ai-edge-torch-nightly 0.3.0.dev20240913__py3-none-any.whl → 0.3.0.dev20240914__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/_convert/conversion.py +2 -1
- ai_edge_torch/_convert/fx_passes/__init__.py +5 -41
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +4 -5
- ai_edge_torch/config.py +4 -1
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +4 -4
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +4 -4
- ai_edge_torch/generative/examples/gemma/gemma.py +2 -2
- ai_edge_torch/generative/examples/gemma/gemma2.py +2 -2
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +86 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +237 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +4 -4
- ai_edge_torch/generative/examples/phi/phi2.py +2 -2
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/{smallm → smollm}/convert_to_tflite.py +12 -12
- ai_edge_torch/generative/examples/{smallm/smallm.py → smollm/smollm.py} +24 -15
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +1 -1
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +1 -1
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +20 -20
- ai_edge_torch/generative/examples/t5/t5.py +8 -8
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +3 -3
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +4 -4
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +2 -2
- ai_edge_torch/generative/fx_passes/__init__.py +4 -4
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +3 -4
- ai_edge_torch/generative/layers/attention.py +7 -0
- ai_edge_torch/generative/layers/builder.py +33 -11
- ai_edge_torch/generative/layers/feed_forward.py +26 -8
- ai_edge_torch/generative/layers/kv_cache.py +4 -4
- ai_edge_torch/generative/layers/model_config.py +24 -15
- ai_edge_torch/generative/quantize/example.py +2 -2
- ai_edge_torch/generative/test/test_model_conversion.py +28 -51
- ai_edge_torch/generative/test/test_model_conversion_large.py +43 -78
- ai_edge_torch/generative/test/test_quantize.py +5 -5
- ai_edge_torch/generative/utilities/loader.py +13 -0
- ai_edge_torch/odml_torch/export.py +40 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +44 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -1
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240913.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240913.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/RECORD +48 -46
- ai_edge_torch/_convert/fx_passes/_pass_base.py +0 -53
- ai_edge_torch/_convert/fx_passes/canonicalize_pass.py +0 -35
- /ai_edge_torch/generative/examples/{smallm → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240913.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240913.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240913.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/top_level.txt +0 -0
@@ -17,6 +17,7 @@ import logging
|
|
17
17
|
import os
|
18
18
|
from typing import Any, Optional
|
19
19
|
|
20
|
+
from ai_edge_torch import fx_pass_base
|
20
21
|
from ai_edge_torch import lowertools
|
21
22
|
from ai_edge_torch import model
|
22
23
|
from ai_edge_torch._convert import fx_passes
|
@@ -34,7 +35,7 @@ def _run_convert_passes(
|
|
34
35
|
exported_program = generative_fx_passes.run_generative_passes(
|
35
36
|
exported_program
|
36
37
|
)
|
37
|
-
return
|
38
|
+
return fx_pass_base.run_passes(
|
38
39
|
exported_program,
|
39
40
|
[
|
40
41
|
fx_passes.BuildInterpolateCompositePass(),
|
@@ -15,44 +15,8 @@
|
|
15
15
|
|
16
16
|
from typing import Sequence, Union
|
17
17
|
|
18
|
-
from ai_edge_torch._convert.fx_passes.
|
19
|
-
from ai_edge_torch._convert.fx_passes.
|
20
|
-
from ai_edge_torch._convert.fx_passes.
|
21
|
-
from ai_edge_torch._convert.fx_passes.
|
22
|
-
from ai_edge_torch.
|
23
|
-
from ai_edge_torch._convert.fx_passes.build_interpolate_composite_pass import BuildInterpolateCompositePass # NOQA
|
24
|
-
from ai_edge_torch._convert.fx_passes.canonicalize_pass import CanonicalizePass
|
25
|
-
from ai_edge_torch._convert.fx_passes.inject_mlir_debuginfo_pass import InjectMlirDebuginfoPass # NOQA
|
26
|
-
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import OptimizeLayoutTransposesPass # NOQA
|
27
|
-
from torch.export import ExportedProgram
|
28
|
-
from torch.fx.passes.infra.pass_manager import pass_result_wrapper
|
29
|
-
import torch.utils._pytree as pytree
|
30
|
-
|
31
|
-
|
32
|
-
# TODO(cnchan): make a PassManager class.
|
33
|
-
def run_passes(
|
34
|
-
exported_program: ExportedProgram,
|
35
|
-
passes: Sequence[Union[ExportedProgramPassBase, FxPassBase]],
|
36
|
-
) -> ExportedProgram:
|
37
|
-
passes, _ = pytree.tree_flatten(passes)
|
38
|
-
for pass_ in passes:
|
39
|
-
if not isinstance(pass_, ExportedProgramPassBase):
|
40
|
-
pass_ = pass_result_wrapper(pass_)
|
41
|
-
if isinstance(pass_, ExportedProgramPassBase):
|
42
|
-
exported_program = pass_(exported_program).exported_program
|
43
|
-
else:
|
44
|
-
gm = exported_program.graph_module
|
45
|
-
gm, modified = pass_(gm)
|
46
|
-
if modified and gm is not exported_program.graph_module:
|
47
|
-
exported_program = ExportedProgram(
|
48
|
-
root=gm,
|
49
|
-
graph=gm.graph,
|
50
|
-
graph_signature=exported_program.graph_signature,
|
51
|
-
state_dict=exported_program.state_dict,
|
52
|
-
range_constraints=exported_program.range_constraints,
|
53
|
-
module_call_graph=exported_program.module_call_graph,
|
54
|
-
example_inputs=exported_program.example_inputs,
|
55
|
-
verifier=exported_program.verifier,
|
56
|
-
constants=exported_program.constants,
|
57
|
-
)
|
58
|
-
return exported_program
|
18
|
+
from ai_edge_torch._convert.fx_passes.build_aten_composite_pass import BuildAtenCompositePass
|
19
|
+
from ai_edge_torch._convert.fx_passes.build_interpolate_composite_pass import BuildInterpolateCompositePass
|
20
|
+
from ai_edge_torch._convert.fx_passes.inject_mlir_debuginfo_pass import InjectMlirDebuginfoPass
|
21
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import OptimizeLayoutTransposesPass
|
22
|
+
from ai_edge_torch.fx_pass_base import CanonicalizePass
|
@@ -13,11 +13,10 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from functools import reduce
|
17
16
|
from typing import Any, Callable
|
17
|
+
from ai_edge_torch import fx_pass_base
|
18
18
|
from ai_edge_torch import lowertools
|
19
19
|
import torch
|
20
|
-
from torch.fx.passes.infra import pass_base
|
21
20
|
import torch.utils._pytree as pytree
|
22
21
|
|
23
22
|
_composite_builders: dict[
|
@@ -277,7 +276,7 @@ def _aten_embedding(gm: torch.fx.GraphModule, node: torch.fx.Node):
|
|
277
276
|
node.target = embedding
|
278
277
|
|
279
278
|
|
280
|
-
class BuildAtenCompositePass(
|
279
|
+
class BuildAtenCompositePass(fx_pass_base.PassBase):
|
281
280
|
|
282
281
|
def call(self, graph_module: torch.fx.GraphModule):
|
283
282
|
for node in graph_module.graph.nodes:
|
@@ -286,4 +285,4 @@ class BuildAtenCompositePass(pass_base.PassBase):
|
|
286
285
|
|
287
286
|
graph_module.graph.lint()
|
288
287
|
graph_module.recompile()
|
289
|
-
return
|
288
|
+
return fx_pass_base.PassResult(graph_module, True)
|
@@ -16,8 +16,7 @@
|
|
16
16
|
|
17
17
|
import functools
|
18
18
|
|
19
|
-
from ai_edge_torch
|
20
|
-
from ai_edge_torch._convert.fx_passes._pass_base import ExportedProgramPassResult # NOQA
|
19
|
+
from ai_edge_torch import fx_pass_base
|
21
20
|
from ai_edge_torch.hlfb import mark_pattern
|
22
21
|
from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
|
23
22
|
import torch
|
@@ -103,7 +102,7 @@ def _get_interpolate_nearest2d_pattern():
|
|
103
102
|
return pattern
|
104
103
|
|
105
104
|
|
106
|
-
class BuildInterpolateCompositePass(ExportedProgramPassBase):
|
105
|
+
class BuildInterpolateCompositePass(fx_pass_base.ExportedProgramPassBase):
|
107
106
|
|
108
107
|
def __init__(self):
|
109
108
|
super().__init__()
|
@@ -124,4 +123,4 @@ class BuildInterpolateCompositePass(ExportedProgramPassBase):
|
|
124
123
|
|
125
124
|
graph_module.graph.lint()
|
126
125
|
graph_module.recompile()
|
127
|
-
return ExportedProgramPassResult(exported_program, True)
|
126
|
+
return fx_pass_base.ExportedProgramPassResult(exported_program, True)
|
@@ -13,10 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
+
from ai_edge_torch import fx_pass_base
|
16
17
|
from ai_edge_torch import lowertools
|
17
18
|
import torch
|
18
|
-
from torch.fx.passes.infra.pass_base import PassBase
|
19
|
-
from torch.fx.passes.infra.pass_base import PassResult
|
20
19
|
import torch.utils._pytree as pytree
|
21
20
|
|
22
21
|
|
@@ -62,7 +61,7 @@ def _wrap_call_function_node_with_debuginfo_writer(node: torch.fx.GraphModule):
|
|
62
61
|
node.target = debuginfo_writer
|
63
62
|
|
64
63
|
|
65
|
-
class InjectMlirDebuginfoPass(PassBase):
|
64
|
+
class InjectMlirDebuginfoPass(fx_pass_base.PassBase):
|
66
65
|
|
67
66
|
def call(self, graph_module: torch.fx.GraphModule):
|
68
67
|
for node in graph_module.graph.nodes:
|
@@ -70,4 +69,4 @@ class InjectMlirDebuginfoPass(PassBase):
|
|
70
69
|
|
71
70
|
graph_module.graph.lint()
|
72
71
|
graph_module.recompile()
|
73
|
-
return PassResult(graph_module, True)
|
72
|
+
return fx_pass_base.PassResult(graph_module, True)
|
@@ -18,8 +18,7 @@ import operator
|
|
18
18
|
import os
|
19
19
|
from typing import Union
|
20
20
|
|
21
|
-
from ai_edge_torch
|
22
|
-
from ai_edge_torch._convert.fx_passes import ExportedProgramPassResult
|
21
|
+
from ai_edge_torch import fx_pass_base
|
23
22
|
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
|
24
23
|
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
25
24
|
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
|
@@ -31,7 +30,7 @@ import torch.ao.quantization.quantize_pt2e
|
|
31
30
|
TransposeFunc = Union[utils.tensor_to_nchw, utils.tensor_to_nhwc]
|
32
31
|
|
33
32
|
|
34
|
-
class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
33
|
+
class OptimizeLayoutTransposesPass(fx_pass_base.ExportedProgramPassBase):
|
35
34
|
|
36
35
|
def get_source_meta(self, node: torch.fx.Node):
|
37
36
|
keys = ["stack_trace", "nn_module_stack", "source_fn_stack", "from_node"]
|
@@ -94,7 +93,7 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
94
93
|
|
95
94
|
q_args = input_q.args[1:]
|
96
95
|
q_kwargs = input_q.kwargs
|
97
|
-
q_op, dq_op =
|
96
|
+
q_op, dq_op = utils.get_paired_q_dq_ops(input_q.target)
|
98
97
|
with graph.inserting_before(target):
|
99
98
|
# Q and DQ inserted here may required updating the `axis` arg when they
|
100
99
|
# are per_channel ops. However, instead of updating here, the nodes would
|
@@ -301,4 +300,4 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
301
300
|
# Mark const node again for debugging
|
302
301
|
self.mark_const_nodes(exported_program)
|
303
302
|
|
304
|
-
return ExportedProgramPassResult(exported_program, True)
|
303
|
+
return fx_pass_base.ExportedProgramPassResult(exported_program, True)
|
ai_edge_torch/config.py
CHANGED
@@ -0,0 +1,101 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import abc
|
17
|
+
import collections
|
18
|
+
from typing import Sequence, Union
|
19
|
+
|
20
|
+
import torch
|
21
|
+
from torch.fx.passes.infra.pass_base import PassBase
|
22
|
+
from torch.fx.passes.infra.pass_base import PassResult
|
23
|
+
from torch.fx.passes.infra.pass_manager import pass_result_wrapper
|
24
|
+
import torch.utils._pytree as pytree
|
25
|
+
|
26
|
+
FxPassBase = PassBase
|
27
|
+
FxPassResult = PassResult
|
28
|
+
ExportedProgramPassResult = collections.namedtuple(
|
29
|
+
"ExportedProgramPassResult", ["exported_program", "modified"]
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
class ExportedProgramPassBase(abc.ABC):
|
34
|
+
|
35
|
+
def __call__(
|
36
|
+
self, exported_program: torch.export.ExportedProgram
|
37
|
+
) -> ExportedProgramPassResult:
|
38
|
+
self.requires(exported_program)
|
39
|
+
res = self.call(exported_program)
|
40
|
+
self.ensures(exported_program)
|
41
|
+
return res
|
42
|
+
|
43
|
+
@abc.abstractmethod
|
44
|
+
def call(
|
45
|
+
self, exported_program: torch.export.ExportedProgram
|
46
|
+
) -> ExportedProgramPassResult:
|
47
|
+
pass
|
48
|
+
|
49
|
+
def requires(self, exported_program: torch.export.ExportedProgram) -> None:
|
50
|
+
pass
|
51
|
+
|
52
|
+
def ensures(self, exported_program: torch.export.ExportedProgram) -> None:
|
53
|
+
pass
|
54
|
+
|
55
|
+
|
56
|
+
# TODO(cnchan): make a PassManager class.
|
57
|
+
def run_passes(
|
58
|
+
exported_program: torch.export.ExportedProgram,
|
59
|
+
passes: Sequence[Union[ExportedProgramPassBase, FxPassBase]],
|
60
|
+
) -> torch.export.ExportedProgram:
|
61
|
+
passes, _ = pytree.tree_flatten(passes)
|
62
|
+
for pass_ in passes:
|
63
|
+
if not isinstance(pass_, ExportedProgramPassBase):
|
64
|
+
pass_ = pass_result_wrapper(pass_)
|
65
|
+
if isinstance(pass_, ExportedProgramPassBase):
|
66
|
+
exported_program = pass_(exported_program).exported_program
|
67
|
+
else:
|
68
|
+
gm = exported_program.graph_module
|
69
|
+
gm, modified = pass_(gm)
|
70
|
+
if modified and gm is not exported_program.graph_module:
|
71
|
+
exported_program = torch.export.ExportedProgram(
|
72
|
+
root=gm,
|
73
|
+
graph=gm.graph,
|
74
|
+
graph_signature=exported_program.graph_signature,
|
75
|
+
state_dict=exported_program.state_dict,
|
76
|
+
range_constraints=exported_program.range_constraints,
|
77
|
+
module_call_graph=exported_program.module_call_graph,
|
78
|
+
example_inputs=exported_program.example_inputs,
|
79
|
+
verifier=exported_program.verifier,
|
80
|
+
constants=exported_program.constants,
|
81
|
+
)
|
82
|
+
return exported_program
|
83
|
+
|
84
|
+
|
85
|
+
class CanonicalizePass(ExportedProgramPassBase):
|
86
|
+
|
87
|
+
# A dummy decomp table for running ExportedProgram.run_decompositions without
|
88
|
+
# any op decompositions but just aot_export_module. Due to the check in
|
89
|
+
# run_decompositions, if None or an empty dict is passed as decomp_table,
|
90
|
+
# it will run the default aten-coreaten decompositions. Therefore a non-empty
|
91
|
+
# dummy decomp table is needed.
|
92
|
+
# Ref: https://github.com/pytorch/pytorch/blob/db895ace1d36726e64781774f53b3d3098206116/torch/export/exported_program.py#L543
|
93
|
+
_DUMMY_DECOMP_TABLE = {
|
94
|
+
torch._ops.OperatorBase(): lambda: None,
|
95
|
+
}
|
96
|
+
|
97
|
+
def call(self, exported_program: torch.export.ExportedProgram):
|
98
|
+
exported_program = exported_program.run_decompositions(
|
99
|
+
self._DUMMY_DECOMP_TABLE
|
100
|
+
)
|
101
|
+
return ExportedProgramPassResult(exported_program, True)
|
@@ -47,10 +47,10 @@ def convert_gemma2_to_tflite(
|
|
47
47
|
checkpoint_path, kv_cache_max_len=kv_cache_max_len
|
48
48
|
)
|
49
49
|
# Tensors used to trace the model graph during conversion.
|
50
|
-
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.
|
51
|
-
prefill_input_pos = torch.arange(0, prefill_seq_len)
|
52
|
-
decode_token = torch.tensor([[0]], dtype=torch.
|
53
|
-
decode_input_pos = torch.tensor([0], dtype=torch.
|
50
|
+
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.int)
|
51
|
+
prefill_input_pos = torch.arange(0, prefill_seq_len, dtype=torch.int)
|
52
|
+
decode_token = torch.tensor([[0]], dtype=torch.int)
|
53
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
54
54
|
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
55
55
|
|
56
56
|
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
@@ -47,10 +47,10 @@ def convert_gemma_to_tflite(
|
|
47
47
|
checkpoint_path, kv_cache_max_len=kv_cache_max_len
|
48
48
|
)
|
49
49
|
# Tensors used to trace the model graph during conversion.
|
50
|
-
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.
|
51
|
-
prefill_input_pos = torch.arange(0, prefill_seq_len)
|
52
|
-
decode_token = torch.tensor([[0]], dtype=torch.
|
53
|
-
decode_input_pos = torch.tensor([0], dtype=torch.
|
50
|
+
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.int)
|
51
|
+
prefill_input_pos = torch.arange(0, prefill_seq_len, dtype=torch.int)
|
52
|
+
decode_token = torch.tensor([[0]], dtype=torch.int)
|
53
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
54
54
|
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
55
55
|
|
56
56
|
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
@@ -203,9 +203,9 @@ def define_and_run_2b(checkpoint_path: str) -> None:
|
|
203
203
|
kv_cache_max_len = 1024
|
204
204
|
model = build_2b_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
205
205
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
206
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.
|
206
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
207
207
|
tokens[0, :4] = idx
|
208
|
-
input_pos = torch.arange(0, kv_cache_max_len)
|
208
|
+
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
209
209
|
kv = kv_utils.KVCache.from_model_config(model.config)
|
210
210
|
output = model.forward(tokens, input_pos, kv)
|
211
211
|
print("comparing with goldens..")
|
@@ -280,9 +280,9 @@ def define_and_run_2b(checkpoint_path: str) -> None:
|
|
280
280
|
toks = torch.from_numpy(
|
281
281
|
np.array([2, 651, 9456, 576, 573, 3520, 3858, 603, 235248])
|
282
282
|
)
|
283
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.
|
283
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
284
284
|
tokens[0, :9] = toks
|
285
|
-
input_pos = torch.arange(0, kv_cache_max_len)
|
285
|
+
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
286
286
|
kv = kv_utils.KVCache.from_model_config(model.config)
|
287
287
|
out = model.forward(tokens, input_pos, kv)
|
288
288
|
out_final = out["logits"][0, 8, :]
|
@@ -0,0 +1,86 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting OpenELM model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
import ai_edge_torch
|
22
|
+
from ai_edge_torch.generative.examples.openelm import openelm
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
25
|
+
import torch
|
26
|
+
|
27
|
+
|
28
|
+
def convert_openelm_to_tflite(
|
29
|
+
checkpoint_path: str,
|
30
|
+
prefill_seq_len: int = 512,
|
31
|
+
kv_cache_max_len: int = 1024,
|
32
|
+
quantize: bool = True,
|
33
|
+
):
|
34
|
+
"""Converts OpenELM model to multi-signature tflite model.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
checkpoint_path (str): The filepath to the model checkpoint, or directory
|
38
|
+
holding the checkpoint.
|
39
|
+
prefill_seq_len (int, optional): The maximum size of prefill input tensor.
|
40
|
+
Defaults to 512.
|
41
|
+
kv_cache_max_len (int, optional): The maximum size of KV cache buffer,
|
42
|
+
including both prefill and decode. Defaults to 1024.
|
43
|
+
quantize (bool, optional): Whether the model should be quanized. Defaults
|
44
|
+
to True.
|
45
|
+
"""
|
46
|
+
pytorch_model = openelm.build_model(
|
47
|
+
checkpoint_path, kv_cache_max_len=kv_cache_max_len
|
48
|
+
)
|
49
|
+
# Tensors used to trace the model graph during conversion.
|
50
|
+
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.int)
|
51
|
+
prefill_input_pos = torch.arange(0, prefill_seq_len, dtype=torch.int)
|
52
|
+
decode_token = torch.tensor([[0]], dtype=torch.int)
|
53
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
54
|
+
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
55
|
+
|
56
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
57
|
+
edge_model = (
|
58
|
+
ai_edge_torch.signature(
|
59
|
+
'prefill',
|
60
|
+
pytorch_model,
|
61
|
+
sample_kwargs={
|
62
|
+
'tokens': prefill_tokens,
|
63
|
+
'input_pos': prefill_input_pos,
|
64
|
+
'kv_cache': kv,
|
65
|
+
},
|
66
|
+
)
|
67
|
+
.signature(
|
68
|
+
'decode',
|
69
|
+
pytorch_model,
|
70
|
+
sample_kwargs={
|
71
|
+
'tokens': decode_token,
|
72
|
+
'input_pos': decode_input_pos,
|
73
|
+
'kv_cache': kv,
|
74
|
+
},
|
75
|
+
)
|
76
|
+
.convert(quant_config=quant_config)
|
77
|
+
)
|
78
|
+
quant_suffix = 'q8' if quantize else 'f32'
|
79
|
+
edge_model.export(
|
80
|
+
f'/tmp/openelm_{quant_suffix}_seq{prefill_seq_len}_ekv{kv_cache_max_len}.tflite'
|
81
|
+
)
|
82
|
+
|
83
|
+
|
84
|
+
if __name__ == '__main__':
|
85
|
+
path = os.path.join(pathlib.Path.home(), 'Downloads/llm_data/openelm')
|
86
|
+
convert_openelm_to_tflite(path)
|
@@ -0,0 +1,237 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building an OpenELM model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers import attention
|
22
|
+
from ai_edge_torch.generative.layers import builder
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
24
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
25
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
26
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
27
|
+
import numpy as np
|
28
|
+
import torch
|
29
|
+
from torch import nn
|
30
|
+
|
31
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
32
|
+
ff_up_proj="transformer.layers.{}.ffn.proj_1",
|
33
|
+
ff_down_proj="transformer.layers.{}.ffn.proj_2",
|
34
|
+
attn_fused_qkv_proj="transformer.layers.{}.attn.qkv_proj",
|
35
|
+
attn_query_norm="transformer.layers.{}.attn.q_norm",
|
36
|
+
attn_key_norm="transformer.layers.{}.attn.k_norm",
|
37
|
+
attn_output_proj="transformer.layers.{}.attn.out_proj",
|
38
|
+
pre_attn_norm="transformer.layers.{}.attn_norm",
|
39
|
+
pre_ff_norm="transformer.layers.{}.ffn_norm",
|
40
|
+
embedding="transformer.token_embeddings",
|
41
|
+
final_norm="transformer.norm",
|
42
|
+
lm_head=None,
|
43
|
+
)
|
44
|
+
|
45
|
+
|
46
|
+
class OpenELM(nn.Module):
|
47
|
+
"""An OpenELM model built from the Edge Generative API layers."""
|
48
|
+
|
49
|
+
def __init__(self, config: cfg.ModelConfig):
|
50
|
+
super().__init__()
|
51
|
+
|
52
|
+
# Construct model layers.
|
53
|
+
self.tok_embedding = nn.Embedding(
|
54
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
55
|
+
)
|
56
|
+
self.lm_head = nn.Linear(
|
57
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
58
|
+
)
|
59
|
+
# OpenELM re-uses the embedding as the head projection layer.
|
60
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
61
|
+
self.transformer_blocks = nn.ModuleList(
|
62
|
+
attention.TransformerBlock(config.block_config(idx), config)
|
63
|
+
for idx in range(config.num_layers)
|
64
|
+
)
|
65
|
+
self.final_norm = builder.build_norm(
|
66
|
+
config.embedding_dim,
|
67
|
+
config.final_norm_config,
|
68
|
+
)
|
69
|
+
# OpenELM has same hyper parameters for rotary_percentage and head_dim for
|
70
|
+
# each layer block. Use the first block.
|
71
|
+
attn_config = config.block_config(0).attn_config
|
72
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
73
|
+
size=config.kv_cache_max,
|
74
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
75
|
+
base=10_000,
|
76
|
+
condense_ratio=1,
|
77
|
+
dtype=torch.float32,
|
78
|
+
device=torch.device("cpu"),
|
79
|
+
)
|
80
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
81
|
+
size=config.kv_cache_max,
|
82
|
+
dtype=torch.float32,
|
83
|
+
device=torch.device("cpu"),
|
84
|
+
)
|
85
|
+
self.config = config
|
86
|
+
|
87
|
+
@torch.inference_mode
|
88
|
+
def forward(
|
89
|
+
self,
|
90
|
+
tokens: torch.Tensor,
|
91
|
+
input_pos: torch.Tensor,
|
92
|
+
kv_cache: kv_utils.KVCache,
|
93
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
94
|
+
_, seq_len = tokens.size()
|
95
|
+
assert self.config.max_seq_len >= seq_len, (
|
96
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
97
|
+
f" {self.config.max_seq_len}"
|
98
|
+
)
|
99
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
100
|
+
"The number of transformer blocks and the number of KV cache entries"
|
101
|
+
" must be the same."
|
102
|
+
)
|
103
|
+
|
104
|
+
cos, sin = self.rope_cache
|
105
|
+
cos = cos.index_select(0, input_pos)
|
106
|
+
sin = sin.index_select(0, input_pos)
|
107
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
108
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
109
|
+
|
110
|
+
# token embeddings of shape (b, t, n_embd)
|
111
|
+
x = self.tok_embedding(tokens)
|
112
|
+
|
113
|
+
updated_kv_entires = []
|
114
|
+
for i, block in enumerate(self.transformer_blocks):
|
115
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
116
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
117
|
+
if kv_entry:
|
118
|
+
updated_kv_entires.append(kv_entry)
|
119
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
120
|
+
|
121
|
+
x = self.final_norm(x)
|
122
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
123
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
124
|
+
|
125
|
+
|
126
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
127
|
+
"""Returns the model config for an OpenELM model.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
131
|
+
is 1024.
|
132
|
+
|
133
|
+
Returns:
|
134
|
+
The model config for an OpenELM model.
|
135
|
+
"""
|
136
|
+
norm_config = cfg.NormalizationConfig(
|
137
|
+
type=cfg.NormalizationType.RMS_NORM, epsilon=1e-6
|
138
|
+
)
|
139
|
+
num_heads = [12] * 4 + [16] * 14 + [20] * 12 + [24] * 6
|
140
|
+
num_query_groups = [3] * 4 + [4] * 14 + [5] * 12 + [6] * 6
|
141
|
+
|
142
|
+
def make_divisible(v, d):
|
143
|
+
"""Ensures that all layers have a channel number that is divisible by d."""
|
144
|
+
new_v = int(v + d / 2) // d * d
|
145
|
+
# Make sure that round down does not go down by more than 10%.
|
146
|
+
if new_v < 0.9 * v:
|
147
|
+
new_v += d
|
148
|
+
return new_v
|
149
|
+
|
150
|
+
# The way to get intermediate size is from
|
151
|
+
# https://huggingface.co/apple/OpenELM-3B/blob/main/modeling_openelm.py
|
152
|
+
def get_intermediate_size(idx: int) -> int:
|
153
|
+
return make_divisible((0.5 + 0.1 * idx) * 3072, 256)
|
154
|
+
|
155
|
+
def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
|
156
|
+
return cfg.TransformerBlockConfig(
|
157
|
+
attn_config=cfg.AttentionConfig(
|
158
|
+
num_heads=num_heads[idx],
|
159
|
+
head_dim=128,
|
160
|
+
num_query_groups=num_query_groups[idx],
|
161
|
+
rotary_percentage=1.0,
|
162
|
+
qkv_transpose_before_split=True,
|
163
|
+
query_norm_config=norm_config,
|
164
|
+
key_norm_config=norm_config,
|
165
|
+
),
|
166
|
+
ff_config=cfg.FeedForwardConfig(
|
167
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
168
|
+
activation=cfg.ActivationConfig(
|
169
|
+
cfg.ActivationType.SILU_GLU, gate_is_front=True
|
170
|
+
),
|
171
|
+
intermediate_size=get_intermediate_size(idx),
|
172
|
+
pre_ff_norm_config=norm_config,
|
173
|
+
),
|
174
|
+
pre_attention_norm_config=norm_config,
|
175
|
+
)
|
176
|
+
|
177
|
+
num_layers = 36
|
178
|
+
config = cfg.ModelConfig(
|
179
|
+
vocab_size=32000,
|
180
|
+
num_layers=num_layers,
|
181
|
+
max_seq_len=2048,
|
182
|
+
embedding_dim=3072,
|
183
|
+
kv_cache_max_len=kv_cache_max_len,
|
184
|
+
block_configs=[get_block_config(i) for i in range(num_layers)],
|
185
|
+
final_norm_config=norm_config,
|
186
|
+
)
|
187
|
+
return config
|
188
|
+
|
189
|
+
|
190
|
+
def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
191
|
+
config = get_model_config(kv_cache_max_len)
|
192
|
+
config.vocab_size = 128
|
193
|
+
config.num_layers = 2
|
194
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
195
|
+
config.embedding_dim = 128
|
196
|
+
config.block_configs = config.block_configs[: config.num_layers]
|
197
|
+
for block_config in config.block_configs:
|
198
|
+
block_config.attn_config.num_heads = 3
|
199
|
+
block_config.attn_config.head_dim = 64
|
200
|
+
block_config.ff_config.intermediate_size = 128
|
201
|
+
return config
|
202
|
+
|
203
|
+
|
204
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
205
|
+
config = get_model_config(**kwargs)
|
206
|
+
model = OpenELM(config)
|
207
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
208
|
+
# Since embedding and lm-head use the same weight, we need to set strict
|
209
|
+
# to False.
|
210
|
+
loader.load(model, strict=False)
|
211
|
+
model.eval()
|
212
|
+
return model
|
213
|
+
|
214
|
+
|
215
|
+
def define_and_run(checkpoint_path: str) -> None:
|
216
|
+
"""Instantiates and runs an OpenELM model."""
|
217
|
+
|
218
|
+
current_dir = pathlib.Path(__file__).parent.resolve()
|
219
|
+
openelm_goldens = torch.load(current_dir / "openelm_lm_logits.pt")
|
220
|
+
kv_cache_max_len = 1024
|
221
|
+
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
222
|
+
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
223
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
224
|
+
tokens[0, :4] = idx
|
225
|
+
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
226
|
+
kv = kv_utils.KVCache.from_model_config(model.config)
|
227
|
+
output = model.forward(tokens, input_pos, kv)
|
228
|
+
assert torch.allclose(
|
229
|
+
openelm_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-05
|
230
|
+
)
|
231
|
+
|
232
|
+
|
233
|
+
if __name__ == "__main__":
|
234
|
+
input_checkpoint_path = os.path.join(
|
235
|
+
pathlib.Path.home(), "Downloads/llm_data/openelm"
|
236
|
+
)
|
237
|
+
define_and_run(input_checkpoint_path)
|