ai-edge-torch-nightly 0.3.0.dev20240919__py3-none-any.whl → 0.3.0.dev20240920__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/_convert/test/test_convert.py +7 -3
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/openelm/verify.py +5 -3
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/phi/verify.py +13 -3
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/smollm/verify.py +4 -3
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/tiny_llama/verify.py +5 -4
- ai_edge_torch/generative/test/test_model_conversion.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion_large.py +1 -1
- ai_edge_torch/generative/utilities/verifier.py +56 -7
- ai_edge_torch/model.py +7 -4
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240919.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240919.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/RECORD +21 -21
- {ai_edge_torch_nightly-0.3.0.dev20240919.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240919.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240919.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/top_level.txt +0 -0
@@ -23,12 +23,12 @@ from ai_edge_torch import config
|
|
23
23
|
from ai_edge_torch._convert import conversion_utils
|
24
24
|
from ai_edge_torch.testing import model_coverage
|
25
25
|
import numpy as np
|
26
|
-
import tensorflow as tf
|
27
26
|
import torch
|
28
27
|
from torch import nn
|
29
28
|
import torchvision
|
30
29
|
|
31
30
|
from absl.testing import absltest as googletest
|
31
|
+
from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
|
32
32
|
|
33
33
|
|
34
34
|
@dataclasses.dataclass
|
@@ -466,7 +466,9 @@ class TestConvert(googletest.TestCase):
|
|
466
466
|
np.testing.assert_almost_equal(edge_output["y_data_2_0"], args[1])
|
467
467
|
np.testing.assert_almost_equal(edge_output["y_data_2_1"], args[2])
|
468
468
|
|
469
|
-
interpreter =
|
469
|
+
interpreter = tfl_interpreter.Interpreter(
|
470
|
+
model_content=edge_model._tflite_model
|
471
|
+
)
|
470
472
|
runner = interpreter.get_signature_runner("serving_default")
|
471
473
|
output_details = runner.get_output_details()
|
472
474
|
self.assertIn("x", output_details.keys())
|
@@ -477,7 +479,9 @@ class TestConvert(googletest.TestCase):
|
|
477
479
|
def _compare_tflite_torch_args_kwargs(self, model, args, kwargs, flat_inputs):
|
478
480
|
model.eval()
|
479
481
|
edge_model = ai_edge_torch.convert(model, args, kwargs)
|
480
|
-
interpreter =
|
482
|
+
interpreter = tfl_interpreter.Interpreter(
|
483
|
+
model_content=edge_model._tflite_model
|
484
|
+
)
|
481
485
|
runner = interpreter.get_signature_runner("serving_default")
|
482
486
|
input_details = runner.get_input_details()
|
483
487
|
self.assertEqual(input_details.keys(), flat_inputs.keys())
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = gemma2.build_2b_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma2_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = gemma.build_2b_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = openelm.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'openelm_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -33,8 +33,10 @@ _PROMPTS = flags.DEFINE_multi_string(
|
|
33
33
|
def main(_):
|
34
34
|
checkpoint = "apple/OpenELM-3B"
|
35
35
|
verifier.log_msg("Loading the original model from", checkpoint)
|
36
|
-
|
37
|
-
|
36
|
+
wrapper_model = verifier.ModelWrapper(
|
37
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(
|
38
|
+
checkpoint, trust_remote_code=True
|
39
|
+
),
|
38
40
|
)
|
39
41
|
|
40
42
|
# Locate the cached dir.
|
@@ -50,7 +52,7 @@ def main(_):
|
|
50
52
|
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
51
53
|
|
52
54
|
verifier.verify_reauthored_model(
|
53
|
-
original_model=
|
55
|
+
original_model=wrapper_model,
|
54
56
|
reauthored_model=reauthored_model,
|
55
57
|
tokenizer=tokenizer,
|
56
58
|
prompts=_PROMPTS.value,
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = phi2.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'phi2_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -24,15 +24,25 @@ import transformers
|
|
24
24
|
|
25
25
|
_PROMPTS = flags.DEFINE_multi_string(
|
26
26
|
"prompts",
|
27
|
-
"
|
27
|
+
"Instruct: Write an email about the weather Output:",
|
28
28
|
"The input prompts to generate answers.",
|
29
29
|
)
|
30
30
|
|
31
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
32
|
+
"max_new_tokens",
|
33
|
+
30,
|
34
|
+
"The maximum size of the generated tokens.",
|
35
|
+
)
|
31
36
|
|
32
37
|
def main(_):
|
33
38
|
checkpoint = kagglehub.model_download("Microsoft/phi/transformers/2")
|
34
39
|
verifier.log_msg("Loading the original model from", checkpoint)
|
35
|
-
|
40
|
+
generation_config = transformers.GenerationConfig.from_pretrained(checkpoint)
|
41
|
+
generation_config.max_new_tokens = _MAX_NEW_TOKENS.value
|
42
|
+
wrapper_model = verifier.ModelWrapper(
|
43
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
44
|
+
hf_generation_config=generation_config,
|
45
|
+
)
|
36
46
|
|
37
47
|
verifier.log_msg("Building the reauthored model from", checkpoint)
|
38
48
|
reauthored_model = phi2.build_model(checkpoint)
|
@@ -41,7 +51,7 @@ def main(_):
|
|
41
51
|
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
42
52
|
|
43
53
|
verifier.verify_reauthored_model(
|
44
|
-
original_model=
|
54
|
+
original_model=wrapper_model,
|
45
55
|
reauthored_model=reauthored_model,
|
46
56
|
tokenizer=tokenizer,
|
47
57
|
prompts=_PROMPTS.value,
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = smollm.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'smollm_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -33,8 +33,9 @@ _PROMPTS = flags.DEFINE_multi_string(
|
|
33
33
|
def main(_):
|
34
34
|
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
35
35
|
verifier.log_msg("Loading the original model from", checkpoint)
|
36
|
-
|
37
|
-
|
36
|
+
wrapper_model = verifier.ModelWrapper(
|
37
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
38
|
+
)
|
38
39
|
# Locate the cached dir.
|
39
40
|
cached_config_file = transformers.utils.cached_file(
|
40
41
|
checkpoint, transformers.utils.CONFIG_NAME
|
@@ -47,7 +48,7 @@ def main(_):
|
|
47
48
|
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
48
49
|
|
49
50
|
verifier.verify_reauthored_model(
|
50
|
-
original_model=
|
51
|
+
original_model=wrapper_model,
|
51
52
|
reauthored_model=reauthored_model,
|
52
53
|
tokenizer=tokenizer,
|
53
54
|
prompts=_PROMPTS.value,
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = tiny_llama.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'tinyllama_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -33,10 +33,11 @@ _PROMPTS = flags.DEFINE_multi_string(
|
|
33
33
|
def main(_):
|
34
34
|
checkpoint = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
35
35
|
verifier.log_msg("Loading the original model from", checkpoint)
|
36
|
-
|
37
|
-
|
36
|
+
wrapper_model = verifier.ModelWrapper(
|
37
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(
|
38
|
+
checkpoint, trust_remote_code=True
|
39
|
+
),
|
38
40
|
)
|
39
|
-
|
40
41
|
# Locate the cached dir.
|
41
42
|
cached_config_file = transformers.utils.cached_file(
|
42
43
|
checkpoint, transformers.utils.CONFIG_NAME
|
@@ -49,7 +50,7 @@ def main(_):
|
|
49
50
|
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
50
51
|
|
51
52
|
verifier.verify_reauthored_model(
|
52
|
-
original_model=
|
53
|
+
original_model=wrapper_model,
|
53
54
|
reauthored_model=reauthored_model,
|
54
55
|
tokenizer=tokenizer,
|
55
56
|
prompts=_PROMPTS.value,
|
@@ -16,17 +16,66 @@
|
|
16
16
|
"""Common utility functions to verify the reauthored models."""
|
17
17
|
|
18
18
|
import datetime
|
19
|
-
from typing import List
|
19
|
+
from typing import List, Optional, Union
|
20
20
|
|
21
21
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
22
|
import numpy as np
|
23
23
|
import torch
|
24
|
+
import transformers
|
24
25
|
|
25
26
|
|
26
27
|
def log_msg(*args):
|
27
28
|
print("[%s]" % datetime.datetime.now(), *args)
|
28
29
|
|
29
30
|
|
31
|
+
class ModelWrapper(torch.nn.Module):
|
32
|
+
"""A wrapper for the model to be verified, this could be a HuggingFace model
|
33
|
+
|
34
|
+
or a regular PyTorch model.
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(
|
38
|
+
self,
|
39
|
+
model: torch.nn.Module,
|
40
|
+
model_format: str = "huggingface",
|
41
|
+
hf_generation_config: Optional[transformers.GenerationConfig] = None,
|
42
|
+
):
|
43
|
+
"""Initializes the wrapper.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
model (torch.nn.Module): The original model. This could be a model built
|
47
|
+
from HuggingFace transformers, or a regular PyTorch model.
|
48
|
+
model_format (str): The format of the model. It should be either
|
49
|
+
"huggingface" or "pytorch".
|
50
|
+
hf_generation_config (transformers.GenerationConfig): The HuggingFace
|
51
|
+
generation config. This config will only be used if the underlying model
|
52
|
+
is built from HuggingFace transformers.
|
53
|
+
"""
|
54
|
+
super().__init__()
|
55
|
+
self.model = model
|
56
|
+
self.model_format = model_format
|
57
|
+
self.hf_generation_config = hf_generation_config
|
58
|
+
|
59
|
+
def generate(
|
60
|
+
self, inputs: torch.Tensor
|
61
|
+
) -> Union[transformers.utils.ModelOutput, torch.LongTensor]:
|
62
|
+
if self.model_format == "huggingface":
|
63
|
+
return self.model.generate(
|
64
|
+
inputs=inputs, generation_config=self.hf_generation_config
|
65
|
+
)
|
66
|
+
else:
|
67
|
+
raise NotImplementedError(
|
68
|
+
"generate() is not implemented for model format: %s"
|
69
|
+
% self.model_format
|
70
|
+
)
|
71
|
+
|
72
|
+
def forward(
|
73
|
+
self,
|
74
|
+
inputs: torch.Tensor,
|
75
|
+
):
|
76
|
+
return self.model.forward(inputs)
|
77
|
+
|
78
|
+
|
30
79
|
def forward(
|
31
80
|
model: torch.nn.Module,
|
32
81
|
tokens: torch.Tensor,
|
@@ -75,7 +124,7 @@ def generate(
|
|
75
124
|
|
76
125
|
|
77
126
|
def verify_with_input_ids(
|
78
|
-
original_model:
|
127
|
+
original_model: ModelWrapper,
|
79
128
|
reauthored_model: torch.nn.Module,
|
80
129
|
input_ids: torch.Tensor = torch.from_numpy(np.array([[1, 2, 3, 4]])).int(),
|
81
130
|
kv_cache_max_len: int = 1024,
|
@@ -87,7 +136,7 @@ def verify_with_input_ids(
|
|
87
136
|
It compares only one outputs from the original and the reauthored model.
|
88
137
|
|
89
138
|
Args:
|
90
|
-
original_model (
|
139
|
+
original_model (ModelWrapper): The original model.
|
91
140
|
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
92
141
|
Generative API.
|
93
142
|
input_ids (torch.Tensor): The input token IDs to forward.
|
@@ -119,7 +168,7 @@ def verify_with_input_ids(
|
|
119
168
|
|
120
169
|
|
121
170
|
def verify_model_with_prompts(
|
122
|
-
original_model:
|
171
|
+
original_model: ModelWrapper,
|
123
172
|
reauthored_model: torch.nn.Module,
|
124
173
|
tokenizer: torch.nn.Module,
|
125
174
|
prompts: str,
|
@@ -130,7 +179,7 @@ def verify_model_with_prompts(
|
|
130
179
|
original and the reauthored model.
|
131
180
|
|
132
181
|
Args:
|
133
|
-
original_model (
|
182
|
+
original_model (ModelWrapper): The original model.
|
134
183
|
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
135
184
|
Generative API.
|
136
185
|
tokenizer (torch.nn.Module): The tokenizer.
|
@@ -156,7 +205,7 @@ def verify_model_with_prompts(
|
|
156
205
|
|
157
206
|
|
158
207
|
def verify_reauthored_model(
|
159
|
-
original_model:
|
208
|
+
original_model: ModelWrapper,
|
160
209
|
reauthored_model: torch.nn.Module,
|
161
210
|
tokenizer: torch.nn.Module,
|
162
211
|
prompts: List[str],
|
@@ -174,7 +223,7 @@ def verify_reauthored_model(
|
|
174
223
|
It prints out "PASS" or "FAILED" to the console.
|
175
224
|
|
176
225
|
Args:
|
177
|
-
original_model (
|
226
|
+
original_model (ModelWrapper): The original model.
|
178
227
|
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
179
228
|
Generative API.
|
180
229
|
tokenizer (torch.nn.Module): The tokenizer.
|
ai_edge_torch/model.py
CHANGED
@@ -27,6 +27,8 @@ from typing import Callable
|
|
27
27
|
import numpy.typing as npt
|
28
28
|
import tensorflow as tf
|
29
29
|
|
30
|
+
from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
|
31
|
+
|
30
32
|
DEFAULT_SIGNATURE_NAME = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
|
31
33
|
|
32
34
|
|
@@ -65,7 +67,7 @@ class TfLiteModel(Model):
|
|
65
67
|
tflite_model: A TFlite serialized object.
|
66
68
|
"""
|
67
69
|
self._tflite_model = tflite_model
|
68
|
-
self._interpreter_builder = lambda:
|
70
|
+
self._interpreter_builder = lambda: tfl_interpreter.Interpreter(
|
69
71
|
model_content=self._tflite_model,
|
70
72
|
experimental_default_delegate_latest_features=True,
|
71
73
|
)
|
@@ -75,12 +77,13 @@ class TfLiteModel(Model):
|
|
75
77
|
return self._tflite_model
|
76
78
|
|
77
79
|
def set_interpreter_builder(
|
78
|
-
self, builder: Callable[[],
|
80
|
+
self, builder: Callable[[], tfl_interpreter.Interpreter]
|
79
81
|
) -> None:
|
80
82
|
"""Sets a custom interpreter builder.
|
81
83
|
|
82
84
|
Args:
|
83
|
-
builder: A function that returns a `
|
85
|
+
builder: A function that returns a `tfl_interpreter.Interpreter` or its
|
86
|
+
subclass.
|
84
87
|
"""
|
85
88
|
self._interpreter_builder = builder
|
86
89
|
|
@@ -166,7 +169,7 @@ class TfLiteModel(Model):
|
|
166
169
|
|
167
170
|
# Check if this is indeed a tflite model:
|
168
171
|
try:
|
169
|
-
interpreter =
|
172
|
+
interpreter = tfl_interpreter.Interpreter(model_content=model_content)
|
170
173
|
interpreter.get_signature_list()
|
171
174
|
except:
|
172
175
|
return None
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20240920
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -2,8 +2,8 @@ ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,116
|
|
2
2
|
ai_edge_torch/config.py,sha256=FMWeCH2b7HYILBvaI1iZNnYCO4WAhDOwBZBmIE-xrF0,909
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/fx_pass_base.py,sha256=D86Gw3pIRcpnTebUPKlnPbPGJae1S6Fw4DZZ3ZkD0zw,3730
|
5
|
-
ai_edge_torch/model.py,sha256=
|
6
|
-
ai_edge_torch/version.py,sha256
|
5
|
+
ai_edge_torch/model.py,sha256=N-pNpTxzhaFGhWhnSGd70lBzb9VlEhTOq5mddU7bvvI,5542
|
6
|
+
ai_edge_torch/version.py,sha256=-oH0R07HZpydzqltOWclHB1dbcc4VycTlZcnDYtS89g,706
|
7
7
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
8
8
|
ai_edge_torch/_convert/conversion.py,sha256=5uPwHhmc6kwiIz-CqaiHDejf2SOWMHrb-rYEHm69wKc,3801
|
9
9
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -25,7 +25,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
|
|
25
25
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
|
26
26
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
|
27
27
|
ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
28
|
-
ai_edge_torch/_convert/test/test_convert.py,sha256=
|
28
|
+
ai_edge_torch/_convert/test/test_convert.py,sha256=40QRxQFNeSRr4dLXJkzG-wKUlvJtsfv62cdvRrmBv5w,15097
|
29
29
|
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
|
30
30
|
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
|
31
31
|
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
|
@@ -39,22 +39,22 @@ ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrK
|
|
39
39
|
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
40
40
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
41
41
|
ai_edge_torch/generative/examples/gemma/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
42
|
-
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=
|
43
|
-
ai_edge_torch/generative/examples/gemma/convert_to_tflite.py,sha256=
|
42
|
+
ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py,sha256=RZDs6oY-NLYrPNtfuJDweIHzGUL2kzpIc3AW_1p8gGg,2186
|
43
|
+
ai_edge_torch/generative/examples/gemma/convert_to_tflite.py,sha256=t8Qg10obnEzeoMeyHnZhyNBN7G85SGy-au8Y8nehq8E,2181
|
44
44
|
ai_edge_torch/generative/examples/gemma/gemma.py,sha256=hjpSPzEjPHuxwRJ-vHHtCCf2PSTnm30Mp0ajYYtDivo,7489
|
45
45
|
ai_edge_torch/generative/examples/gemma/gemma2.py,sha256=gCLOti-4xHunjphNBbx9St6faRteSakm8Oex6R1Xek0,10272
|
46
46
|
ai_edge_torch/generative/examples/openelm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
47
|
-
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=
|
47
|
+
ai_edge_torch/generative/examples/openelm/convert_to_tflite.py,sha256=85FVEt6cKFP2UzCLC78tAkbwGlGhAArtG7Wa75NxJik,2185
|
48
48
|
ai_edge_torch/generative/examples/openelm/openelm.py,sha256=gGkHELNrt4xqnu11fCh3sJbZ7OsPyvoiF1J1aKCs5r8,7532
|
49
|
-
ai_edge_torch/generative/examples/openelm/verify.py,sha256=
|
49
|
+
ai_edge_torch/generative/examples/openelm/verify.py,sha256=BvK4c8jodQBy2l3NnvCjlBB0qaA7EYwPNKklvFR4k_o,2103
|
50
50
|
ai_edge_torch/generative/examples/phi/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
51
|
-
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=
|
51
|
+
ai_edge_torch/generative/examples/phi/convert_to_tflite.py,sha256=3go690yX6PFeXMdpY7y4JZorAwxX0HT_b_pKZieauvk,2169
|
52
52
|
ai_edge_torch/generative/examples/phi/phi2.py,sha256=YwAszA53aOjvaMJ5wua2-5rP79N21Un_Y5yBCfFSYNU,6189
|
53
|
-
ai_edge_torch/generative/examples/phi/verify.py,sha256=
|
53
|
+
ai_edge_torch/generative/examples/phi/verify.py,sha256=5bKONolW8JIsQAzMHIvh_OSytoJVVJqDZEcxjhciFnI,2136
|
54
54
|
ai_edge_torch/generative/examples/smollm/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
55
|
-
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=
|
55
|
+
ai_edge_torch/generative/examples/smollm/convert_to_tflite.py,sha256=zPrDTDeRVWFi9DS32uNi-RLpzOStFOk5MhNla4ixeew,2179
|
56
56
|
ai_edge_torch/generative/examples/smollm/smollm.py,sha256=hyhMk-b5762Q2xmjdD47g85dcbBSNJXNPIsifm1DRto,3239
|
57
|
-
ai_edge_torch/generative/examples/smollm/verify.py,sha256=
|
57
|
+
ai_edge_torch/generative/examples/smollm/verify.py,sha256=wsoy3CaHZhrdJjkJJYir7xxxwgCvLprMnh8QxT0hEkc,2013
|
58
58
|
ai_edge_torch/generative/examples/stable_diffusion/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
59
59
|
ai_edge_torch/generative/examples/stable_diffusion/attention.py,sha256=kDWG6MlIGa89zC5KSRcJlw2c4ITuw8KcchtfmF55f4g,3545
|
60
60
|
ai_edge_torch/generative/examples/stable_diffusion/clip.py,sha256=tL6w2dr6VP66IXjSKo9StDNP-wl0RO3fh6dIliiYlFA,4656
|
@@ -78,9 +78,9 @@ ai_edge_torch/generative/examples/test_models/__init__.py,sha256=hHLluseD2R0Hh4W
|
|
78
78
|
ai_edge_torch/generative/examples/test_models/toy_model.py,sha256=QyLeCqDnk71WvvFH68g9UeF-HytonSk1ItGF9dc7Zj8,5854
|
79
79
|
ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=e_Kqm5dStSrNE9_aIYC-vYJRsqLn-hJVkmR4QjYqZI0,5913
|
80
80
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
81
|
-
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=
|
81
|
+
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=ekxd8efjMgEvauUu3PidWOC-DszPHn5sqU753F7sJIM,2201
|
82
82
|
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=tlWpa7Aun3u3w5b-9EBtW7olhmSf8W-tn5bKUIwC-ys,6044
|
83
|
-
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=
|
83
|
+
ai_edge_torch/generative/examples/tiny_llama/verify.py,sha256=27oBf706_AKX7amfp2THF9J0G3AUEEecGaXv025idKA,2086
|
84
84
|
ai_edge_torch/generative/fx_passes/__init__.py,sha256=jrzCB3ZyY_t5jJM1e2Czdt3DjAIL43R0_a-T-I7wOzw,1155
|
85
85
|
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=hhxSQvkDMv0isZJhmuLiod66ZODaJ8uSPSVTJVHBabQ,1931
|
86
86
|
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
@@ -107,8 +107,8 @@ ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVu
|
|
107
107
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
108
108
|
ai_edge_torch/generative/test/test_kv_cache.py,sha256=W6Bh0gYDzmwb0j9HdD5_D7Z7FPToP2HSyFrmwIXuFqo,3793
|
109
109
|
ai_edge_torch/generative/test/test_loader.py,sha256=8y74ChO3CZCfEi1eCf3-w47kRgAI4qPYCXpi8rTQXMA,3378
|
110
|
-
ai_edge_torch/generative/test/test_model_conversion.py,sha256=
|
111
|
-
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=
|
110
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=s-EVLOQGjIeVtgNI8Ggs37pkRdErAliT6NhrrFigPOE,5459
|
111
|
+
ai_edge_torch/generative/test/test_model_conversion_large.py,sha256=PtePuBqVMLjxq2cDIIXXqaz7zsn3R19oilFyIVJRFi8,4490
|
112
112
|
ai_edge_torch/generative/test/test_quantize.py,sha256=8geJhKwYBU20m0mdGPD1BUFwQ0lZKNtCB04SOLO18y4,5980
|
113
113
|
ai_edge_torch/generative/test/utils.py,sha256=YvEhO2HIj1LkBs5du1UxY-cGRW9HMyAYsOUhgsTrTpA,1796
|
114
114
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
@@ -116,7 +116,7 @@ ai_edge_torch/generative/utilities/converter.py,sha256=MQUg2ZLmfk_2csWmQWKD_II0b
|
|
116
116
|
ai_edge_torch/generative/utilities/loader.py,sha256=b9iotIhVDX-Zc9XjIDUaLxnV395AyBnkQe3dV5YA7Co,13297
|
117
117
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=dqPD9qRXEWtU3ombslOC-BE2l_dMwHoCNu7NsIJhsso,36158
|
118
118
|
ai_edge_torch/generative/utilities/t5_loader.py,sha256=tEsfy8-ymzbbjOIc-oesXF3yGyyWtJgFXn2s7VOavt8,16961
|
119
|
-
ai_edge_torch/generative/utilities/verifier.py,sha256=
|
119
|
+
ai_edge_torch/generative/utilities/verifier.py,sha256=7DoYtkilz4wjWnXfdydIGNgTG1udZIydFxdbpIcKbMQ,8625
|
120
120
|
ai_edge_torch/hlfb/__init__.py,sha256=sH4um75na-O8tzxN6chFyp6Y4xnexsE7kUQpZySv6dE,735
|
121
121
|
ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k63ylp7sdZmtZ8o,4790
|
122
122
|
ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
|
@@ -163,8 +163,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
163
163
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
164
164
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
165
165
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
166
|
-
ai_edge_torch_nightly-0.3.0.
|
167
|
-
ai_edge_torch_nightly-0.3.0.
|
168
|
-
ai_edge_torch_nightly-0.3.0.
|
169
|
-
ai_edge_torch_nightly-0.3.0.
|
170
|
-
ai_edge_torch_nightly-0.3.0.
|
166
|
+
ai_edge_torch_nightly-0.3.0.dev20240920.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
167
|
+
ai_edge_torch_nightly-0.3.0.dev20240920.dist-info/METADATA,sha256=m60oD-H8W2EMVolDGw02tMYcKDrotaTaLtsZwzr_Kyk,1859
|
168
|
+
ai_edge_torch_nightly-0.3.0.dev20240920.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
169
|
+
ai_edge_torch_nightly-0.3.0.dev20240920.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
170
|
+
ai_edge_torch_nightly-0.3.0.dev20240920.dist-info/RECORD,,
|
File without changes
|
File without changes
|