ai-edge-torch-nightly 0.3.0.dev20240928__py3-none-any.whl → 0.3.0.dev20240929__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +81 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +141 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +10 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240928.dist-info → ai_edge_torch_nightly-0.3.0.dev20240929.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240928.dist-info → ai_edge_torch_nightly-0.3.0.dev20240929.dist-info}/RECORD +11 -7
- {ai_edge_torch_nightly-0.3.0.dev20240928.dist-info → ai_edge_torch_nightly-0.3.0.dev20240929.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240928.dist-info → ai_edge_torch_nightly-0.3.0.dev20240929.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240928.dist-info → ai_edge_torch_nightly-0.3.0.dev20240929.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,81 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting Qwen 2.5 models to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.qwen import qwen
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_MODEL_SIZE = flags.DEFINE_enum(
|
27
|
+
'model_size',
|
28
|
+
'3b',
|
29
|
+
['0.5b', '1.5b', '3b'],
|
30
|
+
'The size of the model to convert.',
|
31
|
+
)
|
32
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
33
|
+
'checkpoint_path',
|
34
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/qwen'),
|
35
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
36
|
+
)
|
37
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
38
|
+
'tflite_path',
|
39
|
+
'/tmp/',
|
40
|
+
'The tflite file path to export.',
|
41
|
+
)
|
42
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
43
|
+
'prefill_seq_len',
|
44
|
+
1024,
|
45
|
+
'The maximum size of prefill input tensor.',
|
46
|
+
)
|
47
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
48
|
+
'kv_cache_max_len',
|
49
|
+
1280,
|
50
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
51
|
+
)
|
52
|
+
_QUANTIZE = flags.DEFINE_bool(
|
53
|
+
'quantize',
|
54
|
+
True,
|
55
|
+
'Whether the model should be quantized.',
|
56
|
+
)
|
57
|
+
|
58
|
+
_BUILDER = {
|
59
|
+
'0.5b': qwen.build_0_5b_model,
|
60
|
+
'1.5b': qwen.build_1_5b_model,
|
61
|
+
'3b': qwen.build_3b_model,
|
62
|
+
}
|
63
|
+
|
64
|
+
|
65
|
+
def main(_):
|
66
|
+
pytorch_model = _BUILDER[_MODEL_SIZE.value](
|
67
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
68
|
+
)
|
69
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
70
|
+
model_size = _MODEL_SIZE.value.replace('.', '_')
|
71
|
+
output_filename = f'qwen_{model_size}_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
72
|
+
converter.convert_to_tflite(
|
73
|
+
pytorch_model,
|
74
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
75
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
76
|
+
quantize=_QUANTIZE.value,
|
77
|
+
)
|
78
|
+
|
79
|
+
|
80
|
+
if __name__ == '__main__':
|
81
|
+
app.run(main)
|
@@ -0,0 +1,141 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building Qwen 2.5 models."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
23
|
+
from torch import nn
|
24
|
+
|
25
|
+
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
26
|
+
# Qwen re-uses the embedding as the head projection layer.
|
27
|
+
TENSOR_NAMES.lm_head = None
|
28
|
+
|
29
|
+
|
30
|
+
class Qwen(tiny_llama.TinyLlama):
|
31
|
+
"""A Qwen model built from the Edge Generative API layers.
|
32
|
+
|
33
|
+
Qwen 2.5 shares the same architecture as TinyLlama.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def __init__(self, config: cfg.ModelConfig):
|
37
|
+
super().__init__(config)
|
38
|
+
# Qwen re-uses the embedding as the head projection layer.
|
39
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
40
|
+
|
41
|
+
|
42
|
+
def get_3b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
43
|
+
"""Returns the model config for a Qwen 2.5 3B model.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
47
|
+
is 1024.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The model config for a SmolLM model.
|
51
|
+
"""
|
52
|
+
attn_config = cfg.AttentionConfig(
|
53
|
+
num_heads=16,
|
54
|
+
head_dim=128,
|
55
|
+
num_query_groups=2,
|
56
|
+
rotary_base=1000000,
|
57
|
+
rotary_percentage=1.0,
|
58
|
+
qkv_use_bias=True,
|
59
|
+
)
|
60
|
+
ff_config = cfg.FeedForwardConfig(
|
61
|
+
type=cfg.FeedForwardType.GATED,
|
62
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
63
|
+
intermediate_size=11008,
|
64
|
+
)
|
65
|
+
norm_config = cfg.NormalizationConfig(
|
66
|
+
type=cfg.NormalizationType.RMS_NORM,
|
67
|
+
epsilon=1e-06,
|
68
|
+
)
|
69
|
+
block_config = cfg.TransformerBlockConfig(
|
70
|
+
attn_config=attn_config,
|
71
|
+
ff_config=ff_config,
|
72
|
+
pre_attention_norm_config=norm_config,
|
73
|
+
post_attention_norm_config=norm_config,
|
74
|
+
)
|
75
|
+
config = cfg.ModelConfig(
|
76
|
+
vocab_size=151936,
|
77
|
+
num_layers=36,
|
78
|
+
max_seq_len=32768,
|
79
|
+
embedding_dim=2048,
|
80
|
+
kv_cache_max_len=kv_cache_max_len,
|
81
|
+
block_configs=block_config,
|
82
|
+
final_norm_config=norm_config,
|
83
|
+
enable_hlfb=True,
|
84
|
+
)
|
85
|
+
return config
|
86
|
+
|
87
|
+
|
88
|
+
def get_1_5b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
89
|
+
"""Returns the model config for a Qwen 2.5 1B model."""
|
90
|
+
config = get_3b_model_config(kv_cache_max_len)
|
91
|
+
# Qwen has only one block config.
|
92
|
+
block_config = config.block_config(0)
|
93
|
+
block_config.attn_config.num_heads = 12
|
94
|
+
block_config.ff_config.intermediate_size = 8960
|
95
|
+
config.num_layers = 28
|
96
|
+
config.embedding_dim = 1536
|
97
|
+
return config
|
98
|
+
|
99
|
+
|
100
|
+
def get_0_5b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
101
|
+
"""Returns the model config for a Qwen 2.5 0.5B model."""
|
102
|
+
config = get_3b_model_config(kv_cache_max_len)
|
103
|
+
# Qwen has only one block config.
|
104
|
+
block_config = config.block_config(0)
|
105
|
+
block_config.attn_config.num_heads = 14
|
106
|
+
block_config.attn_config.head_dim = 64
|
107
|
+
block_config.ff_config.intermediate_size = 4864
|
108
|
+
config.num_layers = 24
|
109
|
+
config.embedding_dim = 896
|
110
|
+
return config
|
111
|
+
|
112
|
+
|
113
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
114
|
+
config = get_3b_model_config(**kwargs)
|
115
|
+
config.vocab_size = 128
|
116
|
+
config.num_layers = 2
|
117
|
+
# Qwen has only one block config.
|
118
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
119
|
+
return config
|
120
|
+
|
121
|
+
|
122
|
+
def _build_model(checkpoint_path: str, config: cfg.ModelConfig) -> nn.Module:
|
123
|
+
model = Qwen(config)
|
124
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
125
|
+
# Since embedding and lm-head use the same weight, we need to set strict
|
126
|
+
# to False.
|
127
|
+
loader.load(model, strict=False)
|
128
|
+
model.eval()
|
129
|
+
return model
|
130
|
+
|
131
|
+
|
132
|
+
def build_3b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
133
|
+
return _build_model(checkpoint_path, get_3b_model_config(**kwargs))
|
134
|
+
|
135
|
+
|
136
|
+
def build_1_5b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
137
|
+
return _build_model(checkpoint_path, get_1_5b_model_config(**kwargs))
|
138
|
+
|
139
|
+
|
140
|
+
def build_0_5b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
141
|
+
return _build_model(checkpoint_path, get_0_5b_model_config(**kwargs))
|
@@ -0,0 +1,88 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Qwen 2.5 0.5B, 1.5B, and 3B models."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.qwen import qwen
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_MODEL_SIZE = flags.DEFINE_enum(
|
30
|
+
"model_size",
|
31
|
+
"3b",
|
32
|
+
["0.5b", "1.5b", "3b"],
|
33
|
+
"The size of the model to verify.",
|
34
|
+
)
|
35
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
36
|
+
"prompts",
|
37
|
+
"What is the meaning of life?",
|
38
|
+
"The input prompts to generate answers.",
|
39
|
+
)
|
40
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
41
|
+
"max_new_tokens",
|
42
|
+
30,
|
43
|
+
"The maximum size of the generated tokens.",
|
44
|
+
)
|
45
|
+
|
46
|
+
_CHECKPOINT = {
|
47
|
+
"0.5b": "Qwen/Qwen2.5-0.5B-Instruct",
|
48
|
+
"1.5b": "Qwen/Qwen2.5-1.5B-Instruct",
|
49
|
+
"3b": "Qwen/Qwen2.5-3B-Instruct",
|
50
|
+
}
|
51
|
+
|
52
|
+
_BUILDER = {
|
53
|
+
"0.5b": qwen.build_0_5b_model,
|
54
|
+
"1.5b": qwen.build_1_5b_model,
|
55
|
+
"3b": qwen.build_3b_model,
|
56
|
+
}
|
57
|
+
|
58
|
+
|
59
|
+
def main(_):
|
60
|
+
checkpoint = _CHECKPOINT[_MODEL_SIZE.value]
|
61
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
62
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
63
|
+
|
64
|
+
# Locate the cached dir.
|
65
|
+
cached_config_file = transformers.utils.cached_file(
|
66
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
67
|
+
)
|
68
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
69
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
70
|
+
reauthored_model = _BUILDER[_MODEL_SIZE.value](reauthored_checkpoint)
|
71
|
+
|
72
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
73
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
74
|
+
|
75
|
+
verifier.verify_reauthored_model(
|
76
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
77
|
+
original_model
|
78
|
+
),
|
79
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
80
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
81
|
+
generate_prompts=_PROMPTS.value,
|
82
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
83
|
+
atol=1e-04,
|
84
|
+
)
|
85
|
+
|
86
|
+
|
87
|
+
if __name__ == "__main__":
|
88
|
+
app.run(main)
|
@@ -23,6 +23,7 @@ from ai_edge_torch.generative.examples.llama import llama
|
|
23
23
|
from ai_edge_torch.generative.examples.openelm import openelm
|
24
24
|
from ai_edge_torch.generative.examples.phi import phi2
|
25
25
|
from ai_edge_torch.generative.examples.phi import phi3
|
26
|
+
from ai_edge_torch.generative.examples.qwen import qwen
|
26
27
|
from ai_edge_torch.generative.examples.smollm import smollm
|
27
28
|
from ai_edge_torch.generative.examples.stable_diffusion import clip as sd_clip
|
28
29
|
from ai_edge_torch.generative.examples.stable_diffusion import decoder as sd_decoder
|
@@ -152,6 +153,15 @@ class TestModelConversion(googletest.TestCase):
|
|
152
153
|
pytorch_model = openelm.OpenELM(config).eval()
|
153
154
|
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
154
155
|
|
156
|
+
@googletest.skipIf(
|
157
|
+
ai_edge_config.Config.use_torch_xla,
|
158
|
+
reason="tests with custom ops are not supported on oss",
|
159
|
+
)
|
160
|
+
def test_qwen(self):
|
161
|
+
config = qwen.get_fake_model_config()
|
162
|
+
pytorch_model = qwen.Qwen(config).eval()
|
163
|
+
self._test_model(config, pytorch_model, "prefill", atol=1e-3, rtol=1e-5)
|
164
|
+
|
155
165
|
@googletest.skipIf(
|
156
166
|
ai_edge_config.Config.use_torch_xla,
|
157
167
|
reason="tests with custom ops are not supported on oss",
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20240929
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=D86Gw3pIRcpnTebUPKlnPbPGJae1S6Fw4DZZ3ZkD0zw,3730
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256=
|
6
|
+
ai_edge_torch/version.py,sha256=NLOvzXKYuiZP_6pLbpKF-IAcp8M6nFLhL-QqbfqxnEU,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=5uPwHhmc6kwiIz-CqaiHDejf2SOWMHrb-rYEHm69wKc,3801
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -63,6 +63,10 @@ ai_edge_torch/generative/examples/phi/phi2.py,sha256=82SEKRwtKfT9VcNQaykGmemiov_
|
|
63
63
|
ai_edge_torch/generative/examples/phi/phi3.py,sha256=Xh-l7TQdXYZJ9PViRVk2_y91Ec7Yntn0UpkuzRIG3T8,9231
|
64
64
|
ai_edge_torch/generative/examples/phi/verify.py,sha256=YPFCdbnfmvq38fbpBNr0kHPfSZo4p3_6WkLJAW3pLPo,2177
|
65
65
|
ai_edge_torch/generative/examples/phi/verify_phi3.py,sha256=kVYaBVvddfQng0IyZGxyTJEzhiPO0G4VFJm2WOc2Q94,2360
|
66
|
+
ai_edge_torch/generative/examples/qwen/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
67
|
+
ai_edge_torch/generative/examples/qwen/convert_to_tflite.py,sha256=QAAVoSKDVf2rHAChzumGloVCWIU0Oe5UYKgv3T192Iw,2496
|
68
|
+
ai_edge_torch/generative/examples/qwen/qwen.py,sha256=b03q1On6JzPhJzTs1dQwT_tJjO7C9NYmyzrzV2kQ_yo,4579
|
69
|
+
ai_edge_torch/generative/examples/qwen/verify.py,sha256=9_AyEJTeUfvhhID64Rto2bflFPyXMFokdQLsseLUMiI,2775
|
66
70
|
ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
67
71
|
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=zPrDTDeRVWFi9DS32uNi-RLpzOStFOk5MhNla4ixeew,2179
|
68
72
|
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=dal8vnZjQd6vR7sc76-FYGDKUlVjOlfUALV-pwbXJGc,3264
|
@@ -121,7 +125,7 @@ ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudj
|
|
121
125
|
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
122
126
|
ai_edge_torch/generative/test/test_loader.py,sha256=8y74ChO3CZCfEi1eCf3-w47kRgAI4qPYCXpi8rTQXMA,3378
|
123
127
|
ai_edge_torch/generative/test/test_model_conversion.py,sha256=s-EVLOQGjIeVtgNI8Ggs37pkRdErAliT6NhrrFigPOE,5459
|
124
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
128
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=SBGHbY8-k7kSEEv-WQQlxGIYtJEVBIbjJPygGdDg9Qg,8921
|
125
129
|
ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0lZKNtCB04SOLO18y4,5980
|
126
130
|
ai_edge_torch/generative/test/utils.py,sha256=YvEhO2HIj1LkBs5du1UxY-cGRW9HMyAYsOUhgsTrTpA,1796
|
127
131
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
@@ -177,8 +181,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
177
181
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
178
182
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
179
183
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
180
|
-
ai_edge_torch_nightly-0.3.0.
|
181
|
-
ai_edge_torch_nightly-0.3.0.
|
182
|
-
ai_edge_torch_nightly-0.3.0.
|
183
|
-
ai_edge_torch_nightly-0.3.0.
|
184
|
-
ai_edge_torch_nightly-0.3.0.
|
184
|
+
ai_edge_torch_nightly-0.3.0.dev20240929.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
185
|
+
ai_edge_torch_nightly-0.3.0.dev20240929.dist-info/METADATA,sha256=BcRgHI-zv6HtkVf7tOnbFLsh_V3QZlheWv_4Qto2ToU,1897
|
186
|
+
ai_edge_torch_nightly-0.3.0.dev20240929.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
187
|
+
ai_edge_torch_nightly-0.3.0.dev20240929.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
188
|
+
ai_edge_torch_nightly-0.3.0.dev20240929.dist-info/RECORD,,
|
File without changes
|
File without changes
|