ai-edge-torch-nightly 0.3.0.dev20240918__py3-none-any.whl → 0.3.0.dev20240920__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/_convert/test/test_convert.py +7 -3
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/openelm/openelm.py +0 -29
- ai_edge_torch/generative/examples/openelm/verify.py +63 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/phi/phi2.py +4 -31
- ai_edge_torch/generative/examples/phi/verify.py +63 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/smollm/smollm.py +0 -30
- ai_edge_torch/generative/examples/smollm/verify.py +60 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +6 -4
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +0 -29
- ai_edge_torch/generative/examples/tiny_llama/verify.py +62 -0
- ai_edge_torch/generative/layers/builder.py +3 -1
- ai_edge_torch/generative/layers/model_config.py +3 -0
- ai_edge_torch/generative/layers/normalization.py +31 -20
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +19 -9
- ai_edge_torch/generative/layers/unet/blocks_2d.py +9 -4
- ai_edge_torch/generative/layers/unet/model_config.py +1 -0
- ai_edge_torch/generative/test/test_model_conversion.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion_large.py +2 -2
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +4 -0
- ai_edge_torch/generative/utilities/verifier.py +249 -0
- ai_edge_torch/model.py +7 -4
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240918.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240918.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/RECORD +32 -27
- {ai_edge_torch_nightly-0.3.0.dev20240918.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240918.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240918.dist-info → ai_edge_torch_nightly-0.3.0.dev20240920.dist-info}/top_level.txt +0 -0
@@ -23,12 +23,12 @@ from ai_edge_torch import config
|
|
23
23
|
from ai_edge_torch._convert import conversion_utils
|
24
24
|
from ai_edge_torch.testing import model_coverage
|
25
25
|
import numpy as np
|
26
|
-
import tensorflow as tf
|
27
26
|
import torch
|
28
27
|
from torch import nn
|
29
28
|
import torchvision
|
30
29
|
|
31
30
|
from absl.testing import absltest as googletest
|
31
|
+
from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
|
32
32
|
|
33
33
|
|
34
34
|
@dataclasses.dataclass
|
@@ -466,7 +466,9 @@ class TestConvert(googletest.TestCase):
|
|
466
466
|
np.testing.assert_almost_equal(edge_output["y_data_2_0"], args[1])
|
467
467
|
np.testing.assert_almost_equal(edge_output["y_data_2_1"], args[2])
|
468
468
|
|
469
|
-
interpreter =
|
469
|
+
interpreter = tfl_interpreter.Interpreter(
|
470
|
+
model_content=edge_model._tflite_model
|
471
|
+
)
|
470
472
|
runner = interpreter.get_signature_runner("serving_default")
|
471
473
|
output_details = runner.get_output_details()
|
472
474
|
self.assertIn("x", output_details.keys())
|
@@ -477,7 +479,9 @@ class TestConvert(googletest.TestCase):
|
|
477
479
|
def _compare_tflite_torch_args_kwargs(self, model, args, kwargs, flat_inputs):
|
478
480
|
model.eval()
|
479
481
|
edge_model = ai_edge_torch.convert(model, args, kwargs)
|
480
|
-
interpreter =
|
482
|
+
interpreter = tfl_interpreter.Interpreter(
|
483
|
+
model_content=edge_model._tflite_model
|
484
|
+
)
|
481
485
|
runner = interpreter.get_signature_runner("serving_default")
|
482
486
|
input_details = runner.get_input_details()
|
483
487
|
self.assertEqual(input_details.keys(), flat_inputs.keys())
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = gemma2.build_2b_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma2_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = gemma.build_2b_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = openelm.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'openelm_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -15,16 +15,12 @@
|
|
15
15
|
|
16
16
|
"""Example of building an OpenELM model."""
|
17
17
|
|
18
|
-
import os
|
19
|
-
import pathlib
|
20
|
-
|
21
18
|
from ai_edge_torch.generative.layers import attention
|
22
19
|
from ai_edge_torch.generative.layers import builder
|
23
20
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
21
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
26
23
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
-
import numpy as np
|
28
24
|
import torch
|
29
25
|
from torch import nn
|
30
26
|
|
@@ -210,28 +206,3 @@ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
210
206
|
loader.load(model, strict=False)
|
211
207
|
model.eval()
|
212
208
|
return model
|
213
|
-
|
214
|
-
|
215
|
-
def define_and_run(checkpoint_path: str) -> None:
|
216
|
-
"""Instantiates and runs an OpenELM model."""
|
217
|
-
|
218
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
219
|
-
openelm_goldens = torch.load(current_dir / "openelm_lm_logits.pt")
|
220
|
-
kv_cache_max_len = 1024
|
221
|
-
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
222
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
223
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
224
|
-
tokens[0, :4] = idx
|
225
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
226
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
227
|
-
output = model.forward(tokens, input_pos, kv)
|
228
|
-
assert torch.allclose(
|
229
|
-
openelm_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-05
|
230
|
-
)
|
231
|
-
|
232
|
-
|
233
|
-
if __name__ == "__main__":
|
234
|
-
input_checkpoint_path = os.path.join(
|
235
|
-
pathlib.Path.home(), "Downloads/llm_data/openelm"
|
236
|
-
)
|
237
|
-
define_and_run(input_checkpoint_path)
|
@@ -0,0 +1,63 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored OpenELM-3B model."""
|
17
|
+
|
18
|
+
import pathlib
|
19
|
+
|
20
|
+
from absl import app
|
21
|
+
from absl import flags
|
22
|
+
from ai_edge_torch.generative.examples.openelm import openelm
|
23
|
+
from ai_edge_torch.generative.utilities import verifier
|
24
|
+
import transformers
|
25
|
+
|
26
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
27
|
+
"prompts",
|
28
|
+
"What is the meaning of life?",
|
29
|
+
"The input prompts to generate answers.",
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
def main(_):
|
34
|
+
checkpoint = "apple/OpenELM-3B"
|
35
|
+
verifier.log_msg("Loading the original model from", checkpoint)
|
36
|
+
wrapper_model = verifier.ModelWrapper(
|
37
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(
|
38
|
+
checkpoint, trust_remote_code=True
|
39
|
+
),
|
40
|
+
)
|
41
|
+
|
42
|
+
# Locate the cached dir.
|
43
|
+
cached_config_file = transformers.utils.cached_file(
|
44
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
45
|
+
)
|
46
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
47
|
+
verifier.log_msg("Building the reauthored model from", reauthored_checkpoint)
|
48
|
+
reauthored_model = openelm.build_model(reauthored_checkpoint)
|
49
|
+
|
50
|
+
tokenizer_checkpoint = "meta-llama/Llama-2-7b-hf"
|
51
|
+
verifier.log_msg("Loading the tokenizer from", tokenizer_checkpoint)
|
52
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
53
|
+
|
54
|
+
verifier.verify_reauthored_model(
|
55
|
+
original_model=wrapper_model,
|
56
|
+
reauthored_model=reauthored_model,
|
57
|
+
tokenizer=tokenizer,
|
58
|
+
prompts=_PROMPTS.value,
|
59
|
+
)
|
60
|
+
|
61
|
+
|
62
|
+
if __name__ == "__main__":
|
63
|
+
app.run(main)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = phi2.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'phi2_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -15,16 +15,12 @@
|
|
15
15
|
|
16
16
|
"""Example of building a Phi-2 model."""
|
17
17
|
|
18
|
-
import os
|
19
|
-
import pathlib
|
20
|
-
|
21
18
|
from ai_edge_torch.generative.layers import attention
|
22
19
|
from ai_edge_torch.generative.layers import builder
|
23
20
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
21
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
26
23
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
-
import numpy as np
|
28
24
|
import torch
|
29
25
|
from torch import nn
|
30
26
|
|
@@ -143,7 +139,10 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
143
139
|
intermediate_size=10240,
|
144
140
|
use_bias=True,
|
145
141
|
)
|
146
|
-
norm_config = cfg.NormalizationConfig(
|
142
|
+
norm_config = cfg.NormalizationConfig(
|
143
|
+
type=cfg.NormalizationType.LAYER_NORM,
|
144
|
+
use_input_shape=False, # Phi-2 does layer-norm with the weight shape.
|
145
|
+
)
|
147
146
|
block_config = cfg.TransformerBlockConfig(
|
148
147
|
attn_config=attn_config,
|
149
148
|
ff_config=ff_config,
|
@@ -182,29 +181,3 @@ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
182
181
|
loader.load(model)
|
183
182
|
model.eval()
|
184
183
|
return model
|
185
|
-
|
186
|
-
|
187
|
-
def define_and_run(checkpoint_path: str) -> None:
|
188
|
-
"""Instantiates and runs a Phi-2 model."""
|
189
|
-
|
190
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
191
|
-
phi2_goldens = torch.load(current_dir / "phi2_lm_logits.pt")
|
192
|
-
kv_cache_max_len = 1024
|
193
|
-
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
194
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
195
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
196
|
-
tokens[0, :4] = idx
|
197
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
198
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
199
|
-
output = model.forward(tokens, input_pos, kv)
|
200
|
-
print("comparing with goldens..")
|
201
|
-
assert torch.allclose(
|
202
|
-
phi2_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
203
|
-
)
|
204
|
-
|
205
|
-
|
206
|
-
if __name__ == "__main__":
|
207
|
-
input_checkpoint_path = os.path.join(
|
208
|
-
pathlib.Path.home(), "Downloads/llm_data/phi2"
|
209
|
-
)
|
210
|
-
define_and_run(input_checkpoint_path)
|
@@ -0,0 +1,63 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Phi-2 model."""
|
17
|
+
|
18
|
+
from absl import app
|
19
|
+
from absl import flags
|
20
|
+
from ai_edge_torch.generative.examples.phi import phi2
|
21
|
+
from ai_edge_torch.generative.utilities import verifier
|
22
|
+
import kagglehub
|
23
|
+
import transformers
|
24
|
+
|
25
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
26
|
+
"prompts",
|
27
|
+
"Instruct: Write an email about the weather Output:",
|
28
|
+
"The input prompts to generate answers.",
|
29
|
+
)
|
30
|
+
|
31
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
32
|
+
"max_new_tokens",
|
33
|
+
30,
|
34
|
+
"The maximum size of the generated tokens.",
|
35
|
+
)
|
36
|
+
|
37
|
+
def main(_):
|
38
|
+
checkpoint = kagglehub.model_download("Microsoft/phi/transformers/2")
|
39
|
+
verifier.log_msg("Loading the original model from", checkpoint)
|
40
|
+
generation_config = transformers.GenerationConfig.from_pretrained(checkpoint)
|
41
|
+
generation_config.max_new_tokens = _MAX_NEW_TOKENS.value
|
42
|
+
wrapper_model = verifier.ModelWrapper(
|
43
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
44
|
+
hf_generation_config=generation_config,
|
45
|
+
)
|
46
|
+
|
47
|
+
verifier.log_msg("Building the reauthored model from", checkpoint)
|
48
|
+
reauthored_model = phi2.build_model(checkpoint)
|
49
|
+
|
50
|
+
verifier.log_msg("Loading the tokenizer from", checkpoint)
|
51
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
52
|
+
|
53
|
+
verifier.verify_reauthored_model(
|
54
|
+
original_model=wrapper_model,
|
55
|
+
reauthored_model=reauthored_model,
|
56
|
+
tokenizer=tokenizer,
|
57
|
+
prompts=_PROMPTS.value,
|
58
|
+
atol=1e-03,
|
59
|
+
)
|
60
|
+
|
61
|
+
|
62
|
+
if __name__ == "__main__":
|
63
|
+
app.run(main)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = smollm.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'smollm_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -16,15 +16,10 @@
|
|
16
16
|
"""Example of building a SmolLM model."""
|
17
17
|
|
18
18
|
import copy
|
19
|
-
import os
|
20
|
-
import pathlib
|
21
19
|
|
22
20
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
23
|
-
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
21
|
import ai_edge_torch.generative.layers.model_config as cfg
|
25
22
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
26
|
-
import numpy as np
|
27
|
-
import torch
|
28
23
|
from torch import nn
|
29
24
|
|
30
25
|
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
@@ -104,28 +99,3 @@ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
104
99
|
loader.load(model, strict=False)
|
105
100
|
model.eval()
|
106
101
|
return model
|
107
|
-
|
108
|
-
|
109
|
-
def define_and_run(checkpoint_path: str) -> None:
|
110
|
-
"""Instantiates and runs a SmolLM model."""
|
111
|
-
|
112
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
113
|
-
smollm_goldens = torch.load(current_dir / "smollm_lm_logits.pt")
|
114
|
-
kv_cache_max_len = 1024
|
115
|
-
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
116
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
117
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
118
|
-
tokens[0, :4] = idx
|
119
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
120
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
121
|
-
output = model.forward(tokens, input_pos, kv)
|
122
|
-
assert torch.allclose(
|
123
|
-
smollm_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-05
|
124
|
-
)
|
125
|
-
|
126
|
-
|
127
|
-
if __name__ == "__main__":
|
128
|
-
input_checkpoint_path = os.path.join(
|
129
|
-
pathlib.Path.home(), "Downloads/llm_data/smollm"
|
130
|
-
)
|
131
|
-
define_and_run(input_checkpoint_path)
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored SmolLM-135M model."""
|
17
|
+
|
18
|
+
import pathlib
|
19
|
+
|
20
|
+
from absl import app
|
21
|
+
from absl import flags
|
22
|
+
from ai_edge_torch.generative.examples.smollm import smollm
|
23
|
+
from ai_edge_torch.generative.utilities import verifier
|
24
|
+
import transformers
|
25
|
+
|
26
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
27
|
+
"prompts",
|
28
|
+
"What is the meaning of life?",
|
29
|
+
"The input prompts to generate answers.",
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
def main(_):
|
34
|
+
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
35
|
+
verifier.log_msg("Loading the original model from", checkpoint)
|
36
|
+
wrapper_model = verifier.ModelWrapper(
|
37
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
38
|
+
)
|
39
|
+
# Locate the cached dir.
|
40
|
+
cached_config_file = transformers.utils.cached_file(
|
41
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
42
|
+
)
|
43
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
44
|
+
verifier.log_msg("Building the reauthored model from", reauthored_checkpoint)
|
45
|
+
reauthored_model = smollm.build_model(reauthored_checkpoint)
|
46
|
+
|
47
|
+
verifier.log_msg("Loading the tokenizer from", checkpoint)
|
48
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
49
|
+
|
50
|
+
verifier.verify_reauthored_model(
|
51
|
+
original_model=wrapper_model,
|
52
|
+
reauthored_model=reauthored_model,
|
53
|
+
tokenizer=tokenizer,
|
54
|
+
prompts=_PROMPTS.value,
|
55
|
+
atol=1e-04,
|
56
|
+
)
|
57
|
+
|
58
|
+
|
59
|
+
if __name__ == "__main__":
|
60
|
+
app.run(main)
|
@@ -30,17 +30,17 @@ _CHECKPOINT_PATH = flags.DEFINE_string(
|
|
30
30
|
)
|
31
31
|
_TFLITE_PATH = flags.DEFINE_string(
|
32
32
|
'tflite_path',
|
33
|
-
'/tmp/
|
33
|
+
'/tmp/',
|
34
34
|
'The tflite file path to export.',
|
35
35
|
)
|
36
36
|
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
37
|
'prefill_seq_len',
|
38
|
-
|
38
|
+
1024,
|
39
39
|
'The maximum size of prefill input tensor.',
|
40
40
|
)
|
41
41
|
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
42
|
'kv_cache_max_len',
|
43
|
-
|
43
|
+
1280,
|
44
44
|
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
45
|
)
|
46
46
|
_QUANTIZE = flags.DEFINE_bool(
|
@@ -54,9 +54,11 @@ def main(_):
|
|
54
54
|
pytorch_model = tiny_llama.build_model(
|
55
55
|
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
56
|
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'tinyllama_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
57
59
|
converter.convert_to_tflite(
|
58
60
|
pytorch_model,
|
59
|
-
tflite_path=_TFLITE_PATH.value,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
60
62
|
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
61
63
|
quantize=_QUANTIZE.value,
|
62
64
|
)
|
@@ -15,16 +15,12 @@
|
|
15
15
|
|
16
16
|
"""Example of building a TinyLlama model."""
|
17
17
|
|
18
|
-
import os
|
19
|
-
import pathlib
|
20
|
-
|
21
18
|
from ai_edge_torch.generative.layers import attention
|
22
19
|
from ai_edge_torch.generative.layers import builder
|
23
20
|
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
21
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
22
|
import ai_edge_torch.generative.layers.model_config as cfg
|
26
23
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
-
import numpy as np
|
28
24
|
import torch
|
29
25
|
from torch import nn
|
30
26
|
|
@@ -179,28 +175,3 @@ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
|
179
175
|
loader.load(model)
|
180
176
|
model.eval()
|
181
177
|
return model
|
182
|
-
|
183
|
-
|
184
|
-
def define_and_run(checkpoint_path: str) -> None:
|
185
|
-
"""Instantiates and runs a TinyLlama model."""
|
186
|
-
|
187
|
-
current_dir = pathlib.Path(__file__).parent.resolve()
|
188
|
-
tiny_llama_goldens = torch.load(current_dir / "tiny_llama_lm_logits.pt")
|
189
|
-
kv_cache_max_len = 1024
|
190
|
-
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
191
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
192
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
193
|
-
tokens[0, :4] = idx
|
194
|
-
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
195
|
-
kv = kv_utils.KVCache.from_model_config(model.config)
|
196
|
-
output = model.forward(tokens, input_pos, kv)
|
197
|
-
assert torch.allclose(
|
198
|
-
tiny_llama_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
199
|
-
)
|
200
|
-
|
201
|
-
|
202
|
-
if __name__ == "__main__":
|
203
|
-
input_checkpoint_path = os.path.join(
|
204
|
-
pathlib.Path.home(), "Downloads/llm_data/tiny_llama"
|
205
|
-
)
|
206
|
-
define_and_run(input_checkpoint_path)
|