ai-edge-torch-nightly 0.3.0.dev20240920__py3-none-any.whl → 0.3.0.dev20240923__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/generative/examples/gemma/{convert_to_tflite.py → convert_gemma1_to_tflite.py} +3 -3
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +3 -36
- ai_edge_torch/generative/examples/gemma/gemma2.py +0 -26
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +55 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +55 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +142 -0
- ai_edge_torch/generative/examples/openelm/verify.py +1 -1
- ai_edge_torch/generative/examples/phi/verify.py +1 -1
- ai_edge_torch/generative/examples/smollm/verify.py +1 -1
- ai_edge_torch/generative/examples/tiny_llama/verify.py +1 -1
- ai_edge_torch/generative/layers/feed_forward.py +0 -1
- ai_edge_torch/generative/quantize/example.py +3 -3
- ai_edge_torch/generative/test/test_model_conversion_large.py +4 -4
- ai_edge_torch/generative/utilities/verifier.py +21 -19
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240920.dist-info → ai_edge_torch_nightly-0.3.0.dev20240923.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240920.dist-info → ai_edge_torch_nightly-0.3.0.dev20240923.dist-info}/RECORD +20 -17
- {ai_edge_torch_nightly-0.3.0.dev20240920.dist-info → ai_edge_torch_nightly-0.3.0.dev20240923.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240920.dist-info → ai_edge_torch_nightly-0.3.0.dev20240923.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240920.dist-info → ai_edge_torch_nightly-0.3.0.dev20240923.dist-info}/top_level.txt +0 -0
ai_edge_torch/generative/examples/gemma/{convert_to_tflite.py → convert_gemma1_to_tflite.py}
RENAMED
@@ -13,14 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
"""Example of converting a
|
16
|
+
"""Example of converting a Gemma1 model to multi-signature tflite model."""
|
17
17
|
|
18
18
|
import os
|
19
19
|
import pathlib
|
20
20
|
|
21
21
|
from absl import app
|
22
22
|
from absl import flags
|
23
|
-
from ai_edge_torch.generative.examples.gemma import
|
23
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
24
24
|
from ai_edge_torch.generative.utilities import converter
|
25
25
|
|
26
26
|
_CHECKPOINT_PATH = flags.DEFINE_string(
|
@@ -51,7 +51,7 @@ _QUANTIZE = flags.DEFINE_bool(
|
|
51
51
|
|
52
52
|
|
53
53
|
def main(_):
|
54
|
-
pytorch_model =
|
54
|
+
pytorch_model = gemma1.build_2b_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
57
|
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
@@ -13,10 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
"""Example of building a
|
17
|
-
|
18
|
-
import os
|
19
|
-
import pathlib
|
16
|
+
"""Example of building a Gemma1 model."""
|
20
17
|
|
21
18
|
from ai_edge_torch.generative.layers import attention
|
22
19
|
from ai_edge_torch.generative.layers import builder
|
@@ -24,7 +21,6 @@ from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
|
24
21
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
26
23
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
-
import numpy as np
|
28
24
|
import torch
|
29
25
|
from torch import nn
|
30
26
|
|
@@ -32,13 +28,11 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
32
28
|
ff_up_proj="model.layers.{}.mlp.up_proj",
|
33
29
|
ff_down_proj="model.layers.{}.mlp.down_proj",
|
34
30
|
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
35
|
-
|
36
|
-
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
37
|
-
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
31
|
+
attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
|
38
32
|
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
39
33
|
pre_attn_norm="model.layers.{}.input_layernorm",
|
40
34
|
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
41
|
-
embedding="
|
35
|
+
embedding="embedder",
|
42
36
|
final_norm="model.norm",
|
43
37
|
lm_head=None,
|
44
38
|
)
|
@@ -192,30 +186,3 @@ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
192
186
|
loader.load(model, strict=False)
|
193
187
|
model.eval()
|
194
188
|
return model
|
195
|
-
|
196
|
-
|
197
|
-
def define_and_run_2b(checkpoint_path: str) -> None:
|
198
|
-
"""Instantiates and runs a Gemma 2B model."""
|
199
|
-
|
200
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
201
|
-
gemma_goldens = torch.load(current_dir / "gemma_lm_logits.pt")
|
202
|
-
|
203
|
-
kv_cache_max_len = 1024
|
204
|
-
model = build_2b_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
205
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
206
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
207
|
-
tokens[0, :4] = idx
|
208
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
209
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
210
|
-
output = model.forward(tokens, input_pos, kv)
|
211
|
-
print("comparing with goldens..")
|
212
|
-
assert torch.allclose(
|
213
|
-
gemma_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
214
|
-
)
|
215
|
-
|
216
|
-
|
217
|
-
if __name__ == "__main__":
|
218
|
-
input_checkpoint_path = os.path.join(
|
219
|
-
pathlib.Path.home(), "Downloads/llm_data/gemma-2b"
|
220
|
-
)
|
221
|
-
define_and_run_2b(input_checkpoint_path)
|
@@ -267,29 +267,3 @@ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
267
267
|
loader.load(model, strict=False)
|
268
268
|
model.eval()
|
269
269
|
return model
|
270
|
-
|
271
|
-
|
272
|
-
def define_and_run_2b(checkpoint_path: str) -> None:
|
273
|
-
"""Instantiates and runs a Gemma2 2B model."""
|
274
|
-
|
275
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
276
|
-
gemma2_goldens = torch.load(current_dir / "gemma2it_2b_golden.pt")
|
277
|
-
print("Running GEMMA 2")
|
278
|
-
kv_cache_max_len = 1024
|
279
|
-
model = build_2b_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
280
|
-
toks = torch.from_numpy(
|
281
|
-
np.array([2, 651, 9456, 576, 573, 3520, 3858, 603, 235248])
|
282
|
-
)
|
283
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
284
|
-
tokens[0, :9] = toks
|
285
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
286
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
287
|
-
out = model.forward(tokens, input_pos, kv)
|
288
|
-
out_final = out["logits"][0, 8, :]
|
289
|
-
assert torch.allclose(gemma2_goldens, out_final, atol=1e-04)
|
290
|
-
|
291
|
-
|
292
|
-
if __name__ == "__main__":
|
293
|
-
torch.set_printoptions(sci_mode=True)
|
294
|
-
path = os.path.join(pathlib.Path.home(), "Downloads/llm_data/gemma2-2b")
|
295
|
-
define_and_run_2b(path)
|
@@ -0,0 +1,55 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Gemma1 model."""
|
17
|
+
|
18
|
+
from absl import app
|
19
|
+
from absl import flags
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
21
|
+
from ai_edge_torch.generative.examples.gemma import verify_util
|
22
|
+
from ai_edge_torch.generative.utilities import verifier
|
23
|
+
import kagglehub
|
24
|
+
|
25
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
26
|
+
"prompts",
|
27
|
+
"What is the meaning of life?",
|
28
|
+
"The input prompts to generate answers.",
|
29
|
+
)
|
30
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
31
|
+
"max_new_tokens",
|
32
|
+
30,
|
33
|
+
"The maximum size of the generated tokens.",
|
34
|
+
)
|
35
|
+
|
36
|
+
|
37
|
+
def main(_):
|
38
|
+
checkpoint = kagglehub.model_download("google/gemma/pyTorch/2b-it")
|
39
|
+
|
40
|
+
verifier.log_msg("Building the reauthored model from", checkpoint)
|
41
|
+
reauthored_model = gemma1.build_2b_model(checkpoint)
|
42
|
+
|
43
|
+
verify_util.verify_reauthored_gemma_model(
|
44
|
+
checkpoint=checkpoint,
|
45
|
+
variant="2b",
|
46
|
+
reauthored_model=reauthored_model,
|
47
|
+
weight_filename="gemma-2b-it.ckpt",
|
48
|
+
generate_prompts=_PROMPTS.value,
|
49
|
+
forward_input_ids=[[1, 2, 3, 4]],
|
50
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
51
|
+
)
|
52
|
+
|
53
|
+
|
54
|
+
if __name__ == "__main__":
|
55
|
+
app.run(main)
|
@@ -0,0 +1,55 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Gemma2 model."""
|
17
|
+
|
18
|
+
from absl import app
|
19
|
+
from absl import flags
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma2
|
21
|
+
from ai_edge_torch.generative.examples.gemma import verify_util
|
22
|
+
from ai_edge_torch.generative.utilities import verifier
|
23
|
+
import kagglehub
|
24
|
+
|
25
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
26
|
+
"prompts",
|
27
|
+
"What is the meaning of life?",
|
28
|
+
"The input prompts to generate answers.",
|
29
|
+
)
|
30
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
31
|
+
"max_new_tokens",
|
32
|
+
30,
|
33
|
+
"The maximum size of the generated tokens.",
|
34
|
+
)
|
35
|
+
|
36
|
+
|
37
|
+
def main(_):
|
38
|
+
checkpoint = kagglehub.model_download("google/gemma-2/pyTorch/gemma-2-2b-it")
|
39
|
+
|
40
|
+
verifier.log_msg("Building the reauthored model from", checkpoint)
|
41
|
+
reauthored_model = gemma2.build_2b_model(checkpoint)
|
42
|
+
|
43
|
+
verify_util.verify_reauthored_gemma_model(
|
44
|
+
checkpoint=checkpoint,
|
45
|
+
variant="2b-v2",
|
46
|
+
reauthored_model=reauthored_model,
|
47
|
+
generate_prompts=_PROMPTS.value,
|
48
|
+
forward_input_ids=[[2, 651, 9456, 576, 573, 3520, 3858, 603, 235248]],
|
49
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
50
|
+
atol=1e-04,
|
51
|
+
)
|
52
|
+
|
53
|
+
|
54
|
+
if __name__ == "__main__":
|
55
|
+
app.run(main)
|
@@ -0,0 +1,142 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utility functions to verify the reauthored Gemma model."""
|
17
|
+
|
18
|
+
import dataclasses
|
19
|
+
import os
|
20
|
+
from typing import List, Tuple
|
21
|
+
|
22
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
23
|
+
from ai_edge_torch.generative.utilities import verifier
|
24
|
+
from gemma import config as gemma_config
|
25
|
+
from gemma import model as gemma_model
|
26
|
+
import torch
|
27
|
+
|
28
|
+
|
29
|
+
@dataclasses.dataclass
|
30
|
+
class _Output:
|
31
|
+
logits: torch.Tensor
|
32
|
+
|
33
|
+
|
34
|
+
class GemmaWrapper(verifier.ModelWrapper):
|
35
|
+
"""Gemma model wrapper for verification.
|
36
|
+
|
37
|
+
Verifier calls model.forward() with maxium sequence length (1024) expecting
|
38
|
+
the output has 'logits' field while Gemma gets the input tokens with the
|
39
|
+
actual length and returns logits in a tuple.
|
40
|
+
|
41
|
+
Verifier runs tokenizer before model.generate() while Gemma runs the tokenizer
|
42
|
+
inside model.generate().
|
43
|
+
"""
|
44
|
+
|
45
|
+
def __init__(self, model: torch.nn.Module, max_new_tokens: int):
|
46
|
+
super().__init__(model)
|
47
|
+
self.max_new_tokens = max_new_tokens
|
48
|
+
|
49
|
+
def _get_actual_input_len(self, tokens: torch.Tensor) -> int:
|
50
|
+
for i in range(tokens.shape[1]):
|
51
|
+
if tokens[0, i] == 0:
|
52
|
+
return i
|
53
|
+
return tokens.shape[1]
|
54
|
+
|
55
|
+
def _get_kv_caches(
|
56
|
+
self, max_seq_len: int
|
57
|
+
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
|
58
|
+
config = self.model.config
|
59
|
+
cache_size = (1, max_seq_len, config.num_key_value_heads, config.head_dim)
|
60
|
+
cache = torch.zeros(cache_size)
|
61
|
+
return [
|
62
|
+
(cache.clone(), cache.clone()) for _ in range(config.num_hidden_layers)
|
63
|
+
]
|
64
|
+
|
65
|
+
def forward(self, tokens: torch.Tensor) -> _Output:
|
66
|
+
"""Forwards the model after reducing input tokens to the actual length."""
|
67
|
+
actual_input_len = self._get_actual_input_len(tokens)
|
68
|
+
input_pos = torch.arange(0, actual_input_len, dtype=torch.long)
|
69
|
+
mask_cache = attn_utils.build_causal_mask_cache(tokens.shape[1])
|
70
|
+
_, logits = self.model.forward(
|
71
|
+
input_token_ids=tokens[0, :actual_input_len].unsqueeze(0),
|
72
|
+
input_positions=input_pos,
|
73
|
+
kv_write_indices=None,
|
74
|
+
kv_caches=self._get_kv_caches(tokens.shape[1]),
|
75
|
+
mask=mask_cache.index_select(2, input_pos),
|
76
|
+
output_positions=input_pos,
|
77
|
+
temperatures=None,
|
78
|
+
top_ps=torch.tensor([1.0], dtype=torch.float),
|
79
|
+
top_ks=torch.tensor([1], dtype=torch.long),
|
80
|
+
)
|
81
|
+
return _Output(logits.float())
|
82
|
+
|
83
|
+
def generate(self, tokens: torch.Tensor) -> torch.Tensor:
|
84
|
+
"""Generates the response after decoding the tokens into a string."""
|
85
|
+
prompts = self.model.tokenizer.decode(tokens[0].tolist())
|
86
|
+
response = self.model.generate(
|
87
|
+
prompts, device="cpu", output_len=self.max_new_tokens, top_k=1
|
88
|
+
)
|
89
|
+
return torch.tensor([self.model.tokenizer.encode(prompts + response)])
|
90
|
+
|
91
|
+
|
92
|
+
class TokenizerWrapper(torch.nn.Module):
|
93
|
+
"""Tokenizer wrapper for verification.
|
94
|
+
|
95
|
+
Verifier expects the tokenizer to handle tokens in torch.Tensor while Gemma
|
96
|
+
tokenizer expects tokens in a list.
|
97
|
+
"""
|
98
|
+
|
99
|
+
def __init__(self, tokenizer: torch.nn.Module):
|
100
|
+
super().__init__()
|
101
|
+
self.tokenizer = tokenizer
|
102
|
+
|
103
|
+
def encode(self, text: str, **_) -> torch.Tensor:
|
104
|
+
"""Adds one more dimension to the output of the tokenizer."""
|
105
|
+
return torch.tensor([self.tokenizer.encode(text)])
|
106
|
+
|
107
|
+
def decode(self, tokens: torch.Tensor) -> str:
|
108
|
+
"""Decodes the token sequence after converting to a list."""
|
109
|
+
return self.tokenizer.decode(tokens.tolist())
|
110
|
+
|
111
|
+
|
112
|
+
def verify_reauthored_gemma_model(
|
113
|
+
checkpoint: str,
|
114
|
+
variant: str,
|
115
|
+
reauthored_model: torch.nn.Module,
|
116
|
+
generate_prompts: List[str],
|
117
|
+
forward_input_ids: List[List[int]],
|
118
|
+
weight_filename: str = "model.ckpt",
|
119
|
+
tokenizer_filename: str = "tokenizer.model",
|
120
|
+
max_new_tokens: int = 20,
|
121
|
+
rtol: float = 1e-05,
|
122
|
+
atol: float = 1e-05,
|
123
|
+
):
|
124
|
+
"""Verifies the reauthored Gemma model against the original model."""
|
125
|
+
config = gemma_config.get_model_config(variant)
|
126
|
+
config.tokenizer = os.path.join(checkpoint, tokenizer_filename)
|
127
|
+
# Use float32 to be compatible with the reauthored model.
|
128
|
+
config.dtype = torch.float32
|
129
|
+
|
130
|
+
verifier.log_msg("Loading the original model from", checkpoint)
|
131
|
+
original_model = gemma_model.GemmaForCausalLM(config).eval()
|
132
|
+
original_model.load_weights(os.path.join(checkpoint, weight_filename))
|
133
|
+
|
134
|
+
verifier.verify_reauthored_model(
|
135
|
+
original_model=GemmaWrapper(original_model, max_new_tokens),
|
136
|
+
reauthored_model=reauthored_model,
|
137
|
+
tokenizer=TokenizerWrapper(original_model.tokenizer),
|
138
|
+
generate_prompts=generate_prompts,
|
139
|
+
forward_input_ids=forward_input_ids,
|
140
|
+
rtol=rtol,
|
141
|
+
atol=atol,
|
142
|
+
)
|
@@ -14,7 +14,7 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
16
|
import ai_edge_torch
|
17
|
-
from ai_edge_torch.generative.examples.gemma import
|
17
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
18
18
|
from ai_edge_torch.generative.quantize import quant_recipes
|
19
19
|
import numpy as np
|
20
20
|
import torch
|
@@ -22,8 +22,8 @@ import torch
|
|
22
22
|
|
23
23
|
def main():
|
24
24
|
# Build a PyTorch model as usual
|
25
|
-
config =
|
26
|
-
model =
|
25
|
+
config = gemma1.get_fake_model_config()
|
26
|
+
model = gemma1.Gemma(config)
|
27
27
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
28
28
|
tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
|
29
29
|
tokens[0, :4] = idx
|
@@ -17,7 +17,7 @@
|
|
17
17
|
|
18
18
|
import ai_edge_torch
|
19
19
|
from ai_edge_torch import config as ai_edge_config
|
20
|
-
from ai_edge_torch.generative.examples.gemma import
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
21
21
|
from ai_edge_torch.generative.examples.gemma import gemma2
|
22
22
|
from ai_edge_torch.generative.examples.openelm import openelm
|
23
23
|
from ai_edge_torch.generative.examples.phi import phi2
|
@@ -82,9 +82,9 @@ class TestModelConversion(googletest.TestCase):
|
|
82
82
|
ai_edge_config.Config.use_torch_xla,
|
83
83
|
reason="tests with custom ops are not supported on oss",
|
84
84
|
)
|
85
|
-
def
|
86
|
-
config =
|
87
|
-
pytorch_model =
|
85
|
+
def test_gemma1(self):
|
86
|
+
config = gemma1.get_fake_model_config()
|
87
|
+
pytorch_model = gemma1.Gemma(config).eval()
|
88
88
|
self._test_model(
|
89
89
|
config, pytorch_model, "serving_default", atol=1e-2, rtol=1e-5
|
90
90
|
)
|
@@ -19,7 +19,6 @@ import datetime
|
|
19
19
|
from typing import List, Optional, Union
|
20
20
|
|
21
21
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
-
import numpy as np
|
23
22
|
import torch
|
24
23
|
import transformers
|
25
24
|
|
@@ -126,7 +125,7 @@ def generate(
|
|
126
125
|
def verify_with_input_ids(
|
127
126
|
original_model: ModelWrapper,
|
128
127
|
reauthored_model: torch.nn.Module,
|
129
|
-
input_ids:
|
128
|
+
input_ids: List[int],
|
130
129
|
kv_cache_max_len: int = 1024,
|
131
130
|
rtol: float = 1e-05,
|
132
131
|
atol: float = 1e-05,
|
@@ -139,7 +138,7 @@ def verify_with_input_ids(
|
|
139
138
|
original_model (ModelWrapper): The original model.
|
140
139
|
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
141
140
|
Generative API.
|
142
|
-
input_ids (
|
141
|
+
input_ids (List[int]): The input token IDs to forward with.
|
143
142
|
kv_cache_max_len (int): The maximum sequence length of the KV cache.
|
144
143
|
rtol (float): The relative tolerance for the comparison.
|
145
144
|
atol (float): The absolute tolerance for the comparison.
|
@@ -148,18 +147,17 @@ def verify_with_input_ids(
|
|
148
147
|
True if the model reauthored generates the same output of the original.
|
149
148
|
"""
|
150
149
|
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
151
|
-
|
152
|
-
tokens[0, :input_ids_len] = input_ids
|
150
|
+
tokens[0, : len(input_ids)] = torch.tensor([input_ids]).int()
|
153
151
|
|
154
152
|
log_msg("Forwarding the original model...")
|
155
153
|
outputs_original = original_model.forward(tokens)
|
156
|
-
logits_original = outputs_original.logits[0,
|
154
|
+
logits_original = outputs_original.logits[0, len(input_ids) - 1, :]
|
157
155
|
log_msg("logits_original: ", logits_original)
|
158
156
|
|
159
157
|
log_msg("Forwarding the reauthored model...")
|
160
158
|
kv_cache = kv_utils.KVCache.from_model_config(reauthored_model.config)
|
161
159
|
outputs_reauthored = forward(reauthored_model, tokens, kv_cache)
|
162
|
-
logits_reauthored = outputs_reauthored[0][0,
|
160
|
+
logits_reauthored = outputs_reauthored[0][0, len(input_ids) - 1, :]
|
163
161
|
log_msg("logits_reauthored:", logits_reauthored)
|
164
162
|
|
165
163
|
return torch.allclose(
|
@@ -208,7 +206,8 @@ def verify_reauthored_model(
|
|
208
206
|
original_model: ModelWrapper,
|
209
207
|
reauthored_model: torch.nn.Module,
|
210
208
|
tokenizer: torch.nn.Module,
|
211
|
-
|
209
|
+
generate_prompts: List[str],
|
210
|
+
forward_input_ids: List[List[int]] = [[1, 2, 3, 4]],
|
212
211
|
rtol: float = 1e-05,
|
213
212
|
atol: float = 1e-05,
|
214
213
|
):
|
@@ -227,22 +226,25 @@ def verify_reauthored_model(
|
|
227
226
|
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
228
227
|
Generative API.
|
229
228
|
tokenizer (torch.nn.Module): The tokenizer.
|
230
|
-
|
229
|
+
generate_prompts (List[str]): List of the input prompts to generate answers.
|
230
|
+
forward_input_ids (List[torch.Tensor]): List if ihe input token IDs to
|
231
|
+
forward with.
|
231
232
|
rtol (float): The relative tolerance for the comparison.
|
232
233
|
atol (float): The absolute tolerance for the comparison.
|
233
234
|
"""
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
235
|
+
for input_ids in forward_input_ids:
|
236
|
+
log_msg("Verifying the reauthored model with input IDs:", input_ids)
|
237
|
+
if verify_with_input_ids(
|
238
|
+
original_model, reauthored_model, input_ids, rtol=rtol, atol=atol
|
239
|
+
):
|
240
|
+
log_msg("PASS")
|
241
|
+
else:
|
242
|
+
log_msg("FAILED")
|
241
243
|
|
242
|
-
for
|
243
|
-
log_msg("Verifying the reauthored model with prompts:",
|
244
|
+
for prompts in generate_prompts:
|
245
|
+
log_msg("Verifying the reauthored model with prompts:", prompts)
|
244
246
|
if verify_model_with_prompts(
|
245
|
-
original_model, reauthored_model, tokenizer,
|
247
|
+
original_model, reauthored_model, tokenizer, prompts
|
246
248
|
):
|
247
249
|
log_msg("PASS")
|
248
250
|
else:
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20240923
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -3,7 +3,7 @@ ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=D86Gw3pIRcpnTebUPKlnPbPGJae1S6Fw4DZZ3ZkD0zw,3730
|
5
5
|
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
-
ai_edge_torch/version.py,sha256
|
6
|
+
ai_edge_torch/version.py,sha256=oxtOOEY9LJkV5vRrgr1EoSjAjuetYVNq7WQqMuauRkc,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=5uPwHhmc6kwiIz-CqaiHDejf2SOWMHrb-rYEHm69wKc,3801
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -39,22 +39,25 @@ ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrK
|
|
39
39
|
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
40
40
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
41
41
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
42
|
+
ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py,sha256=evmUj_4yygQthSRU-ke-Xn1qFNDCZKbegqINWfruKwU,2184
|
42
43
|
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=RZDs6oY-NLYrPNtfuJDweIHzGUL2kzpIc3AW_1p8gGg,2186
|
43
|
-
ai_edge_torch/generative/examples/gemma/
|
44
|
-
ai_edge_torch/generative/examples/gemma/
|
45
|
-
ai_edge_torch/generative/examples/gemma/
|
44
|
+
ai_edge_torch/generative/examples/gemma/gemma1.py,sha256=cahMzvJNJfShIw4uqoBRX5iBZrI3rvsha6wpNHzeYJ0,6369
|
45
|
+
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=KsM6VlzluTqbodG24IFr3biPxBrLay0z0gmnG0bcU2U,9277
|
46
|
+
ai_edge_torch/generative/examples/gemma/verify_gemma1.py,sha256=B14IR4mIw6qBVUbiIRdfdUzHMCIJCJ0RFPsYOxA46qc,1776
|
47
|
+
ai_edge_torch/generative/examples/gemma/verify_gemma2.py,sha256=kSzn1ITJXqrtNQax1m4WTAnC3gMxBpcvGA7-xTO1Iuw,1802
|
48
|
+
ai_edge_torch/generative/examples/gemma/verify_util.py,sha256=HBK2d8FcWFoxVDF5zk9sLSbKZEtwZQhX-K_zm4AvQtQ,5160
|
46
49
|
ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
47
50
|
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=85FVEt6cKFP2UzCLC78tAkbwGlGhAArtG7Wa75NxJik,2185
|
48
51
|
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=gGkHELNrt4xqnu11fCh3sJbZ7OsPyvoiF1J1aKCs5r8,7532
|
49
|
-
ai_edge_torch/generative/examples/openelm/verify.py,sha256=
|
52
|
+
ai_edge_torch/generative/examples/openelm/verify.py,sha256=QdFKymQSCYFJcYVvA63u5uIsn1YxJ0JZD5UqN6gxraI,2112
|
50
53
|
ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
51
54
|
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=3go690yX6PFeXMdpY7y4JZorAwxX0HT_b_pKZieauvk,2169
|
52
55
|
ai_edge_torch/generative/examples/phi/phi2.py,sha256=YwAszA53aOjvaMJ5wua2-5rP79N21Un_Y5yBCfFSYNU,6189
|
53
|
-
ai_edge_torch/generative/examples/phi/verify.py,sha256=
|
56
|
+
ai_edge_torch/generative/examples/phi/verify.py,sha256=QPYX6weEZGMEXt_Vb2hNARPAECQBKzx-KCivd4dzOrw,2145
|
54
57
|
ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
55
58
|
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=zPrDTDeRVWFi9DS32uNi-RLpzOStFOk5MhNla4ixeew,2179
|
56
59
|
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=hyhMk-b5762Q2xmjdD47g85dcbBSNJXNPIsifm1DRto,3239
|
57
|
-
ai_edge_torch/generative/examples/smollm/verify.py,sha256=
|
60
|
+
ai_edge_torch/generative/examples/smollm/verify.py,sha256=G2dAcl-VhAbx1E1PEqM6hpzPF24HqFZaz7UBEpJSQ3w,2022
|
58
61
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
59
62
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
60
63
|
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=tL6w2dr6VP66IXjSKo9StDNP-wl0RO3fh6dIliiYlFA,4656
|
@@ -80,14 +83,14 @@ ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=
|
|
80
83
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
81
84
|
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=ekxd8efjMgEvauUu3PidWOC-DszPHn5sqU753F7sJIM,2201
|
82
85
|
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=tlWpa7Aun3u3w5b-9EBtW7olhmSf8W-tn5bKUIwC-ys,6044
|
83
|
-
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=
|
86
|
+
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=LUChL5tA7FHL_DlTg5QKvGInmH9AwVVw9a-omcndiz8,2095
|
84
87
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
|
85
88
|
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
|
86
89
|
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
87
90
|
ai_edge_torch/generative/layers/attention.py,sha256=Z0Y_G8IG0LmvLX2u9D8__Fkr22szB-az6wMNnZpzhkA,13233
|
88
91
|
ai_edge_torch/generative/layers/attention_utils.py,sha256=68GXGR2HSWBFViTxX7cHifzVG-kcLS2IL2tQJPIpupg,7344
|
89
92
|
ai_edge_torch/generative/layers/builder.py,sha256=toT9Tl1x9o5KbG-eGOEViUr4fd_4f-XLZdMQT0Ae5_8,5130
|
90
|
-
ai_edge_torch/generative/layers/feed_forward.py,sha256=
|
93
|
+
ai_edge_torch/generative/layers/feed_forward.py,sha256=hdICat-8gW7-vxDAevJQ8NQ-mynllPiqLdXQMF6JMnc,4189
|
91
94
|
ai_edge_torch/generative/layers/kv_cache.py,sha256=2El7kZYnQRCRcVc63xgiAdBh9oVOksDu35p9XggvaGE,6148
|
92
95
|
ai_edge_torch/generative/layers/model_config.py,sha256=d0Y-EFb4Rr7iLZ4Bsdf1i92KuhY1BXRqyeUN2kuu510,6923
|
93
96
|
ai_edge_torch/generative/layers/normalization.py,sha256=l_36uFdruJwqqyubnBTM0M-iGiJfeFafyXKPPK8KHVo,6713
|
@@ -98,7 +101,7 @@ ai_edge_torch/generative/layers/unet/blocks_2d.py,sha256=c8rtlfDaeKmUfiiTKPmQhNW
|
|
98
101
|
ai_edge_torch/generative/layers/unet/builder.py,sha256=zAqWXdimmMrQRhmE_t9XkS68mh6PSrzwb-2NZZXrR5I,1901
|
99
102
|
ai_edge_torch/generative/layers/unet/model_config.py,sha256=8ze9kVWMuyZVQcgK7hWYw9TM1W9lXD-2j0iMHlxoGX4,9267
|
100
103
|
ai_edge_torch/generative/quantize/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
101
|
-
ai_edge_torch/generative/quantize/example.py,sha256=
|
104
|
+
ai_edge_torch/generative/quantize/example.py,sha256=tlACaRsz6lqOxakzpXVFJZYfFKOiFqetcYVJqWVRdPE,1542
|
102
105
|
ai_edge_torch/generative/quantize/quant_attrs.py,sha256=n1Fm8BFC8gJa_oiwwAOOghJyHtOXYZ4q-5ZRy4pHrIw,1957
|
103
106
|
ai_edge_torch/generative/quantize/quant_recipe.py,sha256=tKnuJq6hPD23JPCB9nPAlE1UHAwdbChkgPShiVaz4CE,5156
|
104
107
|
ai_edge_torch/generative/quantize/quant_recipe_utils.py,sha256=4fgmP_GgeiFUOkIaC9ZZXC12eO3DQZdrWDXRz5YXiwU,2270
|
@@ -108,7 +111,7 @@ ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudj
|
|
108
111
|
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
109
112
|
ai_edge_torch/generative/test/test_loader.py,sha256=8y74ChO3CZCfEi1eCf3-w47kRgAI4qPYCXpi8rTQXMA,3378
|
110
113
|
ai_edge_torch/generative/test/test_model_conversion.py,sha256=s-EVLOQGjIeVtgNI8Ggs37pkRdErAliT6NhrrFigPOE,5459
|
111
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
114
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=mAK8Pm4mgGyilDSBtFazCRDetoqYKKB0sGC83MPKE0M,4494
|
112
115
|
ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0lZKNtCB04SOLO18y4,5980
|
113
116
|
ai_edge_torch/generative/test/utils.py,sha256=YvEhO2HIj1LkBs5du1UxY-cGRW9HMyAYsOUhgsTrTpA,1796
|
114
117
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
@@ -116,7 +119,7 @@ ai_edge_torch/generative/utilities/converter.py,sha256=MQUg2ZLmfk_2csWmQWKD_II0b
|
|
116
119
|
ai_edge_torch/generative/utilities/loader.py,sha256=b9iotIhVDX-Zc9XjIDUaLxnV395AyBnkQe3dV5YA7Co,13297
|
117
120
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
118
121
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
119
|
-
ai_edge_torch/generative/utilities/verifier.py,sha256=
|
122
|
+
ai_edge_torch/generative/utilities/verifier.py,sha256=vU9KgmFS7I9jNS_3H2SWROx-rbNqtMKgQC2MRhdqQ4g,8803
|
120
123
|
ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
|
121
124
|
ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
|
122
125
|
ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
|
@@ -163,8 +166,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
163
166
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
164
167
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
165
168
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
166
|
-
ai_edge_torch_nightly-0.3.0.
|
167
|
-
ai_edge_torch_nightly-0.3.0.
|
168
|
-
ai_edge_torch_nightly-0.3.0.
|
169
|
-
ai_edge_torch_nightly-0.3.0.
|
170
|
-
ai_edge_torch_nightly-0.3.0.
|
169
|
+
ai_edge_torch_nightly-0.3.0.dev20240923.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
170
|
+
ai_edge_torch_nightly-0.3.0.dev20240923.dist-info/METADATA,sha256=BgwLxDJ3AOPVn0fkngAQpf3YdmShufhMt3bANFevtiQ,1859
|
171
|
+
ai_edge_torch_nightly-0.3.0.dev20240923.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
172
|
+
ai_edge_torch_nightly-0.3.0.dev20240923.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
173
|
+
ai_edge_torch_nightly-0.3.0.dev20240923.dist-info/RECORD,,
|
File without changes
|
File without changes
|