 -93
- ai_edge_torch/generative/examples/gemma/gemma2.py +0 -1
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +13 -2
- ai_edge_torch/generative/examples/llama/llama.py +19 -24
- ai_edge_torch/generative/examples/llama/verify.py +18 -3
- ai_edge_torch/generative/examples/openelm/openelm.py +9 -90
- ai_edge_torch/generative/examples/phi/phi2.py +10 -86
- ai_edge_torch/generative/examples/phi/phi3.py +9 -69
- ai_edge_torch/generative/examples/qwen/qwen.py +26 -36
- ai_edge_torch/generative/examples/smollm/smollm.py +10 -30
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +11 -101
- ai_edge_torch/generative/layers/model_config.py +6 -0
- ai_edge_torch/generative/test/test_loader.py +2 -1
- ai_edge_torch/generative/test/test_model_conversion.py +39 -17
- ai_edge_torch/generative/test/test_model_conversion_large.py +6 -5
- ai_edge_torch/generative/utilities/model_builder.py +141 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241004.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241004.dist-info}/RECORD +22 -23
- ai_edge_torch/generative/examples/llama/convert_3b_to_tflite.py +0 -68
- ai_edge_torch/generative/examples/llama/verify_3b.py +0 -73
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241004.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241004.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20241002.dist-info → ai_edge_torch_nightly-0.3.0.dev20241004.dist-info}/top_level.txt +0 -0
@@ -15,28 +15,10 @@
|
|
15
15
|
|
16
16
|
"""Example of building Qwen 2.5 models."""
|
17
17
|
|
18
|
-
import copy
|
19
|
-
|
20
|
-
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
18
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
-
|
23
|
-
from torch import nn
|
24
|
-
|
25
|
-
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
26
|
-
# Qwen re-uses the embedding as the head projection layer.
|
27
|
-
TENSOR_NAMES.lm_head = None
|
28
|
-
|
29
|
-
|
30
|
-
class Qwen(tiny_llama.TinyLlama):
|
31
|
-
"""A Qwen model built from the Edge Generative API layers.
|
32
|
-
|
33
|
-
Qwen 2.5 shares the same architecture as TinyLlama.
|
34
|
-
"""
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
35
20
|
|
36
|
-
|
37
|
-
super().__init__(config)
|
38
|
-
# Qwen re-uses the embedding as the head projection layer.
|
39
|
-
self.lm_head.weight.data = self.tok_embedding.weight.data
|
21
|
+
TENSOR_NAMES = model_builder.TENSOR_NAMES
|
40
22
|
|
41
23
|
|
42
24
|
def get_3b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -119,23 +101,31 @@ def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
|
119
101
|
return config
|
120
102
|
|
121
103
|
|
122
|
-
def
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
def build_3b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
133
|
-
return _build_model(checkpoint_path, get_3b_model_config(**kwargs))
|
104
|
+
def build_3b_model(
|
105
|
+
checkpoint_path: str, **kwargs
|
106
|
+
) -> model_builder.DecoderOnlyModel:
|
107
|
+
return model_builder.build_decoder_only_model(
|
108
|
+
checkpoint_path=checkpoint_path,
|
109
|
+
config=get_3b_model_config(**kwargs),
|
110
|
+
tensor_names=TENSOR_NAMES,
|
111
|
+
)
|
134
112
|
|
135
113
|
|
136
|
-
def build_1_5b_model(
|
137
|
-
|
114
|
+
def build_1_5b_model(
|
115
|
+
checkpoint_path: str, **kwargs
|
116
|
+
) -> model_builder.DecoderOnlyModel:
|
117
|
+
return model_builder.build_decoder_only_model(
|
118
|
+
checkpoint_path=checkpoint_path,
|
119
|
+
config=get_1_5b_model_config(**kwargs),
|
120
|
+
tensor_names=TENSOR_NAMES,
|
121
|
+
)
|
138
122
|
|
139
123
|
|
140
|
-
def build_0_5b_model(
|
141
|
-
|
124
|
+
def build_0_5b_model(
|
125
|
+
checkpoint_path: str, **kwargs
|
126
|
+
) -> model_builder.DecoderOnlyModel:
|
127
|
+
return model_builder.build_decoder_only_model(
|
128
|
+
checkpoint_path=checkpoint_path,
|
129
|
+
config=get_0_5b_model_config(**kwargs),
|
130
|
+
tensor_names=TENSOR_NAMES,
|
131
|
+
)
|
@@ -15,29 +15,10 @@
|
|
15
15
|
|
16
16
|
"""Example of building a SmolLM model."""
|
17
17
|
|
18
|
-
import copy
|
19
|
-
|
20
|
-
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
18
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
-
|
23
|
-
from torch import nn
|
24
|
-
|
25
|
-
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
26
|
-
# SmolLM re-uses the embedding as the head projection layer.
|
27
|
-
TENSOR_NAMES.lm_head = None
|
28
|
-
|
29
|
-
|
30
|
-
class SmolLM(tiny_llama.TinyLlama):
|
31
|
-
"""A SmolLM model built from the Edge Generative API layers.
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
32
20
|
|
33
|
-
|
34
|
-
sizes.
|
35
|
-
"""
|
36
|
-
|
37
|
-
def __init__(self, config: cfg.ModelConfig):
|
38
|
-
super().__init__(config)
|
39
|
-
# SmolLM re-uses the embedding as the head projection layer.
|
40
|
-
self.lm_head.weight.data = self.tok_embedding.weight.data
|
21
|
+
TENSOR_NAMES = model_builder.TENSOR_NAMES
|
41
22
|
|
42
23
|
|
43
24
|
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -91,12 +72,11 @@ def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
|
91
72
|
return config
|
92
73
|
|
93
74
|
|
94
|
-
def build_model(
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
return model
|
75
|
+
def build_model(
|
76
|
+
checkpoint_path: str, **kwargs
|
77
|
+
) -> model_builder.DecoderOnlyModel:
|
78
|
+
return model_builder.build_decoder_only_model(
|
79
|
+
checkpoint_path=checkpoint_path,
|
80
|
+
config=get_model_config(**kwargs),
|
81
|
+
tensor_names=TENSOR_NAMES,
|
82
|
+
)
|
@@ -15,102 +15,10 @@
|
|
15
15
|
|
16
16
|
"""Example of building a TinyLlama model."""
|
17
17
|
|
18
|
-
from ai_edge_torch.generative.layers import attention
|
19
|
-
from ai_edge_torch.generative.layers import builder
|
20
|
-
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
21
|
-
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
22
18
|
import ai_edge_torch.generative.layers.model_config as cfg
|
23
|
-
|
24
|
-
import torch
|
25
|
-
from torch import nn
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
26
20
|
|
27
|
-
TENSOR_NAMES =
|
28
|
-
ff_up_proj="model.layers.{}.mlp.up_proj",
|
29
|
-
ff_down_proj="model.layers.{}.mlp.down_proj",
|
30
|
-
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
31
|
-
attn_query_proj="model.layers.{}.self_attn.q_proj",
|
32
|
-
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
33
|
-
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
34
|
-
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
35
|
-
pre_attn_norm="model.layers.{}.input_layernorm",
|
36
|
-
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
37
|
-
embedding="model.embed_tokens",
|
38
|
-
final_norm="model.norm",
|
39
|
-
lm_head="lm_head",
|
40
|
-
)
|
41
|
-
|
42
|
-
|
43
|
-
class TinyLlama(nn.Module):
|
44
|
-
"""A TinyLlama model built from the Edge Generative API layers."""
|
45
|
-
|
46
|
-
def __init__(self, config: cfg.ModelConfig):
|
47
|
-
super().__init__()
|
48
|
-
|
49
|
-
# Construct model layers.
|
50
|
-
self.lm_head = nn.Linear(
|
51
|
-
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
52
|
-
)
|
53
|
-
self.tok_embedding = nn.Embedding(
|
54
|
-
config.vocab_size, config.embedding_dim, padding_idx=0
|
55
|
-
)
|
56
|
-
# TinyLlama has only one block config.
|
57
|
-
block_config = config.block_config(0)
|
58
|
-
self.transformer_blocks = nn.ModuleList(
|
59
|
-
attention.TransformerBlock(block_config, config)
|
60
|
-
for _ in range(config.num_layers)
|
61
|
-
)
|
62
|
-
self.final_norm = builder.build_norm(
|
63
|
-
config.embedding_dim,
|
64
|
-
config.final_norm_config,
|
65
|
-
)
|
66
|
-
attn_config = block_config.attn_config
|
67
|
-
self.rope_cache = attn_utils.build_rope_cache(
|
68
|
-
size=config.kv_cache_max,
|
69
|
-
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
70
|
-
base=attn_config.rotary_base,
|
71
|
-
)
|
72
|
-
self.mask_cache = attn_utils.build_causal_mask_cache(
|
73
|
-
size=config.kv_cache_max,
|
74
|
-
)
|
75
|
-
self.config = config
|
76
|
-
|
77
|
-
@torch.inference_mode
|
78
|
-
def forward(
|
79
|
-
self,
|
80
|
-
tokens: torch.Tensor,
|
81
|
-
input_pos: torch.Tensor,
|
82
|
-
kv_cache: kv_utils.KVCache,
|
83
|
-
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
84
|
-
_, seq_len = tokens.size()
|
85
|
-
assert self.config.max_seq_len >= seq_len, (
|
86
|
-
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
87
|
-
f" {self.config.max_seq_len}"
|
88
|
-
)
|
89
|
-
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
90
|
-
"The number of transformer blocks and the number of KV cache entries"
|
91
|
-
" must be the same."
|
92
|
-
)
|
93
|
-
|
94
|
-
cos, sin = self.rope_cache
|
95
|
-
cos = cos.index_select(0, input_pos)
|
96
|
-
sin = sin.index_select(0, input_pos)
|
97
|
-
mask = self.mask_cache.index_select(2, input_pos)
|
98
|
-
mask = mask[:, :, :, : self.config.kv_cache_max]
|
99
|
-
|
100
|
-
# token embeddings of shape (b, t, n_embd)
|
101
|
-
x = self.tok_embedding(tokens)
|
102
|
-
|
103
|
-
updated_kv_entires = []
|
104
|
-
for i, block in enumerate(self.transformer_blocks):
|
105
|
-
kv_entry = kv_cache.caches[i] if kv_cache else None
|
106
|
-
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
107
|
-
if kv_entry:
|
108
|
-
updated_kv_entires.append(kv_entry)
|
109
|
-
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
110
|
-
|
111
|
-
x = self.final_norm(x)
|
112
|
-
logits = self.lm_head(x) # (b, t, vocab_size)
|
113
|
-
return {"logits": logits, "kv_cache": updated_kv_cache}
|
21
|
+
TENSOR_NAMES = model_builder.TENSOR_NAMES_WITH_SEPARATE_LM_HEAD
|
114
22
|
|
115
23
|
|
116
24
|
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -150,6 +58,7 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
150
58
|
kv_cache_max_len=kv_cache_max_len,
|
151
59
|
block_configs=block_config,
|
152
60
|
final_norm_config=norm_config,
|
61
|
+
lm_head_share_weight_with_embedding=False,
|
153
62
|
enable_hlfb=True,
|
154
63
|
)
|
155
64
|
return config
|
@@ -164,10 +73,11 @@ def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
|
164
73
|
return config
|
165
74
|
|
166
75
|
|
167
|
-
def build_model(
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
76
|
+
def build_model(
|
77
|
+
checkpoint_path: str, **kwargs
|
78
|
+
) -> model_builder.DecoderOnlyModel:
|
79
|
+
return model_builder.build_decoder_only_model(
|
80
|
+
checkpoint_path=checkpoint_path,
|
81
|
+
config=get_model_config(**kwargs),
|
82
|
+
tensor_names=TENSOR_NAMES,
|
83
|
+
)
|
@@ -184,8 +184,14 @@ class ModelConfig:
|
|
184
184
|
default_factory=NormalizationConfig
|
185
185
|
)
|
186
186
|
|
187
|
+
# Scale factor of the embedding.
|
188
|
+
embedding_scale: Optional[float] = None
|
189
|
+
|
187
190
|
# Use bias term within LLM's HEAD.
|
188
191
|
lm_head_use_bias: bool = False
|
192
|
+
# Whether LLM's HEAD shares the weight of the embedding.
|
193
|
+
lm_head_share_weight_with_embedding: bool = True
|
194
|
+
|
189
195
|
# Whether to turn on high-level function boundary.
|
190
196
|
enable_hlfb: bool = False
|
191
197
|
|
@@ -19,6 +19,7 @@ import tempfile
|
|
19
19
|
|
20
20
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
21
|
from ai_edge_torch.generative.utilities import loader as loading_utils
|
22
|
+
from ai_edge_torch.generative.utilities import model_builder
|
22
23
|
import safetensors.torch
|
23
24
|
import torch
|
24
25
|
|
@@ -71,7 +72,7 @@ class TestLoader(googletest.TestCase):
|
|
71
72
|
safetensors.torch.save_file(test_weights, file_path)
|
72
73
|
cfg = tiny_llama.get_model_config()
|
73
74
|
cfg.num_layers = 1
|
74
|
-
model =
|
75
|
+
model = model_builder.DecoderOnlyModel(cfg)
|
75
76
|
|
76
77
|
loader = loading_utils.ModelLoader(file_path, tiny_llama.TENSOR_NAMES)
|
77
78
|
# if returns successfully, it means all the tensors were initiallized.
|
@@ -21,6 +21,7 @@ from ai_edge_torch.generative.examples.test_models import toy_model_with_kv_cach
|
|
21
21
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
22
22
|
from ai_edge_torch.generative.layers import kv_cache
|
23
23
|
from ai_edge_torch.generative.test import utils as test_utils
|
24
|
+
from ai_edge_torch.generative.utilities import model_builder
|
24
25
|
import numpy as np
|
25
26
|
import torch
|
26
27
|
|
@@ -42,31 +43,40 @@ class TestModelConversion(googletest.TestCase):
|
|
42
43
|
)
|
43
44
|
)
|
44
45
|
|
45
|
-
def
|
46
|
+
def _get_params(self, enable_hlfb: bool):
|
47
|
+
"""Returns a model, edge model and the kwargs to use for testing."""
|
48
|
+
config = toy_model_with_kv_cache.get_model_config()
|
49
|
+
config.enable_hlfb = enable_hlfb
|
50
|
+
pytorch_model = toy_model_with_kv_cache.ToyModelWithKVCache(config).eval()
|
46
51
|
tokens, input_pos = torch.tensor([[1]], dtype=torch.int), torch.tensor(
|
47
52
|
[10], dtype=torch.int
|
48
53
|
)
|
49
54
|
kv = kv_cache.KVCache.from_model_config(config)
|
55
|
+
kwargs = {
|
56
|
+
"tokens": tokens,
|
57
|
+
"input_pos": input_pos,
|
58
|
+
"kv_cache": kv,
|
59
|
+
}
|
50
60
|
|
51
61
|
edge_model = ai_edge_torch.convert(
|
52
62
|
pytorch_model,
|
53
|
-
sample_kwargs=
|
54
|
-
"tokens": tokens,
|
55
|
-
"input_pos": input_pos,
|
56
|
-
"kv_cache": kv,
|
57
|
-
},
|
63
|
+
sample_kwargs=kwargs,
|
58
64
|
)
|
59
65
|
edge_model.set_interpreter_builder(
|
60
66
|
self._interpreter_builder(edge_model.tflite_model())
|
61
67
|
)
|
68
|
+
return pytorch_model, edge_model, kwargs
|
69
|
+
|
70
|
+
def _test_model_with_kv_cache(self, enable_hlfb: bool):
|
71
|
+
pytorch_model, edge_model, kwargs = self._get_params(enable_hlfb)
|
62
72
|
|
63
73
|
self.assertTrue(
|
64
74
|
test_utils.compare_tflite_torch(
|
65
75
|
edge_model,
|
66
76
|
pytorch_model,
|
67
|
-
tokens,
|
68
|
-
input_pos,
|
69
|
-
|
77
|
+
kwargs["tokens"],
|
78
|
+
kwargs["input_pos"],
|
79
|
+
kwargs["kv_cache"],
|
70
80
|
signature_name="serving_default",
|
71
81
|
atol=1e-5,
|
72
82
|
rtol=1e-5,
|
@@ -78,19 +88,31 @@ class TestModelConversion(googletest.TestCase):
|
|
78
88
|
reason="tests with custom ops are not supported on oss",
|
79
89
|
)
|
80
90
|
def test_toy_model_with_kv_cache(self):
|
81
|
-
|
82
|
-
pytorch_model = toy_model_with_kv_cache.ToyModelWithKVCache(config).eval()
|
83
|
-
self._test_model_with_kv_cache(config, pytorch_model)
|
91
|
+
self._test_model_with_kv_cache(enable_hlfb=False)
|
84
92
|
|
85
93
|
@googletest.skipIf(
|
86
94
|
ai_edge_config.Config.use_torch_xla,
|
87
95
|
reason="tests with custom ops are not supported on oss",
|
88
96
|
)
|
89
97
|
def test_toy_model_with_kv_cache_with_hlfb(self):
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
98
|
+
self._test_model_with_kv_cache(enable_hlfb=True)
|
99
|
+
|
100
|
+
@googletest.skipIf(
|
101
|
+
ai_edge_config.Config.use_torch_xla,
|
102
|
+
reason="tests with custom ops are not supported on oss",
|
103
|
+
)
|
104
|
+
def test_toy_model_has_ekv_op(self):
|
105
|
+
"""Tests that the model has the external kv cache op."""
|
106
|
+
_, edge_model, _ = self._get_params(enable_hlfb=True)
|
107
|
+
interpreter_ = interpreter.InterpreterWithCustomOps(
|
108
|
+
custom_op_registerers=["GenAIOpsRegisterer"],
|
109
|
+
model_content=edge_model.tflite_model(),
|
110
|
+
experimental_default_delegate_latest_features=True,
|
111
|
+
)
|
112
|
+
|
113
|
+
# pylint: disable=protected-access
|
114
|
+
op_names = [op["op_name"] for op in interpreter_._get_ops_details()]
|
115
|
+
self.assertIn("odml.update_external_kv_cache", op_names)
|
94
116
|
|
95
117
|
def _test_multisig_model(self, config, pytorch_model, atol, rtol):
|
96
118
|
# prefill
|
@@ -163,7 +185,7 @@ class TestModelConversion(googletest.TestCase):
|
|
163
185
|
)
|
164
186
|
def test_tiny_llama_multisig(self):
|
165
187
|
config = tiny_llama.get_fake_model_config()
|
166
|
-
pytorch_model =
|
188
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
167
189
|
self._test_multisig_model(config, pytorch_model, atol=1e-5, rtol=1e-5)
|
168
190
|
|
169
191
|
|
@@ -29,6 +29,7 @@ from ai_edge_torch.generative.examples.stable_diffusion import clip as sd_clip
|
|
29
29
|
from ai_edge_torch.generative.examples.stable_diffusion import decoder as sd_decoder
|
30
30
|
from ai_edge_torch.generative.examples.stable_diffusion import diffusion as sd_diffusion
|
31
31
|
from ai_edge_torch.generative.layers import kv_cache
|
32
|
+
from ai_edge_torch.generative.utilities import model_builder
|
32
33
|
from ai_edge_torch.generative.test import utils as test_utils
|
33
34
|
import numpy as np
|
34
35
|
import torch
|
@@ -90,7 +91,7 @@ class TestModelConversion(googletest.TestCase):
|
|
90
91
|
)
|
91
92
|
def test_gemma1(self):
|
92
93
|
config = gemma1.get_fake_model_config()
|
93
|
-
pytorch_model =
|
94
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
94
95
|
self._test_model(
|
95
96
|
config, pytorch_model, "serving_default", atol=1e-2, rtol=1e-5
|
96
97
|
)
|
@@ -119,7 +120,7 @@ class TestModelConversion(googletest.TestCase):
|
|
119
120
|
)
|
120
121
|
def test_phi2(self):
|
121
122
|
config = phi2.get_fake_model_config()
|
122
|
-
pytorch_model =
|
123
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
123
124
|
self._test_model(
|
124
125
|
config, pytorch_model, "serving_default", atol=1e-3, rtol=1e-3
|
125
126
|
)
|
@@ -139,7 +140,7 @@ class TestModelConversion(googletest.TestCase):
|
|
139
140
|
)
|
140
141
|
def test_smollm(self):
|
141
142
|
config = smollm.get_fake_model_config()
|
142
|
-
pytorch_model =
|
143
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
143
144
|
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
144
145
|
|
145
146
|
@googletest.skipIf(
|
@@ -148,7 +149,7 @@ class TestModelConversion(googletest.TestCase):
|
|
148
149
|
)
|
149
150
|
def test_openelm(self):
|
150
151
|
config = openelm.get_fake_model_config()
|
151
|
-
pytorch_model =
|
152
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
152
153
|
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
153
154
|
|
154
155
|
@googletest.skipIf(
|
@@ -157,7 +158,7 @@ class TestModelConversion(googletest.TestCase):
|
|
157
158
|
)
|
158
159
|
def test_qwen(self):
|
159
160
|
config = qwen.get_fake_model_config()
|
160
|
-
pytorch_model =
|
161
|
+
pytorch_model = model_builder.DecoderOnlyModel(config).eval()
|
161
162
|
self._test_model(config, pytorch_model, "prefill", atol=1e-3, rtol=1e-5)
|
162
163
|
|
163
164
|
@googletest.skipIf(
|
@@ -0,0 +1,141 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utilities to be used for re-authoring transformer models."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import attention
|
21
|
+
from ai_edge_torch.generative.layers import builder
|
22
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
23
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
26
|
+
import torch
|
27
|
+
from torch import nn
|
28
|
+
|
29
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
30
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
31
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
32
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
33
|
+
attn_query_proj="model.layers.{}.self_attn.q_proj",
|
34
|
+
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
35
|
+
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
36
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
37
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
38
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
39
|
+
embedding="model.embed_tokens",
|
40
|
+
final_norm="model.norm",
|
41
|
+
)
|
42
|
+
|
43
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD = copy.copy(TENSOR_NAMES)
|
44
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD.lm_head = "lm_head"
|
45
|
+
|
46
|
+
|
47
|
+
class DecoderOnlyModel(nn.Module):
|
48
|
+
"""A simple decoder-only transformer model built from the Edge Generative API.
|
49
|
+
|
50
|
+
This model is used for re-authoring. model_config is used to specify the
|
51
|
+
details of model architecture and parameters.
|
52
|
+
|
53
|
+
It assumes that the attention configs for ROPE, i.e. head_dim, rotary_base,
|
54
|
+
and rotary_percentage are the same for all layers.
|
55
|
+
"""
|
56
|
+
|
57
|
+
def __init__(self, config: cfg.ModelConfig):
|
58
|
+
super().__init__()
|
59
|
+
|
60
|
+
# Construct model layers.
|
61
|
+
self.tok_embedding = nn.Embedding(
|
62
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
63
|
+
)
|
64
|
+
self.lm_head = nn.Linear(
|
65
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
66
|
+
)
|
67
|
+
if config.lm_head_share_weight_with_embedding:
|
68
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
69
|
+
self.transformer_blocks = nn.ModuleList(
|
70
|
+
attention.TransformerBlock(config.block_config(idx), config)
|
71
|
+
for idx in range(config.num_layers)
|
72
|
+
)
|
73
|
+
self.final_norm = builder.build_norm(
|
74
|
+
config.embedding_dim,
|
75
|
+
config.final_norm_config,
|
76
|
+
)
|
77
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
78
|
+
attn_config = config.block_config(0).attn_config
|
79
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
80
|
+
size=config.kv_cache_max,
|
81
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
82
|
+
base=attn_config.rotary_base,
|
83
|
+
)
|
84
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
85
|
+
size=config.kv_cache_max,
|
86
|
+
)
|
87
|
+
self.config = config
|
88
|
+
|
89
|
+
@torch.inference_mode
|
90
|
+
def forward(
|
91
|
+
self,
|
92
|
+
tokens: torch.Tensor,
|
93
|
+
input_pos: torch.Tensor,
|
94
|
+
kv_cache: kv_utils.KVCache,
|
95
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
96
|
+
_, seq_len = tokens.size()
|
97
|
+
assert self.config.max_seq_len >= seq_len, (
|
98
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
99
|
+
f" {self.config.max_seq_len}"
|
100
|
+
)
|
101
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
102
|
+
"The number of transformer blocks and the number of KV cache entries"
|
103
|
+
" must be the same."
|
104
|
+
)
|
105
|
+
|
106
|
+
cos, sin = self.rope_cache
|
107
|
+
cos = cos.index_select(0, input_pos)
|
108
|
+
sin = sin.index_select(0, input_pos)
|
109
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
110
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
111
|
+
|
112
|
+
# token embeddings of shape (b, t, n_embd)
|
113
|
+
x = self.tok_embedding(tokens)
|
114
|
+
if self.config.embedding_scale is not None:
|
115
|
+
x = x * self.config.embedding_scale
|
116
|
+
|
117
|
+
updated_kv_entires = []
|
118
|
+
for i, block in enumerate(self.transformer_blocks):
|
119
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
120
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
121
|
+
if kv_entry:
|
122
|
+
updated_kv_entires.append(kv_entry)
|
123
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
124
|
+
|
125
|
+
x = self.final_norm(x)
|
126
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
127
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
128
|
+
|
129
|
+
|
130
|
+
def build_decoder_only_model(
|
131
|
+
checkpoint_path: str,
|
132
|
+
config: cfg.ModelConfig,
|
133
|
+
tensor_names: loading_utils.ModelLoader.TensorNames,
|
134
|
+
) -> DecoderOnlyModel:
|
135
|
+
transformer = DecoderOnlyModel(config)
|
136
|
+
loader = loading_utils.ModelLoader(checkpoint_path, tensor_names)
|
137
|
+
loader.load(
|
138
|
+
transformer, strict=not config.lm_head_share_weight_with_embedding
|
139
|
+
)
|
140
|
+
transformer.eval()
|
141
|
+
return transformer
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20241004
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|